File: functional.cc

package info (click to toggle)
yosys 0.52-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 69,796 kB
  • sloc: ansic: 696,955; cpp: 239,736; python: 14,617; yacc: 3,529; sh: 2,175; makefile: 1,945; lex: 697; perl: 445; javascript: 323; tcl: 162; vhdl: 115
file content (853 lines) | stat: -rw-r--r-- 35,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2024  Emily Schmidt <emily@yosyshq.com>
 *  Copyright (C) 2024 National Technology and Engineering Solutions of Sandia, LLC
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/functional.h"
#include "kernel/topo_scc.h"
#include "ff.h"
#include "ffinit.h"
#include <deque>

YOSYS_NAMESPACE_BEGIN
namespace Functional {

const char *fn_to_string(Fn fn) {
	switch(fn) {
	case Fn::invalid: return "invalid";
	case Fn::buf: return "buf";
	case Fn::slice: return "slice";
	case Fn::zero_extend: return "zero_extend";
	case Fn::sign_extend: return "sign_extend";
	case Fn::concat: return "concat";
	case Fn::add: return "add";
	case Fn::sub: return "sub";
	case Fn::mul: return "mul";
	case Fn::unsigned_div: return "unsigned_div";
	case Fn::unsigned_mod: return "unsigned_mod";
	case Fn::bitwise_and: return "bitwise_and";
	case Fn::bitwise_or: return "bitwise_or";
	case Fn::bitwise_xor: return "bitwise_xor";
	case Fn::bitwise_not: return "bitwise_not";
	case Fn::reduce_and: return "reduce_and";
	case Fn::reduce_or: return "reduce_or";
	case Fn::reduce_xor: return "reduce_xor";
	case Fn::unary_minus: return "unary_minus";
	case Fn::equal: return "equal";
	case Fn::not_equal: return "not_equal";
	case Fn::signed_greater_than: return "signed_greater_than";
	case Fn::signed_greater_equal: return "signed_greater_equal";
	case Fn::unsigned_greater_than: return "unsigned_greater_than";
	case Fn::unsigned_greater_equal: return "unsigned_greater_equal";
	case Fn::logical_shift_left: return "logical_shift_left";
	case Fn::logical_shift_right: return "logical_shift_right";
	case Fn::arithmetic_shift_right: return "arithmetic_shift_right";
	case Fn::mux: return "mux";
	case Fn::constant: return "constant";
	case Fn::input: return "input";
	case Fn::state: return "state";
	case Fn::memory_read: return "memory_read";
	case Fn::memory_write: return "memory_write";
	}
	log_error("fn_to_string: unknown Functional::Fn value %d", (int)fn);
}

vector<IRInput const*> IR::inputs(IdString kind) const {
	vector<IRInput const*> ret;
	for (const auto &[name, input] : _inputs)
		if(input.kind == kind)
			ret.push_back(&input);
	return ret;
}

vector<IROutput const*> IR::outputs(IdString kind) const {
	vector<IROutput const*> ret;
	for (const auto &[name, output] : _outputs)
		if(output.kind == kind)
			ret.push_back(&output);
	return ret;
}

vector<IRState const*> IR::states(IdString kind) const {
	vector<IRState const*> ret;
	for (const auto &[name, state] : _states)
		if(state.kind == kind)
			ret.push_back(&state);
	return ret;
}

vector<IRInput const*> IR::all_inputs() const {
	vector<IRInput const*> ret;
	for (const auto &[name, input] : _inputs)
		ret.push_back(&input);
	return ret;
}

vector<IROutput const*> IR::all_outputs() const {
	vector<IROutput const*> ret;
	for (const auto &[name, output] : _outputs)
		ret.push_back(&output);
	return ret;
}

vector<IRState const*> IR::all_states() const {
	vector<IRState const*> ret;
	for (const auto &[name, state] : _states)
		ret.push_back(&state);
	return ret;
}

struct PrintVisitor : DefaultVisitor<std::string> {
	std::function<std::string(Node)> np;
	PrintVisitor(std::function<std::string(Node)> np) : np(np) { }
	// as a general rule the default handler is good enough iff the only arguments are of type Node
	std::string slice(Node, Node a, int offset, int out_width) override { return "slice(" + np(a) + ", " + std::to_string(offset) + ", " + std::to_string(out_width) + ")"; }
	std::string zero_extend(Node, Node a, int out_width) override { return "zero_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
	std::string sign_extend(Node, Node a, int out_width) override { return "sign_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
	std::string constant(Node, RTLIL::Const const& value) override { return "constant(" + value.as_string() + ")"; }
	std::string input(Node, IdString name, IdString kind) override { return "input(" + name.str() + ", " + kind.str() + ")"; }
	std::string state(Node, IdString name, IdString kind) override { return "state(" + name.str() + ", " + kind.str() + ")"; }
	std::string default_handler(Node self) override {
		std::string ret = fn_to_string(self.fn());
		ret += "(";
		for(size_t i = 0; i < self.arg_count(); i++) {
			if(i > 0) ret += ", ";
			ret += np(self.arg(i));
		}
		ret += ")";
		return ret;
	}
};

std::string Node::to_string()
{
	return to_string([](Node n) { return RTLIL::unescape_id(n.name()); });
}

std::string Node::to_string(std::function<std::string(Node)> np)
{
	return visit(PrintVisitor(np));
}

class CellSimplifier {
	Factory &factory;
	Node sign(Node a) {
		return factory.slice(a, a.width() - 1, 1);
	}
	Node neg_if(Node a, Node s) {
		return factory.mux(a, factory.unary_minus(a), s);
	}
	Node abs(Node a) {
		return neg_if(a, sign(a));
	}
	Node handle_shift(Node a, Node b, bool is_right, bool is_signed) {
		// to prevent new_width == 0, we handle this case separately
		if(a.width() == 1) {
			if(!is_signed)
				return factory.bitwise_and(a, factory.bitwise_not(factory.reduce_or(b)));
			else
				return a;
		}
		int new_width = ceil_log2(a.width());
		Node b_truncated = factory.extend(b, new_width, false);
		Node y =
			!is_right ? factory.logical_shift_left(a, b_truncated) :
			!is_signed ? factory.logical_shift_right(a, b_truncated) :
			factory.arithmetic_shift_right(a, b_truncated);
		if(b.width() <= new_width)
			return y;
		Node overflow = factory.unsigned_greater_equal(b, factory.constant(RTLIL::Const(a.width(), b.width())));
		Node y_if_overflow = is_signed ? factory.extend(sign(a), a.width(), true) : factory.constant(RTLIL::Const(State::S0, a.width()));
		return factory.mux(y, y_if_overflow, overflow);
	}
public:
	Node logical_shift_left(Node a, Node b) { return handle_shift(a, b, false, false); }
	Node logical_shift_right(Node a, Node b) { return handle_shift(a, b, true, false); }
	Node arithmetic_shift_right(Node a, Node b) { return handle_shift(a, b, true, true); }
	Node bitwise_mux(Node a, Node b, Node s) {
		Node aa = factory.bitwise_and(a, factory.bitwise_not(s));
		Node bb = factory.bitwise_and(b, s);
		return factory.bitwise_or(aa, bb);
	}
	CellSimplifier(Factory &f) : factory(f) {}
private:
	Node handle_pow(Node a0, Node b, int y_width, bool is_signed) {
		Node a = factory.extend(a0, y_width, is_signed);
		Node r = factory.constant(Const(1, y_width));
		for(int i = 0; i < b.width(); i++) {
			Node b_bit = factory.slice(b, i, 1);
			r = factory.mux(r, factory.mul(r, a), b_bit);
			a = factory.mul(a, a);
		}
		if (is_signed) {
			Node a_ge_1 = factory.unsigned_greater_than(abs(a0), factory.constant(Const(1, a0.width())));
			Node zero_result = factory.bitwise_and(a_ge_1, sign(b));
			r = factory.mux(r, factory.constant(Const(0, y_width)), zero_result);
		}
		return r;
	}
	Node handle_bmux(Node a, Node s, int a_offset, int width, int sn) {
		if(sn < 1)
			return factory.slice(a, a_offset, width);
		else {
			Node y0 = handle_bmux(a, s, a_offset, width, sn - 1);
			Node y1 = handle_bmux(a, s, a_offset + (width << (sn - 1)), width, sn - 1);
			return factory.mux(y0, y1, factory.slice(s, sn - 1, 1));
		}
	}
	Node handle_pmux(Node a, Node b, Node s) {
		// TODO : what to do about multiple b bits set ?
		log_assert(b.width() == a.width() * s.width());
		Node y = a;
		for(int i = 0; i < s.width(); i++)
			y = factory.mux(y, factory.slice(b, a.width() * i, a.width()), factory.slice(s, i, 1));
		return y;
	}
	dict<IdString, Node> handle_fa(Node a, Node b, Node c) {
		Node t1 = factory.bitwise_xor(a, b);
		Node t2 = factory.bitwise_and(a, b);
		Node t3 = factory.bitwise_and(c, t1);
		Node y = factory.bitwise_xor(c, t1);
		Node x = factory.bitwise_or(t2, t3);
		return {{ID(X), x}, {ID(Y), y}};
	}
	dict<IdString, Node> handle_alu(Node a_in, Node b_in, int y_width, bool is_signed, Node ci, Node bi) {
		Node a = factory.extend(a_in, y_width, is_signed);
		Node b_uninverted = factory.extend(b_in, y_width, is_signed);
		Node b = factory.mux(b_uninverted, factory.bitwise_not(b_uninverted), bi);
		Node x = factory.bitwise_xor(a, b);
		// we can compute the carry into each bit using (a+b+c)^a^b. since we want the carry out,
		// i.e. the carry into the next bit, we have to add an extra bit to a and b, and
		// then slice off the bottom bit of the result.
		Node a_extra = factory.extend(a, y_width + 1, false);
		Node b_extra = factory.extend(b, y_width + 1, false);
		Node y_extra = factory.add(factory.add(a_extra, b_extra), factory.extend(ci, a.width() + 1, false));
		Node y = factory.slice(y_extra, 0, y_width);
		Node carries = factory.bitwise_xor(y_extra, factory.bitwise_xor(a_extra, b_extra));
		Node co = factory.slice(carries, 1, y_width);
		return {{ID(X), x}, {ID(Y), y}, {ID(CO), co}};
	}
	Node handle_lcu(Node p, Node g, Node ci) {
		return handle_alu(g, factory.bitwise_or(p, g), g.width(), false, ci, factory.constant(Const(State::S0, 1))).at(ID(CO));
	}
public:
	std::variant<dict<IdString, Node>, Node> handle(IdString cellName, IdString cellType, dict<IdString, Const> parameters, dict<IdString, Node> inputs)
	{
		int a_width = parameters.at(ID(A_WIDTH), Const(-1)).as_int();
		int b_width = parameters.at(ID(B_WIDTH), Const(-1)).as_int();
		int y_width = parameters.at(ID(Y_WIDTH), Const(-1)).as_int();
		bool a_signed = parameters.at(ID(A_SIGNED), Const(0)).as_bool();
		bool b_signed = parameters.at(ID(B_SIGNED), Const(0)).as_bool();
		if(cellType.in(ID($add), ID($sub), ID($and), ID($or), ID($xor), ID($xnor), ID($mul))){
			bool is_signed = a_signed && b_signed;
			Node a = factory.extend(inputs.at(ID(A)), y_width, is_signed);
			Node b = factory.extend(inputs.at(ID(B)), y_width, is_signed);
			if(cellType == ID($add))
				return factory.add(a, b);
			else if(cellType == ID($sub))
				return factory.sub(a, b);
			else if(cellType == ID($mul))
				return factory.mul(a, b);
			else if(cellType == ID($and))
				return factory.bitwise_and(a, b);
			else if(cellType == ID($or))
				return factory.bitwise_or(a, b);
			else if(cellType == ID($xor))
				return factory.bitwise_xor(a, b);
			else if(cellType == ID($xnor))
				return factory.bitwise_not(factory.bitwise_xor(a, b));
			else
				log_abort();
		}else if(cellType.in(ID($eq), ID($ne), ID($eqx), ID($nex), ID($le), ID($lt), ID($ge), ID($gt))){
			bool is_signed = a_signed && b_signed;
			int width = max(a_width, b_width);
			Node a = factory.extend(inputs.at(ID(A)), width, is_signed);
			Node b = factory.extend(inputs.at(ID(B)), width, is_signed);
			if(cellType.in(ID($eq), ID($eqx)))
				return factory.extend(factory.equal(a, b), y_width, false);
			else if(cellType.in(ID($ne), ID($nex)))
				return factory.extend(factory.not_equal(a, b), y_width, false);
			else if(cellType == ID($lt))
				return factory.extend(is_signed ? factory.signed_greater_than(b, a) : factory.unsigned_greater_than(b, a), y_width, false);
			else if(cellType == ID($le))
				return factory.extend(is_signed ? factory.signed_greater_equal(b, a) : factory.unsigned_greater_equal(b, a), y_width, false);
			else if(cellType == ID($gt))
				return factory.extend(is_signed ? factory.signed_greater_than(a, b) : factory.unsigned_greater_than(a, b), y_width, false);
			else if(cellType == ID($ge))
				return factory.extend(is_signed ? factory.signed_greater_equal(a, b) : factory.unsigned_greater_equal(a, b), y_width, false);
			else
				log_abort();
		}else if(cellType.in(ID($logic_or), ID($logic_and))){
			Node a = factory.reduce_or(inputs.at(ID(A)));
			Node b = factory.reduce_or(inputs.at(ID(B)));
			Node y = cellType == ID($logic_and) ? factory.bitwise_and(a, b) : factory.bitwise_or(a, b);
			return factory.extend(y, y_width, false);
		}else if(cellType == ID($not)){
			Node a = factory.extend(inputs.at(ID(A)), y_width, a_signed);
			return factory.bitwise_not(a);
		}else if(cellType == ID($pos)){
			return factory.extend(inputs.at(ID(A)), y_width, a_signed);
		}else if(cellType == ID($neg)){
			Node a = factory.extend(inputs.at(ID(A)), y_width, a_signed);
			return factory.unary_minus(a);
		}else if(cellType == ID($logic_not)){
			Node a = factory.reduce_or(inputs.at(ID(A)));
			Node y = factory.bitwise_not(a);
			return factory.extend(y, y_width, false);
		}else if(cellType.in(ID($reduce_or), ID($reduce_bool))){
			Node a = factory.reduce_or(inputs.at(ID(A)));
			return factory.extend(a, y_width, false);
		}else if(cellType == ID($reduce_and)){
			Node a = factory.reduce_and(inputs.at(ID(A)));
			return factory.extend(a, y_width, false);
		}else if(cellType.in(ID($reduce_xor), ID($reduce_xnor))){
			Node a = factory.reduce_xor(inputs.at(ID(A)));
			Node y = cellType == ID($reduce_xnor) ? factory.bitwise_not(a) : a;
			return factory.extend(y, y_width, false);
		}else if(cellType == ID($shl) || cellType == ID($sshl)){
			Node a = factory.extend(inputs.at(ID(A)), y_width, a_signed);
			Node b = inputs.at(ID(B));
			return logical_shift_left(a, b);
		}else if(cellType == ID($shr) || cellType == ID($sshr)){
			int width = max(a_width, y_width);
			Node a = factory.extend(inputs.at(ID(A)), width, a_signed);
			Node b = inputs.at(ID(B));
			Node y = a_signed && cellType == ID($sshr) ?
				arithmetic_shift_right(a, b) :
				logical_shift_right(a, b);
			return factory.extend(y, y_width, a_signed);
		}else if(cellType == ID($shiftx) || cellType == ID($shift)){
			int width = max(a_width, y_width);
			Node a = factory.extend(inputs.at(ID(A)), width, cellType == ID($shift) && a_signed);
			Node b = inputs.at(ID(B));
			Node shr = logical_shift_right(a, b);
			if(b_signed) {
				Node shl = logical_shift_left(a, factory.unary_minus(b));
				Node y = factory.mux(shr, shl, sign(b));
				return factory.extend(y, y_width, false);
			} else {
				return factory.extend(shr, y_width, false);
			}
		}else if(cellType == ID($mux)){
			return factory.mux(inputs.at(ID(A)), inputs.at(ID(B)), inputs.at(ID(S)));
		}else if(cellType == ID($pmux)){
			return handle_pmux(inputs.at(ID(A)), inputs.at(ID(B)), inputs.at(ID(S)));
		}else if(cellType == ID($concat)){
			Node a = inputs.at(ID(A));
			Node b = inputs.at(ID(B));
			return factory.concat(a, b);
		}else if(cellType == ID($slice)){
			int offset = parameters.at(ID(OFFSET)).as_int();
			Node a = inputs.at(ID(A));
			return factory.slice(a, offset, y_width);
		}else if(cellType.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) {
			int width = max(a_width, b_width);
			bool is_signed = a_signed && b_signed;
			Node a = factory.extend(inputs.at(ID(A)), width, is_signed);
			Node b = factory.extend(inputs.at(ID(B)), width, is_signed);
			if(is_signed) {
				if(cellType == ID($div)) {
					// divide absolute values, then flip the sign if input signs differ
					// but extend the width first, to handle the case (most negative value) / (-1)
					Node abs_y = factory.unsigned_div(abs(a), abs(b));
					Node out_sign = factory.not_equal(sign(a), sign(b));
					return neg_if(factory.extend(abs_y, y_width, false), out_sign);
				} else if(cellType == ID($mod)) {
					// similar to division but output sign == divisor sign
					Node abs_y = factory.unsigned_mod(abs(a), abs(b));
					return neg_if(factory.extend(abs_y, y_width, false), sign(a));
				} else if(cellType == ID($divfloor)) {
					// if b is negative, flip both signs so that b is positive
					Node b_sign = sign(b);
					Node a1 = neg_if(a, b_sign);
					Node b1 = neg_if(b, b_sign);
					// if a is now negative, calculate ~((~a) / b) = -((-a - 1) / b + 1)
					// which equals the negative of (-a) / b with rounding up rather than down
					// note that to handle the case where a = most negative value properly,
					// we have to calculate a1_sign from the original values rather than using sign(a1)
					Node a1_sign = factory.bitwise_and(factory.not_equal(sign(a), sign(b)), factory.reduce_or(a));
					Node a2 = factory.mux(a1, factory.bitwise_not(a1), a1_sign);
					Node y1 = factory.unsigned_div(a2, b1);
					Node y2 = factory.extend(y1, y_width, false);
					return factory.mux(y2, factory.bitwise_not(y2), a1_sign);
				} else if(cellType == ID($modfloor)) {
					// calculate |a| % |b| and then subtract from |b| if input signs differ and the remainder is non-zero
					Node abs_b = abs(b);
					Node abs_y = factory.unsigned_mod(abs(a), abs_b);
					Node flip_y = factory.bitwise_and(factory.bitwise_xor(sign(a), sign(b)), factory.reduce_or(abs_y));
					Node y_flipped = factory.mux(abs_y, factory.sub(abs_b, abs_y), flip_y);
					// since y_flipped is strictly less than |b|, the top bit is always 0 and we can just sign extend the flipped result
					Node y = neg_if(y_flipped, sign(b));
					return factory.extend(y, y_width, true);
				} else
					log_error("unhandled cell in CellSimplifier %s\n", cellType.c_str());
			} else {
				if(cellType.in(ID($mod), ID($modfloor)))
					return factory.extend(factory.unsigned_mod(a, b), y_width, false);
				else
					return factory.extend(factory.unsigned_div(a, b), y_width, false);
			}
		} else if(cellType == ID($pow)) {
			return handle_pow(inputs.at(ID(A)), inputs.at(ID(B)), y_width, a_signed && b_signed);
		} else if (cellType == ID($lut)) {
			int width = parameters.at(ID(WIDTH)).as_int();
			Const lut_table = parameters.at(ID(LUT));
			lut_table.extu(1 << width);
			return handle_bmux(factory.constant(lut_table), inputs.at(ID(A)), 0, 1, width);
		} else if (cellType == ID($bwmux)) {
			Node a = inputs.at(ID(A));
			Node b = inputs.at(ID(B));
			Node s = inputs.at(ID(S));
			return factory.bitwise_or(
				factory.bitwise_and(a, factory.bitwise_not(s)),
				factory.bitwise_and(b, s));
		} else if (cellType == ID($bweqx)) {
			Node a = inputs.at(ID(A));
			Node b = inputs.at(ID(B));
			return factory.bitwise_not(factory.bitwise_xor(a, b));
		} else if(cellType == ID($bmux)) {
			int width = parameters.at(ID(WIDTH)).as_int();
			int s_width = parameters.at(ID(S_WIDTH)).as_int();
			return handle_bmux(inputs.at(ID(A)), inputs.at(ID(S)), 0, width, s_width);
		} else if(cellType == ID($demux)) {
			int width = parameters.at(ID(WIDTH)).as_int();
			int s_width = parameters.at(ID(S_WIDTH)).as_int();
			int y_width = width << s_width;
			int b_width = ceil_log2(y_width);
			Node a = factory.extend(inputs.at(ID(A)), y_width, false);
			Node s = factory.extend(inputs.at(ID(S)), b_width, false);
			Node b = factory.mul(s, factory.constant(Const(width, b_width)));
			return factory.logical_shift_left(a, b);
		} else if(cellType == ID($fa)) {
			return handle_fa(inputs.at(ID(A)), inputs.at(ID(B)), inputs.at(ID(C)));
		} else if(cellType == ID($lcu)) {
			return handle_lcu(inputs.at(ID(P)), inputs.at(ID(G)), inputs.at(ID(CI)));
		} else if(cellType == ID($alu)) {
			return handle_alu(inputs.at(ID(A)), inputs.at(ID(B)), y_width, a_signed && b_signed, inputs.at(ID(CI)), inputs.at(ID(BI)));
		} else if(cellType.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover))) {
			Node a = factory.mux(factory.constant(Const(State::S1, 1)), inputs.at(ID(A)), inputs.at(ID(EN)));
			auto &output = factory.add_output(cellName, cellType, Sort(1));
			output.set_value(a);
			return {};
		} else if(cellType.in(ID($anyconst), ID($allconst), ID($anyseq), ID($allseq))) {
			int width = parameters.at(ID(WIDTH)).as_int();
			auto &input = factory.add_input(cellName, cellType, Sort(width));
			return factory.value(input);
		} else if(cellType == ID($initstate)) {
			if(factory.ir().has_state(ID($initstate), ID($state)))
				return factory.value(factory.ir().state(ID($initstate)));
			else {
				auto &state = factory.add_state(ID($initstate), ID($state), Sort(1));
				state.set_initial_value(RTLIL::Const(State::S1, 1));
				state.set_next_value(factory.constant(RTLIL::Const(State::S0, 1)));
				return factory.value(state);
			}
		} else if(cellType == ID($check)) {
			log_error("The design contains a $check cell `%s'. This is not supported by the functional backend. Call `chformal -lower' to avoid this error.\n", cellName.c_str());
		} else {
			log_error("`%s' cells are not supported by the functional backend\n", cellType.c_str());
		}
	}
};

class FunctionalIRConstruction {
	std::deque<std::variant<DriveSpec, Cell *>> queue;
	dict<DriveSpec, Node> graph_nodes;
	dict<std::pair<Cell *, IdString>, Node> cell_outputs;
	DriverMap driver_map;
	Factory& factory;
	CellSimplifier simplifier;
	vector<Mem> memories_vector;
	dict<Cell*, Mem*> memories;
	SigMap sig_map; // TODO: this is only for FfInitVals, remove this once FfInitVals supports DriverMap
	FfInitVals ff_initvals;

	Node enqueue(DriveSpec const &spec)
	{
		auto it = graph_nodes.find(spec);
		if(it == graph_nodes.end()){
			auto node = factory.create_pending(spec.size());
			graph_nodes.insert({spec, node});
			queue.emplace_back(spec);
			return node;
		}else
			return it->second;
	}
	Node enqueue_cell(Cell *cell, IdString port_name)
	{
		auto it = cell_outputs.find({cell, port_name});
		if(it == cell_outputs.end()) {
			queue.emplace_back(cell);
			std::optional<Node> rv;
			for(auto const &[name, sigspec] : cell->connections())
				if(driver_map.celltypes.cell_output(cell->type, name)) {
					auto node = factory.create_pending(sigspec.size());
					factory.suggest_name(node, cell->name.str() + "$" + name.str());
					cell_outputs.emplace({cell, name}, node);
					if(name == port_name)
						rv = node;
				}
			return *rv;
		} else
			return it->second;
	}
public:
	FunctionalIRConstruction(Module *module, Factory &f)
		: factory(f)
		, simplifier(f)
		, sig_map(module)
		, ff_initvals(&sig_map, module)
	{
		driver_map.add(module);
		for (auto cell : module->cells()) {
			if (cell->type.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover), ID($check)))
				queue.emplace_back(cell);
		}
		for (auto wire : module->wires()) {
			if (wire->port_input)
				factory.add_input(wire->name, ID($input), Sort(wire->width));
			if (wire->port_output) {
				auto &output = factory.add_output(wire->name, ID($output), Sort(wire->width));
				output.set_value(enqueue(DriveChunk(DriveChunkWire(wire, 0, wire->width))));
			}
		}
		memories_vector = Mem::get_all_memories(module);
		for (auto &mem : memories_vector) {
			if (mem.cell != nullptr)
				memories[mem.cell] = &mem;
		}
	}
private:
	Node concatenate_read_results(Mem *mem, vector<Node> results)
	{
		// sanity check: all read ports concatenated should equal to the RD_DATA port
		const SigSpec &rd_data = mem->cell->connections().at(ID(RD_DATA));
		int current = 0;
		for(size_t i = 0; i < mem->rd_ports.size(); i++) {
			int width = mem->width << mem->rd_ports[i].wide_log2;
			log_assert (results[i].width() == width);
			log_assert (mem->rd_ports[i].data == rd_data.extract(current, width));
			current += width;
		}
		log_assert (current == rd_data.size());
		log_assert (!results.empty());
		Node node = results[0];
		for(size_t i = 1; i < results.size(); i++)
			node = factory.concat(node, results[i]);
		return node;
	}
	Node handle_memory(Mem *mem)
	{
		// To simplify memory handling, the functional backend makes the following assumptions:
		// - Since async2sync or clk2fflogic must be run to use the functional backend,
		//   we can assume that all ports are asynchronous.
		// - Async rd/wr are always transparent and so we must do reads after writes,
		//   but we can ignore transparency_mask.
		// - We ignore collision_x_mask because x is a dont care value for us anyway.
		// - Since wr port j can only have priority over wr port i if j > i, if we do writes in
		//   ascending index order the result will obey the priorty relation.
		vector<Node> read_results;
		auto &state = factory.add_state(mem->cell->name, ID($state), Sort(ceil_log2(mem->size), mem->width));
		state.set_initial_value(MemContents(mem));
		Node node = factory.value(state);
		for (size_t i = 0; i < mem->wr_ports.size(); i++) {
			const auto &wr = mem->wr_ports[i];
			if (wr.clk_enable)
				log_error("Write port %zd of memory %s.%s is clocked. This is not supported by the functional backend. "
					"Call async2sync or clk2fflogic to avoid this error.\n", i, log_id(mem->module), log_id(mem->memid));
			Node en = enqueue(driver_map(DriveSpec(wr.en)));
			Node addr = enqueue(driver_map(DriveSpec(wr.addr)));
			Node new_data = enqueue(driver_map(DriveSpec(wr.data)));
			Node old_data = factory.memory_read(node, addr);
			Node wr_data = simplifier.bitwise_mux(old_data, new_data, en);
			node = factory.memory_write(node, addr, wr_data);
		}
		if (mem->rd_ports.empty())
			log_error("Memory %s.%s has no read ports. This is not supported by the functional backend. "
				"Call opt_clean to remove it.", log_id(mem->module), log_id(mem->memid));
		for (size_t i = 0; i < mem->rd_ports.size(); i++) {
			const auto &rd = mem->rd_ports[i];
			if (rd.clk_enable)
				log_error("Read port %zd of memory %s.%s is clocked. This is not supported by the functional backend. "
					"Call memory_nordff to avoid this error.\n", i, log_id(mem->module), log_id(mem->memid));
			Node addr = enqueue(driver_map(DriveSpec(rd.addr)));
			read_results.push_back(factory.memory_read(node, addr));
		}
		state.set_next_value(node);
		return concatenate_read_results(mem, read_results);
	}
	void process_cell(Cell *cell)
	{
		if (cell->is_mem_cell()) {
			Mem *mem = memories.at(cell, nullptr);
			if (mem == nullptr) {
				log_assert(cell->has_memid());
				log_error("The design contains an unpacked memory at %s. This is not supported by the functional backend. "
					"Call memory_collect to avoid this error.\n", log_const(cell->parameters.at(ID(MEMID))));
			}
			Node node = handle_memory(mem);
			factory.update_pending(cell_outputs.at({cell, ID(RD_DATA)}), node);
		} else if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
			FfData ff(&ff_initvals, cell);
			if (!ff.has_gclk)
				log_error("The design contains a %s flip-flop at %s. This is not supported by the functional backend. "
					"Call async2sync or clk2fflogic to avoid this error.\n", log_id(cell->type), log_id(cell));
			auto &state = factory.add_state(ff.name, ID($state), Sort(ff.width));
			Node q_value = factory.value(state);
			factory.suggest_name(q_value, ff.name);
			factory.update_pending(cell_outputs.at({cell, ID(Q)}), q_value);
			state.set_next_value(enqueue(ff.sig_d));
			state.set_initial_value(ff.val_init);
		} else {
			dict<IdString, Node> connections;
			IdString output_name; // for the single output case
			int n_outputs = 0;
			for(auto const &[name, sigspec] : cell->connections()) {
				if(driver_map.celltypes.cell_input(cell->type, name) && sigspec.size() > 0)
					connections.insert({ name, enqueue(DriveChunkPort(cell, {name, sigspec})) });
				if(driver_map.celltypes.cell_output(cell->type, name)) {
					output_name = name;
					n_outputs++;
				}
			}
			std::variant<dict<IdString, Node>, Node> outputs = simplifier.handle(cell->name, cell->type, cell->parameters, connections);
			if(auto *nodep = std::get_if<Node>(&outputs); nodep != nullptr) {
				log_assert(n_outputs == 1);
				factory.update_pending(cell_outputs.at({cell, output_name}), *nodep);
			} else {
				for(auto [name, node] : std::get<dict<IdString, Node>>(outputs))
					factory.update_pending(cell_outputs.at({cell, name}), node);
			}
		}
	}
	void undriven(const char *name) {
		log_error("The design contains an undriven signal %s. This is not supported by the functional backend. "
			"Call setundef with appropriate options to avoid this error.\n", name);
	}
	// we perform this check separately to give better error messages that include the wire or port name
	void check_undriven(DriveSpec const& spec, std::string const& name) {
		for(auto const &chunk : spec.chunks())
			if(chunk.is_none())
				undriven(name.c_str());
	}
public:
	void process_queue()
	{
		for (; !queue.empty(); queue.pop_front()) {
			if(auto p = std::get_if<Cell *>(&queue.front()); p != nullptr) {
				process_cell(*p);
				continue;
			}

			DriveSpec spec = std::get<DriveSpec>(queue.front());
			Node pending = graph_nodes.at(spec);

			if (spec.chunks().size() > 1) {
				auto chunks = spec.chunks();
				Node node = enqueue(chunks[0]);
				for(size_t i = 1; i < chunks.size(); i++)
					node = factory.concat(node, enqueue(chunks[i]));
				factory.update_pending(pending, node);
			} else if (spec.chunks().size() == 1) {
				DriveChunk chunk = spec.chunks()[0];
				if (chunk.is_wire()) {
					DriveChunkWire wire_chunk = chunk.wire();
					if (wire_chunk.is_whole()) {
						if (wire_chunk.wire->port_input) {
							Node node = factory.value(factory.ir().input(wire_chunk.wire->name));
							factory.suggest_name(node, wire_chunk.wire->name);
							factory.update_pending(pending, node);
						} else {
							DriveSpec driver = driver_map(DriveSpec(wire_chunk));
							check_undriven(driver, RTLIL::unescape_id(wire_chunk.wire->name));
							Node node = enqueue(driver);
							factory.suggest_name(node, wire_chunk.wire->name);
							factory.update_pending(pending, node);
						}
					} else {
						DriveChunkWire whole_wire(wire_chunk.wire, 0, wire_chunk.wire->width);
						Node node = factory.slice(enqueue(whole_wire), wire_chunk.offset, wire_chunk.width);
						factory.update_pending(pending, node);
					}
				} else if (chunk.is_port()) {
					DriveChunkPort port_chunk = chunk.port();
					if (port_chunk.is_whole()) {
						if (driver_map.celltypes.cell_output(port_chunk.cell->type, port_chunk.port)) {
							Node node = enqueue_cell(port_chunk.cell, port_chunk.port);
							factory.update_pending(pending, node);
						} else {
							DriveSpec driver = driver_map(DriveSpec(port_chunk));
							check_undriven(driver, RTLIL::unescape_id(port_chunk.cell->name) + " port " + RTLIL::unescape_id(port_chunk.port));
							factory.update_pending(pending, enqueue(driver));
						}
					} else {
						DriveChunkPort whole_port(port_chunk.cell, port_chunk.port, 0, GetSize(port_chunk.cell->connections().at(port_chunk.port)));
						Node node = factory.slice(enqueue(whole_port), port_chunk.offset, port_chunk.width);
						factory.update_pending(pending, node);
					}
				} else if (chunk.is_constant()) {
					Node node = factory.constant(chunk.constant());
					factory.suggest_name(node, "$const" + std::to_string(chunk.size()) + "b" + chunk.constant().as_string());
					factory.update_pending(pending, node);
				} else if (chunk.is_multiple()) {
					log_error("Signal %s has multiple drivers. This is not supported by the functional backend. "
						"If tristate drivers are used, call tristate -formal to avoid this error.\n", log_signal(chunk));
				} else if (chunk.is_none()) {
					undriven(log_signal(chunk));
				} else {
					log_error("unhandled drivespec: %s\n", log_signal(chunk));
					log_abort();
				}
			} else {
				log_abort();
			}
		}
	}
};

IR IR::from_module(Module *module) {
	IR ir;
    auto factory = ir.factory();
    FunctionalIRConstruction ctor(module, factory);
    ctor.process_queue();
    ir.topological_sort();
    ir.forward_buf();
    return ir;
}

void IR::topological_sort() {
    Graph::SccAdaptor compute_graph_scc(_graph);
    bool scc = false;
    std::vector<int> perm;
    TopoSortedSccs toposort(compute_graph_scc, [&](int *begin, int *end) {
        perm.insert(perm.end(), begin, end);
        if (end > begin + 1)
        {
            log_warning("Combinational loop:\n");
            for (int *i = begin; i != end; ++i) {
				Node node(_graph[*i]);
                log("- %s = %s\n", RTLIL::unescape_id(node.name()).c_str(), node.to_string().c_str());
			}
            log("\n");
            scc = true;
        }
    });
	for(const auto &[name, state]: _states)
		if(state.has_next_value())
			toposort.process(state.next_value().id());
	for(const auto &[name, output]: _outputs)
		if(output.has_value())
			toposort.process(output.value().id());
	// any nodes untouched by this point are dead code and will be removed by permute
    _graph.permute(perm);
    if(scc) log_error("The design contains combinational loops. This is not supported by the functional backend. "
		"Try `scc -select; simplemap; select -clear` to avoid this error.\n");
}

static IdString merge_name(IdString a, IdString b) {
	if(a[0] == '$' && b[0] == '\\')
		return b;
	else
		return a;
}

void IR::forward_buf() {
    std::vector<int> perm, alias;
    perm.clear();

    for (int i = 0; i < _graph.size(); ++i)
    {
        auto node = _graph[i];
        if (node.function().fn() == Fn::buf && node.arg(0).index() < i)
        {
            int target_index = alias[node.arg(0).index()];
            auto target_node = _graph[perm[target_index]];
			if(node.has_sparse_attr()) {
				if(target_node.has_sparse_attr()) {
					IdString id = merge_name(node.sparse_attr(), target_node.sparse_attr());
					target_node.sparse_attr() = id;
				} else {
					IdString id = node.sparse_attr();
					target_node.sparse_attr() = id;
				}
			}
            alias.push_back(target_index);
        }
        else
        {
            alias.push_back(GetSize(perm));
            perm.push_back(i);
        }
    }
    _graph.permute(perm, alias);
}

// Quoting routine to make error messages nicer
static std::string quote_fmt(const char *fmt)
{
	std::string r;
	for(const char *p = fmt; *p != 0; p++) {
		switch(*p) {
		case '\n': r += "\\n"; break;
		case '\t': r += "\\t"; break;
		case '"': r += "\\\""; break;
		case '\\': r += "\\\\"; break;
		default: r += *p; break;
		}
	}
	return r;
}

void Writer::print_impl(const char *fmt, vector<std::function<void()>> &fns)
{
	size_t next_index = 0;
	for(const char *p = fmt; *p != 0; p++)
		switch(*p) {
		case '{':
			if(*++p == '{') {
				*os << '{';
			} else {
				char *pe;
				size_t index = strtoul(p, &pe, 10);
				if(*pe != '}')
					log_error("invalid format string: expected {<number>}, {} or {{, got \"%s\": \"%s\"\n",
						quote_fmt(std::string(p - 1, pe - p + 2).c_str()).c_str(),
						quote_fmt(fmt).c_str());
				if(p == pe)
					index = next_index;
				else
					p = pe;
				if(index >= fns.size())
					log_error("invalid format string: index %zu out of bounds (%zu): \"%s\"\n", index, fns.size(), quote_fmt(fmt).c_str());
				fns[index]();
				next_index = index + 1;
			}
			break;
		case '}':
			p++;
			if(*p != '}')
				log_error("invalid format string: unescaped }: \"%s\"\n", quote_fmt(fmt).c_str());
			*os << '}';
			break;
		default:
			*os << *p;
		}
}

}
YOSYS_NAMESPACE_END