1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2024 Emily Schmidt <emily@yosyshq.com>
* Copyright (C) 2024 National Technology and Engineering Solutions of Sandia, LLC
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/functional.h"
#include "kernel/topo_scc.h"
#include "ff.h"
#include "ffinit.h"
#include <deque>
YOSYS_NAMESPACE_BEGIN
namespace Functional {
const char *fn_to_string(Fn fn) {
switch(fn) {
case Fn::invalid: return "invalid";
case Fn::buf: return "buf";
case Fn::slice: return "slice";
case Fn::zero_extend: return "zero_extend";
case Fn::sign_extend: return "sign_extend";
case Fn::concat: return "concat";
case Fn::add: return "add";
case Fn::sub: return "sub";
case Fn::mul: return "mul";
case Fn::unsigned_div: return "unsigned_div";
case Fn::unsigned_mod: return "unsigned_mod";
case Fn::bitwise_and: return "bitwise_and";
case Fn::bitwise_or: return "bitwise_or";
case Fn::bitwise_xor: return "bitwise_xor";
case Fn::bitwise_not: return "bitwise_not";
case Fn::reduce_and: return "reduce_and";
case Fn::reduce_or: return "reduce_or";
case Fn::reduce_xor: return "reduce_xor";
case Fn::unary_minus: return "unary_minus";
case Fn::equal: return "equal";
case Fn::not_equal: return "not_equal";
case Fn::signed_greater_than: return "signed_greater_than";
case Fn::signed_greater_equal: return "signed_greater_equal";
case Fn::unsigned_greater_than: return "unsigned_greater_than";
case Fn::unsigned_greater_equal: return "unsigned_greater_equal";
case Fn::logical_shift_left: return "logical_shift_left";
case Fn::logical_shift_right: return "logical_shift_right";
case Fn::arithmetic_shift_right: return "arithmetic_shift_right";
case Fn::mux: return "mux";
case Fn::constant: return "constant";
case Fn::input: return "input";
case Fn::state: return "state";
case Fn::memory_read: return "memory_read";
case Fn::memory_write: return "memory_write";
}
log_error("fn_to_string: unknown Functional::Fn value %d", (int)fn);
}
vector<IRInput const*> IR::inputs(IdString kind) const {
vector<IRInput const*> ret;
for (const auto &[name, input] : _inputs)
if(input.kind == kind)
ret.push_back(&input);
return ret;
}
vector<IROutput const*> IR::outputs(IdString kind) const {
vector<IROutput const*> ret;
for (const auto &[name, output] : _outputs)
if(output.kind == kind)
ret.push_back(&output);
return ret;
}
vector<IRState const*> IR::states(IdString kind) const {
vector<IRState const*> ret;
for (const auto &[name, state] : _states)
if(state.kind == kind)
ret.push_back(&state);
return ret;
}
vector<IRInput const*> IR::all_inputs() const {
vector<IRInput const*> ret;
for (const auto &[name, input] : _inputs)
ret.push_back(&input);
return ret;
}
vector<IROutput const*> IR::all_outputs() const {
vector<IROutput const*> ret;
for (const auto &[name, output] : _outputs)
ret.push_back(&output);
return ret;
}
vector<IRState const*> IR::all_states() const {
vector<IRState const*> ret;
for (const auto &[name, state] : _states)
ret.push_back(&state);
return ret;
}
struct PrintVisitor : DefaultVisitor<std::string> {
std::function<std::string(Node)> np;
PrintVisitor(std::function<std::string(Node)> np) : np(np) { }
// as a general rule the default handler is good enough iff the only arguments are of type Node
std::string slice(Node, Node a, int offset, int out_width) override { return "slice(" + np(a) + ", " + std::to_string(offset) + ", " + std::to_string(out_width) + ")"; }
std::string zero_extend(Node, Node a, int out_width) override { return "zero_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
std::string sign_extend(Node, Node a, int out_width) override { return "sign_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
std::string constant(Node, RTLIL::Const const& value) override { return "constant(" + value.as_string() + ")"; }
std::string input(Node, IdString name, IdString kind) override { return "input(" + name.str() + ", " + kind.str() + ")"; }
std::string state(Node, IdString name, IdString kind) override { return "state(" + name.str() + ", " + kind.str() + ")"; }
std::string default_handler(Node self) override {
std::string ret = fn_to_string(self.fn());
ret += "(";
for(size_t i = 0; i < self.arg_count(); i++) {
if(i > 0) ret += ", ";
ret += np(self.arg(i));
}
ret += ")";
return ret;
}
};
std::string Node::to_string()
{
return to_string([](Node n) { return RTLIL::unescape_id(n.name()); });
}
std::string Node::to_string(std::function<std::string(Node)> np)
{
return visit(PrintVisitor(np));
}
class CellSimplifier {
Factory &factory;
Node sign(Node a) {
return factory.slice(a, a.width() - 1, 1);
}
Node neg_if(Node a, Node s) {
return factory.mux(a, factory.unary_minus(a), s);
}
Node abs(Node a) {
return neg_if(a, sign(a));
}
Node handle_shift(Node a, Node b, bool is_right, bool is_signed) {
// to prevent new_width == 0, we handle this case separately
if(a.width() == 1) {
if(!is_signed)
return factory.bitwise_and(a, factory.bitwise_not(factory.reduce_or(b)));
else
return a;
}
int new_width = ceil_log2(a.width());
Node b_truncated = factory.extend(b, new_width, false);
Node y =
!is_right ? factory.logical_shift_left(a, b_truncated) :
!is_signed ? factory.logical_shift_right(a, b_truncated) :
factory.arithmetic_shift_right(a, b_truncated);
if(b.width() <= new_width)
return y;
Node overflow = factory.unsigned_greater_equal(b, factory.constant(RTLIL::Const(a.width(), b.width())));
Node y_if_overflow = is_signed ? factory.extend(sign(a), a.width(), true) : factory.constant(RTLIL::Const(State::S0, a.width()));
return factory.mux(y, y_if_overflow, overflow);
}
public:
Node logical_shift_left(Node a, Node b) { return handle_shift(a, b, false, false); }
Node logical_shift_right(Node a, Node b) { return handle_shift(a, b, true, false); }
Node arithmetic_shift_right(Node a, Node b) { return handle_shift(a, b, true, true); }
Node bitwise_mux(Node a, Node b, Node s) {
Node aa = factory.bitwise_and(a, factory.bitwise_not(s));
Node bb = factory.bitwise_and(b, s);
return factory.bitwise_or(aa, bb);
}
CellSimplifier(Factory &f) : factory(f) {}
private:
Node handle_pow(Node a0, Node b, int y_width, bool is_signed) {
Node a = factory.extend(a0, y_width, is_signed);
Node r = factory.constant(Const(1, y_width));
for(int i = 0; i < b.width(); i++) {
Node b_bit = factory.slice(b, i, 1);
r = factory.mux(r, factory.mul(r, a), b_bit);
a = factory.mul(a, a);
}
if (is_signed) {
Node a_ge_1 = factory.unsigned_greater_than(abs(a0), factory.constant(Const(1, a0.width())));
Node zero_result = factory.bitwise_and(a_ge_1, sign(b));
r = factory.mux(r, factory.constant(Const(0, y_width)), zero_result);
}
return r;
}
Node handle_bmux(Node a, Node s, int a_offset, int width, int sn) {
if(sn < 1)
return factory.slice(a, a_offset, width);
else {
Node y0 = handle_bmux(a, s, a_offset, width, sn - 1);
Node y1 = handle_bmux(a, s, a_offset + (width << (sn - 1)), width, sn - 1);
return factory.mux(y0, y1, factory.slice(s, sn - 1, 1));
}
}
Node handle_pmux(Node a, Node b, Node s) {
// TODO : what to do about multiple b bits set ?
log_assert(b.width() == a.width() * s.width());
Node y = a;
for(int i = 0; i < s.width(); i++)
y = factory.mux(y, factory.slice(b, a.width() * i, a.width()), factory.slice(s, i, 1));
return y;
}
dict<IdString, Node> handle_fa(Node a, Node b, Node c) {
Node t1 = factory.bitwise_xor(a, b);
Node t2 = factory.bitwise_and(a, b);
Node t3 = factory.bitwise_and(c, t1);
Node y = factory.bitwise_xor(c, t1);
Node x = factory.bitwise_or(t2, t3);
return {{ID(X), x}, {ID(Y), y}};
}
dict<IdString, Node> handle_alu(Node a_in, Node b_in, int y_width, bool is_signed, Node ci, Node bi) {
Node a = factory.extend(a_in, y_width, is_signed);
Node b_uninverted = factory.extend(b_in, y_width, is_signed);
Node b = factory.mux(b_uninverted, factory.bitwise_not(b_uninverted), bi);
Node x = factory.bitwise_xor(a, b);
// we can compute the carry into each bit using (a+b+c)^a^b. since we want the carry out,
// i.e. the carry into the next bit, we have to add an extra bit to a and b, and
// then slice off the bottom bit of the result.
Node a_extra = factory.extend(a, y_width + 1, false);
Node b_extra = factory.extend(b, y_width + 1, false);
Node y_extra = factory.add(factory.add(a_extra, b_extra), factory.extend(ci, a.width() + 1, false));
Node y = factory.slice(y_extra, 0, y_width);
Node carries = factory.bitwise_xor(y_extra, factory.bitwise_xor(a_extra, b_extra));
Node co = factory.slice(carries, 1, y_width);
return {{ID(X), x}, {ID(Y), y}, {ID(CO), co}};
}
Node handle_lcu(Node p, Node g, Node ci) {
return handle_alu(g, factory.bitwise_or(p, g), g.width(), false, ci, factory.constant(Const(State::S0, 1))).at(ID(CO));
}
public:
std::variant<dict<IdString, Node>, Node> handle(IdString cellName, IdString cellType, dict<IdString, Const> parameters, dict<IdString, Node> inputs)
{
int a_width = parameters.at(ID(A_WIDTH), Const(-1)).as_int();
int b_width = parameters.at(ID(B_WIDTH), Const(-1)).as_int();
int y_width = parameters.at(ID(Y_WIDTH), Const(-1)).as_int();
bool a_signed = parameters.at(ID(A_SIGNED), Const(0)).as_bool();
bool b_signed = parameters.at(ID(B_SIGNED), Const(0)).as_bool();
if(cellType.in(ID($add), ID($sub), ID($and), ID($or), ID($xor), ID($xnor), ID($mul))){
bool is_signed = a_signed && b_signed;
Node a = factory.extend(inputs.at(ID(A)), y_width, is_signed);
Node b = factory.extend(inputs.at(ID(B)), y_width, is_signed);
if(cellType == ID($add))
return factory.add(a, b);
else if(cellType == ID($sub))
return factory.sub(a, b);
else if(cellType == ID($mul))
return factory.mul(a, b);
else if(cellType == ID($and))
return factory.bitwise_and(a, b);
else if(cellType == ID($or))
return factory.bitwise_or(a, b);
else if(cellType == ID($xor))
return factory.bitwise_xor(a, b);
else if(cellType == ID($xnor))
return factory.bitwise_not(factory.bitwise_xor(a, b));
else
log_abort();
}else if(cellType.in(ID($eq), ID($ne), ID($eqx), ID($nex), ID($le), ID($lt), ID($ge), ID($gt))){
bool is_signed = a_signed && b_signed;
int width = max(a_width, b_width);
Node a = factory.extend(inputs.at(ID(A)), width, is_signed);
Node b = factory.extend(inputs.at(ID(B)), width, is_signed);
if(cellType.in(ID($eq), ID($eqx)))
return factory.extend(factory.equal(a, b), y_width, false);
else if(cellType.in(ID($ne), ID($nex)))
return factory.extend(factory.not_equal(a, b), y_width, false);
else if(cellType == ID($lt))
return factory.extend(is_signed ? factory.signed_greater_than(b, a) : factory.unsigned_greater_than(b, a), y_width, false);
else if(cellType == ID($le))
return factory.extend(is_signed ? factory.signed_greater_equal(b, a) : factory.unsigned_greater_equal(b, a), y_width, false);
else if(cellType == ID($gt))
return factory.extend(is_signed ? factory.signed_greater_than(a, b) : factory.unsigned_greater_than(a, b), y_width, false);
else if(cellType == ID($ge))
return factory.extend(is_signed ? factory.signed_greater_equal(a, b) : factory.unsigned_greater_equal(a, b), y_width, false);
else
log_abort();
}else if(cellType.in(ID($logic_or), ID($logic_and))){
Node a = factory.reduce_or(inputs.at(ID(A)));
Node b = factory.reduce_or(inputs.at(ID(B)));
Node y = cellType == ID($logic_and) ? factory.bitwise_and(a, b) : factory.bitwise_or(a, b);
return factory.extend(y, y_width, false);
}else if(cellType == ID($not)){
Node a = factory.extend(inputs.at(ID(A)), y_width, a_signed);
return factory.bitwise_not(a);
}else if(cellType == ID($pos)){
return factory.extend(inputs.at(ID(A)), y_width, a_signed);
}else if(cellType == ID($neg)){
Node a = factory.extend(inputs.at(ID(A)), y_width, a_signed);
return factory.unary_minus(a);
}else if(cellType == ID($logic_not)){
Node a = factory.reduce_or(inputs.at(ID(A)));
Node y = factory.bitwise_not(a);
return factory.extend(y, y_width, false);
}else if(cellType.in(ID($reduce_or), ID($reduce_bool))){
Node a = factory.reduce_or(inputs.at(ID(A)));
return factory.extend(a, y_width, false);
}else if(cellType == ID($reduce_and)){
Node a = factory.reduce_and(inputs.at(ID(A)));
return factory.extend(a, y_width, false);
}else if(cellType.in(ID($reduce_xor), ID($reduce_xnor))){
Node a = factory.reduce_xor(inputs.at(ID(A)));
Node y = cellType == ID($reduce_xnor) ? factory.bitwise_not(a) : a;
return factory.extend(y, y_width, false);
}else if(cellType == ID($shl) || cellType == ID($sshl)){
Node a = factory.extend(inputs.at(ID(A)), y_width, a_signed);
Node b = inputs.at(ID(B));
return logical_shift_left(a, b);
}else if(cellType == ID($shr) || cellType == ID($sshr)){
int width = max(a_width, y_width);
Node a = factory.extend(inputs.at(ID(A)), width, a_signed);
Node b = inputs.at(ID(B));
Node y = a_signed && cellType == ID($sshr) ?
arithmetic_shift_right(a, b) :
logical_shift_right(a, b);
return factory.extend(y, y_width, a_signed);
}else if(cellType == ID($shiftx) || cellType == ID($shift)){
int width = max(a_width, y_width);
Node a = factory.extend(inputs.at(ID(A)), width, cellType == ID($shift) && a_signed);
Node b = inputs.at(ID(B));
Node shr = logical_shift_right(a, b);
if(b_signed) {
Node shl = logical_shift_left(a, factory.unary_minus(b));
Node y = factory.mux(shr, shl, sign(b));
return factory.extend(y, y_width, false);
} else {
return factory.extend(shr, y_width, false);
}
}else if(cellType == ID($mux)){
return factory.mux(inputs.at(ID(A)), inputs.at(ID(B)), inputs.at(ID(S)));
}else if(cellType == ID($pmux)){
return handle_pmux(inputs.at(ID(A)), inputs.at(ID(B)), inputs.at(ID(S)));
}else if(cellType == ID($concat)){
Node a = inputs.at(ID(A));
Node b = inputs.at(ID(B));
return factory.concat(a, b);
}else if(cellType == ID($slice)){
int offset = parameters.at(ID(OFFSET)).as_int();
Node a = inputs.at(ID(A));
return factory.slice(a, offset, y_width);
}else if(cellType.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) {
int width = max(a_width, b_width);
bool is_signed = a_signed && b_signed;
Node a = factory.extend(inputs.at(ID(A)), width, is_signed);
Node b = factory.extend(inputs.at(ID(B)), width, is_signed);
if(is_signed) {
if(cellType == ID($div)) {
// divide absolute values, then flip the sign if input signs differ
// but extend the width first, to handle the case (most negative value) / (-1)
Node abs_y = factory.unsigned_div(abs(a), abs(b));
Node out_sign = factory.not_equal(sign(a), sign(b));
return neg_if(factory.extend(abs_y, y_width, false), out_sign);
} else if(cellType == ID($mod)) {
// similar to division but output sign == divisor sign
Node abs_y = factory.unsigned_mod(abs(a), abs(b));
return neg_if(factory.extend(abs_y, y_width, false), sign(a));
} else if(cellType == ID($divfloor)) {
// if b is negative, flip both signs so that b is positive
Node b_sign = sign(b);
Node a1 = neg_if(a, b_sign);
Node b1 = neg_if(b, b_sign);
// if a is now negative, calculate ~((~a) / b) = -((-a - 1) / b + 1)
// which equals the negative of (-a) / b with rounding up rather than down
// note that to handle the case where a = most negative value properly,
// we have to calculate a1_sign from the original values rather than using sign(a1)
Node a1_sign = factory.bitwise_and(factory.not_equal(sign(a), sign(b)), factory.reduce_or(a));
Node a2 = factory.mux(a1, factory.bitwise_not(a1), a1_sign);
Node y1 = factory.unsigned_div(a2, b1);
Node y2 = factory.extend(y1, y_width, false);
return factory.mux(y2, factory.bitwise_not(y2), a1_sign);
} else if(cellType == ID($modfloor)) {
// calculate |a| % |b| and then subtract from |b| if input signs differ and the remainder is non-zero
Node abs_b = abs(b);
Node abs_y = factory.unsigned_mod(abs(a), abs_b);
Node flip_y = factory.bitwise_and(factory.bitwise_xor(sign(a), sign(b)), factory.reduce_or(abs_y));
Node y_flipped = factory.mux(abs_y, factory.sub(abs_b, abs_y), flip_y);
// since y_flipped is strictly less than |b|, the top bit is always 0 and we can just sign extend the flipped result
Node y = neg_if(y_flipped, sign(b));
return factory.extend(y, y_width, true);
} else
log_error("unhandled cell in CellSimplifier %s\n", cellType.c_str());
} else {
if(cellType.in(ID($mod), ID($modfloor)))
return factory.extend(factory.unsigned_mod(a, b), y_width, false);
else
return factory.extend(factory.unsigned_div(a, b), y_width, false);
}
} else if(cellType == ID($pow)) {
return handle_pow(inputs.at(ID(A)), inputs.at(ID(B)), y_width, a_signed && b_signed);
} else if (cellType == ID($lut)) {
int width = parameters.at(ID(WIDTH)).as_int();
Const lut_table = parameters.at(ID(LUT));
lut_table.extu(1 << width);
return handle_bmux(factory.constant(lut_table), inputs.at(ID(A)), 0, 1, width);
} else if (cellType == ID($bwmux)) {
Node a = inputs.at(ID(A));
Node b = inputs.at(ID(B));
Node s = inputs.at(ID(S));
return factory.bitwise_or(
factory.bitwise_and(a, factory.bitwise_not(s)),
factory.bitwise_and(b, s));
} else if (cellType == ID($bweqx)) {
Node a = inputs.at(ID(A));
Node b = inputs.at(ID(B));
return factory.bitwise_not(factory.bitwise_xor(a, b));
} else if(cellType == ID($bmux)) {
int width = parameters.at(ID(WIDTH)).as_int();
int s_width = parameters.at(ID(S_WIDTH)).as_int();
return handle_bmux(inputs.at(ID(A)), inputs.at(ID(S)), 0, width, s_width);
} else if(cellType == ID($demux)) {
int width = parameters.at(ID(WIDTH)).as_int();
int s_width = parameters.at(ID(S_WIDTH)).as_int();
int y_width = width << s_width;
int b_width = ceil_log2(y_width);
Node a = factory.extend(inputs.at(ID(A)), y_width, false);
Node s = factory.extend(inputs.at(ID(S)), b_width, false);
Node b = factory.mul(s, factory.constant(Const(width, b_width)));
return factory.logical_shift_left(a, b);
} else if(cellType == ID($fa)) {
return handle_fa(inputs.at(ID(A)), inputs.at(ID(B)), inputs.at(ID(C)));
} else if(cellType == ID($lcu)) {
return handle_lcu(inputs.at(ID(P)), inputs.at(ID(G)), inputs.at(ID(CI)));
} else if(cellType == ID($alu)) {
return handle_alu(inputs.at(ID(A)), inputs.at(ID(B)), y_width, a_signed && b_signed, inputs.at(ID(CI)), inputs.at(ID(BI)));
} else if(cellType.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover))) {
Node a = factory.mux(factory.constant(Const(State::S1, 1)), inputs.at(ID(A)), inputs.at(ID(EN)));
auto &output = factory.add_output(cellName, cellType, Sort(1));
output.set_value(a);
return {};
} else if(cellType.in(ID($anyconst), ID($allconst), ID($anyseq), ID($allseq))) {
int width = parameters.at(ID(WIDTH)).as_int();
auto &input = factory.add_input(cellName, cellType, Sort(width));
return factory.value(input);
} else if(cellType == ID($initstate)) {
if(factory.ir().has_state(ID($initstate), ID($state)))
return factory.value(factory.ir().state(ID($initstate)));
else {
auto &state = factory.add_state(ID($initstate), ID($state), Sort(1));
state.set_initial_value(RTLIL::Const(State::S1, 1));
state.set_next_value(factory.constant(RTLIL::Const(State::S0, 1)));
return factory.value(state);
}
} else if(cellType == ID($check)) {
log_error("The design contains a $check cell `%s'. This is not supported by the functional backend. Call `chformal -lower' to avoid this error.\n", cellName.c_str());
} else {
log_error("`%s' cells are not supported by the functional backend\n", cellType.c_str());
}
}
};
class FunctionalIRConstruction {
std::deque<std::variant<DriveSpec, Cell *>> queue;
dict<DriveSpec, Node> graph_nodes;
dict<std::pair<Cell *, IdString>, Node> cell_outputs;
DriverMap driver_map;
Factory& factory;
CellSimplifier simplifier;
vector<Mem> memories_vector;
dict<Cell*, Mem*> memories;
SigMap sig_map; // TODO: this is only for FfInitVals, remove this once FfInitVals supports DriverMap
FfInitVals ff_initvals;
Node enqueue(DriveSpec const &spec)
{
auto it = graph_nodes.find(spec);
if(it == graph_nodes.end()){
auto node = factory.create_pending(spec.size());
graph_nodes.insert({spec, node});
queue.emplace_back(spec);
return node;
}else
return it->second;
}
Node enqueue_cell(Cell *cell, IdString port_name)
{
auto it = cell_outputs.find({cell, port_name});
if(it == cell_outputs.end()) {
queue.emplace_back(cell);
std::optional<Node> rv;
for(auto const &[name, sigspec] : cell->connections())
if(driver_map.celltypes.cell_output(cell->type, name)) {
auto node = factory.create_pending(sigspec.size());
factory.suggest_name(node, cell->name.str() + "$" + name.str());
cell_outputs.emplace({cell, name}, node);
if(name == port_name)
rv = node;
}
return *rv;
} else
return it->second;
}
public:
FunctionalIRConstruction(Module *module, Factory &f)
: factory(f)
, simplifier(f)
, sig_map(module)
, ff_initvals(&sig_map, module)
{
driver_map.add(module);
for (auto cell : module->cells()) {
if (cell->type.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover), ID($check)))
queue.emplace_back(cell);
}
for (auto wire : module->wires()) {
if (wire->port_input)
factory.add_input(wire->name, ID($input), Sort(wire->width));
if (wire->port_output) {
auto &output = factory.add_output(wire->name, ID($output), Sort(wire->width));
output.set_value(enqueue(DriveChunk(DriveChunkWire(wire, 0, wire->width))));
}
}
memories_vector = Mem::get_all_memories(module);
for (auto &mem : memories_vector) {
if (mem.cell != nullptr)
memories[mem.cell] = &mem;
}
}
private:
Node concatenate_read_results(Mem *mem, vector<Node> results)
{
// sanity check: all read ports concatenated should equal to the RD_DATA port
const SigSpec &rd_data = mem->cell->connections().at(ID(RD_DATA));
int current = 0;
for(size_t i = 0; i < mem->rd_ports.size(); i++) {
int width = mem->width << mem->rd_ports[i].wide_log2;
log_assert (results[i].width() == width);
log_assert (mem->rd_ports[i].data == rd_data.extract(current, width));
current += width;
}
log_assert (current == rd_data.size());
log_assert (!results.empty());
Node node = results[0];
for(size_t i = 1; i < results.size(); i++)
node = factory.concat(node, results[i]);
return node;
}
Node handle_memory(Mem *mem)
{
// To simplify memory handling, the functional backend makes the following assumptions:
// - Since async2sync or clk2fflogic must be run to use the functional backend,
// we can assume that all ports are asynchronous.
// - Async rd/wr are always transparent and so we must do reads after writes,
// but we can ignore transparency_mask.
// - We ignore collision_x_mask because x is a dont care value for us anyway.
// - Since wr port j can only have priority over wr port i if j > i, if we do writes in
// ascending index order the result will obey the priorty relation.
vector<Node> read_results;
auto &state = factory.add_state(mem->cell->name, ID($state), Sort(ceil_log2(mem->size), mem->width));
state.set_initial_value(MemContents(mem));
Node node = factory.value(state);
for (size_t i = 0; i < mem->wr_ports.size(); i++) {
const auto &wr = mem->wr_ports[i];
if (wr.clk_enable)
log_error("Write port %zd of memory %s.%s is clocked. This is not supported by the functional backend. "
"Call async2sync or clk2fflogic to avoid this error.\n", i, log_id(mem->module), log_id(mem->memid));
Node en = enqueue(driver_map(DriveSpec(wr.en)));
Node addr = enqueue(driver_map(DriveSpec(wr.addr)));
Node new_data = enqueue(driver_map(DriveSpec(wr.data)));
Node old_data = factory.memory_read(node, addr);
Node wr_data = simplifier.bitwise_mux(old_data, new_data, en);
node = factory.memory_write(node, addr, wr_data);
}
if (mem->rd_ports.empty())
log_error("Memory %s.%s has no read ports. This is not supported by the functional backend. "
"Call opt_clean to remove it.", log_id(mem->module), log_id(mem->memid));
for (size_t i = 0; i < mem->rd_ports.size(); i++) {
const auto &rd = mem->rd_ports[i];
if (rd.clk_enable)
log_error("Read port %zd of memory %s.%s is clocked. This is not supported by the functional backend. "
"Call memory_nordff to avoid this error.\n", i, log_id(mem->module), log_id(mem->memid));
Node addr = enqueue(driver_map(DriveSpec(rd.addr)));
read_results.push_back(factory.memory_read(node, addr));
}
state.set_next_value(node);
return concatenate_read_results(mem, read_results);
}
void process_cell(Cell *cell)
{
if (cell->is_mem_cell()) {
Mem *mem = memories.at(cell, nullptr);
if (mem == nullptr) {
log_assert(cell->has_memid());
log_error("The design contains an unpacked memory at %s. This is not supported by the functional backend. "
"Call memory_collect to avoid this error.\n", log_const(cell->parameters.at(ID(MEMID))));
}
Node node = handle_memory(mem);
factory.update_pending(cell_outputs.at({cell, ID(RD_DATA)}), node);
} else if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
FfData ff(&ff_initvals, cell);
if (!ff.has_gclk)
log_error("The design contains a %s flip-flop at %s. This is not supported by the functional backend. "
"Call async2sync or clk2fflogic to avoid this error.\n", log_id(cell->type), log_id(cell));
auto &state = factory.add_state(ff.name, ID($state), Sort(ff.width));
Node q_value = factory.value(state);
factory.suggest_name(q_value, ff.name);
factory.update_pending(cell_outputs.at({cell, ID(Q)}), q_value);
state.set_next_value(enqueue(ff.sig_d));
state.set_initial_value(ff.val_init);
} else {
dict<IdString, Node> connections;
IdString output_name; // for the single output case
int n_outputs = 0;
for(auto const &[name, sigspec] : cell->connections()) {
if(driver_map.celltypes.cell_input(cell->type, name) && sigspec.size() > 0)
connections.insert({ name, enqueue(DriveChunkPort(cell, {name, sigspec})) });
if(driver_map.celltypes.cell_output(cell->type, name)) {
output_name = name;
n_outputs++;
}
}
std::variant<dict<IdString, Node>, Node> outputs = simplifier.handle(cell->name, cell->type, cell->parameters, connections);
if(auto *nodep = std::get_if<Node>(&outputs); nodep != nullptr) {
log_assert(n_outputs == 1);
factory.update_pending(cell_outputs.at({cell, output_name}), *nodep);
} else {
for(auto [name, node] : std::get<dict<IdString, Node>>(outputs))
factory.update_pending(cell_outputs.at({cell, name}), node);
}
}
}
void undriven(const char *name) {
log_error("The design contains an undriven signal %s. This is not supported by the functional backend. "
"Call setundef with appropriate options to avoid this error.\n", name);
}
// we perform this check separately to give better error messages that include the wire or port name
void check_undriven(DriveSpec const& spec, std::string const& name) {
for(auto const &chunk : spec.chunks())
if(chunk.is_none())
undriven(name.c_str());
}
public:
void process_queue()
{
for (; !queue.empty(); queue.pop_front()) {
if(auto p = std::get_if<Cell *>(&queue.front()); p != nullptr) {
process_cell(*p);
continue;
}
DriveSpec spec = std::get<DriveSpec>(queue.front());
Node pending = graph_nodes.at(spec);
if (spec.chunks().size() > 1) {
auto chunks = spec.chunks();
Node node = enqueue(chunks[0]);
for(size_t i = 1; i < chunks.size(); i++)
node = factory.concat(node, enqueue(chunks[i]));
factory.update_pending(pending, node);
} else if (spec.chunks().size() == 1) {
DriveChunk chunk = spec.chunks()[0];
if (chunk.is_wire()) {
DriveChunkWire wire_chunk = chunk.wire();
if (wire_chunk.is_whole()) {
if (wire_chunk.wire->port_input) {
Node node = factory.value(factory.ir().input(wire_chunk.wire->name));
factory.suggest_name(node, wire_chunk.wire->name);
factory.update_pending(pending, node);
} else {
DriveSpec driver = driver_map(DriveSpec(wire_chunk));
check_undriven(driver, RTLIL::unescape_id(wire_chunk.wire->name));
Node node = enqueue(driver);
factory.suggest_name(node, wire_chunk.wire->name);
factory.update_pending(pending, node);
}
} else {
DriveChunkWire whole_wire(wire_chunk.wire, 0, wire_chunk.wire->width);
Node node = factory.slice(enqueue(whole_wire), wire_chunk.offset, wire_chunk.width);
factory.update_pending(pending, node);
}
} else if (chunk.is_port()) {
DriveChunkPort port_chunk = chunk.port();
if (port_chunk.is_whole()) {
if (driver_map.celltypes.cell_output(port_chunk.cell->type, port_chunk.port)) {
Node node = enqueue_cell(port_chunk.cell, port_chunk.port);
factory.update_pending(pending, node);
} else {
DriveSpec driver = driver_map(DriveSpec(port_chunk));
check_undriven(driver, RTLIL::unescape_id(port_chunk.cell->name) + " port " + RTLIL::unescape_id(port_chunk.port));
factory.update_pending(pending, enqueue(driver));
}
} else {
DriveChunkPort whole_port(port_chunk.cell, port_chunk.port, 0, GetSize(port_chunk.cell->connections().at(port_chunk.port)));
Node node = factory.slice(enqueue(whole_port), port_chunk.offset, port_chunk.width);
factory.update_pending(pending, node);
}
} else if (chunk.is_constant()) {
Node node = factory.constant(chunk.constant());
factory.suggest_name(node, "$const" + std::to_string(chunk.size()) + "b" + chunk.constant().as_string());
factory.update_pending(pending, node);
} else if (chunk.is_multiple()) {
log_error("Signal %s has multiple drivers. This is not supported by the functional backend. "
"If tristate drivers are used, call tristate -formal to avoid this error.\n", log_signal(chunk));
} else if (chunk.is_none()) {
undriven(log_signal(chunk));
} else {
log_error("unhandled drivespec: %s\n", log_signal(chunk));
log_abort();
}
} else {
log_abort();
}
}
}
};
IR IR::from_module(Module *module) {
IR ir;
auto factory = ir.factory();
FunctionalIRConstruction ctor(module, factory);
ctor.process_queue();
ir.topological_sort();
ir.forward_buf();
return ir;
}
void IR::topological_sort() {
Graph::SccAdaptor compute_graph_scc(_graph);
bool scc = false;
std::vector<int> perm;
TopoSortedSccs toposort(compute_graph_scc, [&](int *begin, int *end) {
perm.insert(perm.end(), begin, end);
if (end > begin + 1)
{
log_warning("Combinational loop:\n");
for (int *i = begin; i != end; ++i) {
Node node(_graph[*i]);
log("- %s = %s\n", RTLIL::unescape_id(node.name()).c_str(), node.to_string().c_str());
}
log("\n");
scc = true;
}
});
for(const auto &[name, state]: _states)
if(state.has_next_value())
toposort.process(state.next_value().id());
for(const auto &[name, output]: _outputs)
if(output.has_value())
toposort.process(output.value().id());
// any nodes untouched by this point are dead code and will be removed by permute
_graph.permute(perm);
if(scc) log_error("The design contains combinational loops. This is not supported by the functional backend. "
"Try `scc -select; simplemap; select -clear` to avoid this error.\n");
}
static IdString merge_name(IdString a, IdString b) {
if(a[0] == '$' && b[0] == '\\')
return b;
else
return a;
}
void IR::forward_buf() {
std::vector<int> perm, alias;
perm.clear();
for (int i = 0; i < _graph.size(); ++i)
{
auto node = _graph[i];
if (node.function().fn() == Fn::buf && node.arg(0).index() < i)
{
int target_index = alias[node.arg(0).index()];
auto target_node = _graph[perm[target_index]];
if(node.has_sparse_attr()) {
if(target_node.has_sparse_attr()) {
IdString id = merge_name(node.sparse_attr(), target_node.sparse_attr());
target_node.sparse_attr() = id;
} else {
IdString id = node.sparse_attr();
target_node.sparse_attr() = id;
}
}
alias.push_back(target_index);
}
else
{
alias.push_back(GetSize(perm));
perm.push_back(i);
}
}
_graph.permute(perm, alias);
}
// Quoting routine to make error messages nicer
static std::string quote_fmt(const char *fmt)
{
std::string r;
for(const char *p = fmt; *p != 0; p++) {
switch(*p) {
case '\n': r += "\\n"; break;
case '\t': r += "\\t"; break;
case '"': r += "\\\""; break;
case '\\': r += "\\\\"; break;
default: r += *p; break;
}
}
return r;
}
void Writer::print_impl(const char *fmt, vector<std::function<void()>> &fns)
{
size_t next_index = 0;
for(const char *p = fmt; *p != 0; p++)
switch(*p) {
case '{':
if(*++p == '{') {
*os << '{';
} else {
char *pe;
size_t index = strtoul(p, &pe, 10);
if(*pe != '}')
log_error("invalid format string: expected {<number>}, {} or {{, got \"%s\": \"%s\"\n",
quote_fmt(std::string(p - 1, pe - p + 2).c_str()).c_str(),
quote_fmt(fmt).c_str());
if(p == pe)
index = next_index;
else
p = pe;
if(index >= fns.size())
log_error("invalid format string: index %zu out of bounds (%zu): \"%s\"\n", index, fns.size(), quote_fmt(fmt).c_str());
fns[index]();
next_index = index + 1;
}
break;
case '}':
p++;
if(*p != '}')
log_error("invalid format string: unescaped }: \"%s\"\n", quote_fmt(fmt).c_str());
*os << '}';
break;
default:
*os << *p;
}
}
}
YOSYS_NAMESPACE_END
|