| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 
 | #ifndef BIGUNSIGNED_H
#define BIGUNSIGNED_H
#include "NumberlikeArray.hh"
/* A BigUnsigned object represents a nonnegative integer of size limited only by
 * available memory.  BigUnsigneds support most mathematical operators and can
 * be converted to and from most primitive integer types.
 *
 * The number is stored as a NumberlikeArray of unsigned longs as if it were
 * written in base 256^sizeof(unsigned long).  The least significant block is
 * first, and the length is such that the most significant block is nonzero. */
class BigUnsigned : protected NumberlikeArray<unsigned long> {
public:
	// Enumeration for the result of a comparison.
	enum CmpRes { less = -1, equal = 0, greater = 1 };
	// BigUnsigneds are built with a Blk type of unsigned long.
	typedef unsigned long Blk;
	typedef NumberlikeArray<Blk>::Index Index;
	using NumberlikeArray<Blk>::N;
protected:
	// Creates a BigUnsigned with a capacity; for internal use.
	BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}
	// Decreases len to eliminate any leading zero blocks.
	void zapLeadingZeros() { 
		while (len > 0 && blk[len - 1] == 0)
			len--;
	}
public:
	// Constructs zero.
	BigUnsigned() : NumberlikeArray<Blk>() {}
	// Copy constructor
	BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}
	// Assignment operator
	void operator=(const BigUnsigned &x) {
		NumberlikeArray<Blk>::operator =(x);
	}
	// Constructor that copies from a given array of blocks.
	BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
		// Eliminate any leading zeros we may have been passed.
		zapLeadingZeros();
	}
	// Destructor.  NumberlikeArray does the delete for us.
	~BigUnsigned() {}
	
	// Constructors from primitive integer types
	BigUnsigned(unsigned long  x);
	BigUnsigned(         long  x);
	BigUnsigned(unsigned int   x);
	BigUnsigned(         int   x);
	BigUnsigned(unsigned short x);
	BigUnsigned(         short x);
protected:
	// Helpers
	template <class X> void initFromPrimitive      (X x);
	template <class X> void initFromSignedPrimitive(X x);
public:
	/* Converters to primitive integer types
	 * The implicit conversion operators caused trouble, so these are now
	 * named. */
	unsigned long  toUnsignedLong () const;
	long           toLong         () const;
	unsigned int   toUnsignedInt  () const;
	int            toInt          () const;
	unsigned short toUnsignedShort() const;
	short          toShort        () const;
protected:
	// Helpers
	template <class X> X convertToSignedPrimitive() const;
	template <class X> X convertToPrimitive      () const;
public:
	// BIT/BLOCK ACCESSORS
	// Expose these from NumberlikeArray directly.
	using NumberlikeArray<Blk>::getCapacity;
	using NumberlikeArray<Blk>::getLength;
	/* Returns the requested block, or 0 if it is beyond the length (as if
	 * the number had 0s infinitely to the left). */
	Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
	/* Sets the requested block.  The number grows or shrinks as necessary. */
	void setBlock(Index i, Blk newBlock);
	// The number is zero if and only if the canonical length is zero.
	bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }
	/* Returns the length of the number in bits, i.e., zero if the number
	 * is zero and otherwise one more than the largest value of bi for
	 * which getBit(bi) returns true. */
	Index bitLength() const;
	/* Get the state of bit bi, which has value 2^bi.  Bits beyond the
	 * number's length are considered to be 0. */
	bool getBit(Index bi) const {
		return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
	}
	/* Sets the state of bit bi to newBit.  The number grows or shrinks as
	 * necessary. */
	void setBit(Index bi, bool newBit);
	// COMPARISONS
	// Compares this to x like Perl's <=>
	CmpRes compareTo(const BigUnsigned &x) const;
	// Ordinary comparison operators
	bool operator ==(const BigUnsigned &x) const {
		return NumberlikeArray<Blk>::operator ==(x);
	}
	bool operator !=(const BigUnsigned &x) const {
		return NumberlikeArray<Blk>::operator !=(x);
	}
	bool operator < (const BigUnsigned &x) const { return compareTo(x) == less   ; }
	bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
	bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less   ; }
	bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }
	/*
	 * BigUnsigned and BigInteger both provide three kinds of operators.
	 * Here ``big-integer'' refers to BigInteger or BigUnsigned.
	 *
	 * (1) Overloaded ``return-by-value'' operators:
	 *     +, -, *, /, %, unary -, &, |, ^, <<, >>.
	 * Big-integer code using these operators looks identical to code using
	 * the primitive integer types.  These operators take one or two
	 * big-integer inputs and return a big-integer result, which can then
	 * be assigned to a BigInteger variable or used in an expression.
	 * Example:
	 *     BigInteger a(1), b = 1;
	 *     BigInteger c = a + b;
	 *
	 * (2) Overloaded assignment operators:
	 *     +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
	 * Again, these are used on big integers just like on ints.  They take
	 * one writable big integer that both provides an operand and receives a
	 * result.  Most also take a second read-only operand.
	 * Example:
	 *     BigInteger a(1), b(1);
	 *     a += b;
	 *
	 * (3) Copy-less operations: `add', `subtract', etc.
	 * These named methods take operands as arguments and store the result
	 * in the receiver (*this), avoiding unnecessary copies and allocations.
	 * `divideWithRemainder' is special: it both takes the dividend from and
	 * stores the remainder into the receiver, and it takes a separate
	 * object in which to store the quotient.  NOTE: If you are wondering
	 * why these don't return a value, you probably mean to use the
	 * overloaded return-by-value operators instead.
	 * 
	 * Examples:
	 *     BigInteger a(43), b(7), c, d;
	 *
	 *     c = a + b;   // Now c == 50.
	 *     c.add(a, b); // Same effect but without the two copies.
	 *
	 *     c.divideWithRemainder(b, d);
	 *     // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
	 *
	 *     // ``Aliased'' calls now do the right thing using a temporary
	 *     // copy, but see note on `divideWithRemainder'.
	 *     a.add(a, b); 
	 */
	// COPY-LESS OPERATIONS
	// These 8: Arguments are read-only operands, result is saved in *this.
	void add(const BigUnsigned &a, const BigUnsigned &b);
	void subtract(const BigUnsigned &a, const BigUnsigned &b);
	void multiply(const BigUnsigned &a, const BigUnsigned &b);
	void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
	void bitOr(const BigUnsigned &a, const BigUnsigned &b);
	void bitXor(const BigUnsigned &a, const BigUnsigned &b);
	/* Negative shift amounts translate to opposite-direction shifts,
	 * except for -2^(8*sizeof(int)-1) which is unimplemented. */
	void bitShiftLeft(const BigUnsigned &a, int b);
	void bitShiftRight(const BigUnsigned &a, int b);
	/* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
	 * / and % use semantics similar to Knuth's, which differ from the
	 * primitive integer semantics under division by zero.  See the
	 * implementation in BigUnsigned.cc for details.
	 * `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
	 * sense to write quotient and remainder into the same variable. */
	void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);
	/* `divide' and `modulo' are no longer offered.  Use
	 * `divideWithRemainder' instead. */
	// OVERLOADED RETURN-BY-VALUE OPERATORS
	BigUnsigned operator +(const BigUnsigned &x) const;
	BigUnsigned operator -(const BigUnsigned &x) const;
	BigUnsigned operator *(const BigUnsigned &x) const;
	BigUnsigned operator /(const BigUnsigned &x) const;
	BigUnsigned operator %(const BigUnsigned &x) const;
	/* OK, maybe unary minus could succeed in one case, but it really
	 * shouldn't be used, so it isn't provided. */
	BigUnsigned operator &(const BigUnsigned &x) const;
	BigUnsigned operator |(const BigUnsigned &x) const;
	BigUnsigned operator ^(const BigUnsigned &x) const;
	BigUnsigned operator <<(int b) const;
	BigUnsigned operator >>(int b) const;
	// OVERLOADED ASSIGNMENT OPERATORS
	void operator +=(const BigUnsigned &x);
	void operator -=(const BigUnsigned &x);
	void operator *=(const BigUnsigned &x);
	void operator /=(const BigUnsigned &x);
	void operator %=(const BigUnsigned &x);
	void operator &=(const BigUnsigned &x);
	void operator |=(const BigUnsigned &x);
	void operator ^=(const BigUnsigned &x);
	void operator <<=(int b);
	void operator >>=(int b);
	/* INCREMENT/DECREMENT OPERATORS
	 * To discourage messy coding, these do not return *this, so prefix
	 * and postfix behave the same. */
	void operator ++(   );
	void operator ++(int);
	void operator --(   );
	void operator --(int);
	// Helper function that needs access to BigUnsigned internals
	friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
			unsigned int y);
	// See BigInteger.cc.
	template <class X>
	friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
};
/* Implementing the return-by-value and assignment operators in terms of the
 * copy-less operations.  The copy-less operations are responsible for making
 * any necessary temporary copies to work around aliasing. */
inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.add(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.subtract(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.multiply(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
	if (x.isZero()) throw "BigUnsigned::operator /: division by zero";
	BigUnsigned q, r;
	r = *this;
	r.divideWithRemainder(x, q);
	return q;
}
inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
	if (x.isZero()) throw "BigUnsigned::operator %: division by zero";
	BigUnsigned q, r;
	r = *this;
	r.divideWithRemainder(x, q);
	return r;
}
inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.bitAnd(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.bitOr(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
	BigUnsigned ans;
	ans.bitXor(*this, x);
	return ans;
}
inline BigUnsigned BigUnsigned::operator <<(int b) const {
	BigUnsigned ans;
	ans.bitShiftLeft(*this, b);
	return ans;
}
inline BigUnsigned BigUnsigned::operator >>(int b) const {
	BigUnsigned ans;
	ans.bitShiftRight(*this, b);
	return ans;
}
inline void BigUnsigned::operator +=(const BigUnsigned &x) {
	add(*this, x);
}
inline void BigUnsigned::operator -=(const BigUnsigned &x) {
	subtract(*this, x);
}
inline void BigUnsigned::operator *=(const BigUnsigned &x) {
	multiply(*this, x);
}
inline void BigUnsigned::operator /=(const BigUnsigned &x) {
	if (x.isZero()) throw "BigUnsigned::operator /=: division by zero";
	/* The following technique is slightly faster than copying *this first
	 * when x is large. */
	BigUnsigned q;
	divideWithRemainder(x, q);
	// *this contains the remainder, but we overwrite it with the quotient.
	*this = q;
}
inline void BigUnsigned::operator %=(const BigUnsigned &x) {
	if (x.isZero()) throw "BigUnsigned::operator %=: division by zero";
	BigUnsigned q;
	// Mods *this by x.  Don't care about quotient left in q.
	divideWithRemainder(x, q);
}
inline void BigUnsigned::operator &=(const BigUnsigned &x) {
	bitAnd(*this, x);
}
inline void BigUnsigned::operator |=(const BigUnsigned &x) {
	bitOr(*this, x);
}
inline void BigUnsigned::operator ^=(const BigUnsigned &x) {
	bitXor(*this, x);
}
inline void BigUnsigned::operator <<=(int b) {
	bitShiftLeft(*this, b);
}
inline void BigUnsigned::operator >>=(int b) {
	bitShiftRight(*this, b);
}
/* Templates for conversions of BigUnsigned to and from primitive integers.
 * BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
 * BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
 * instead of generating linkable instantiations.  So for consistency, I put
 * all the templates here. */
// CONSTRUCTION FROM PRIMITIVE INTEGERS
/* Initialize this BigUnsigned from the given primitive integer.  The same
 * pattern works for all primitive integer types, so I put it into a template to
 * reduce code duplication.  (Don't worry: this is protected and we instantiate
 * it only with primitive integer types.)  Type X could be signed, but x is
 * known to be nonnegative. */
template <class X>
void BigUnsigned::initFromPrimitive(X x) {
	if (x == 0)
		; // NumberlikeArray already initialized us to zero.
	else {
		// Create a single block.  blk is NULL; no need to delete it.
		cap = 1;
		blk = new Blk[1];
		len = 1;
		blk[0] = Blk(x);
	}
}
/* Ditto, but first check that x is nonnegative.  I could have put the check in
 * initFromPrimitive and let the compiler optimize it out for unsigned-type
 * instantiations, but I wanted to avoid the warning stupidly issued by g++ for
 * a condition that is constant in *any* instantiation, even if not in all. */
template <class X>
void BigUnsigned::initFromSignedPrimitive(X x) {
	if (x < 0)
		throw "BigUnsigned constructor: "
			"Cannot construct a BigUnsigned from a negative number";
	else
		initFromPrimitive(x);
}
// CONVERSION TO PRIMITIVE INTEGERS
/* Template with the same idea as initFromPrimitive.  This might be slightly
 * slower than the previous version with the masks, but it's much shorter and
 * clearer, which is the library's stated goal. */
template <class X>
X BigUnsigned::convertToPrimitive() const {
	if (len == 0)
		// The number is zero; return zero.
		return 0;
	else if (len == 1) {
		// The single block might fit in an X.  Try the conversion.
		X x = X(blk[0]);
		// Make sure the result accurately represents the block.
		if (Blk(x) == blk[0])
			// Successful conversion.
			return x;
		// Otherwise fall through.
	}
	throw "BigUnsigned::to<Primitive>: "
		"Value is too big to fit in the requested type";
}
/* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
 * not a negative one that happened to convert back into the correct nonnegative
 * one.  (E.g., catch incorrect conversion of 2^31 to the long -2^31.)  Again,
 * separated to avoid a g++ warning. */
template <class X>
X BigUnsigned::convertToSignedPrimitive() const {
	X x = convertToPrimitive<X>();
	if (x >= 0)
		return x;
	else
		throw "BigUnsigned::to(Primitive): "
			"Value is too big to fit in the requested type";
}
#endif
 |