File: mem.h

package info (click to toggle)
yosys 0.52-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 69,796 kB
  • sloc: ansic: 696,955; cpp: 239,736; python: 14,617; yacc: 3,529; sh: 2,175; makefile: 1,945; lex: 697; perl: 445; javascript: 323; tcl: 162; vhdl: 115
file content (338 lines) | stat: -rw-r--r-- 15,505 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2020  Marcelina Kościelnicka <mwk@0x04.net>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#ifndef MEM_H
#define MEM_H

#include "kernel/yosys.h"
#include "kernel/ffinit.h"
#include "kernel/utils.h"

YOSYS_NAMESPACE_BEGIN

struct MemRd : RTLIL::AttrObject {
	bool removed;
	Cell *cell;
	int wide_log2;
	bool clk_enable, clk_polarity, ce_over_srst;
	Const arst_value, srst_value, init_value;
	// One bit for every write port, true iff simultanous read on this
	// port and write on the other port will bypass the written data
	// to this port's output (default behavior is to read old value).
	// Can only be set for write ports that have the same clock domain.
	std::vector<bool> transparency_mask;
	// One bit for every write port, true iff simultanous read on this
	// port and write on the other port will return an all-X (don't care)
	// value.  Mutually exclusive with transparency_mask.
	// Can only be set for write ports that have the same clock domain.
	// For optimization purposes, this will also be set if we can
	// determine that the two ports can never be active simultanously
	// (making the above vacuously true).
	std::vector<bool> collision_x_mask;
	SigSpec clk, en, arst, srst, addr, data;

	MemRd() : removed(false), cell(nullptr), wide_log2(0), clk_enable(false), clk_polarity(true), ce_over_srst(false), clk(State::Sx), en(State::S1), arst(State::S0), srst(State::S0) {}

	// Returns the address of given subword index accessed by this port.
	SigSpec sub_addr(int sub) {
		SigSpec res = addr;
		for (int i = 0; i < wide_log2; i++)
			res[i] = State(sub >> i & 1);
		return res;
	}
};

struct MemWr : RTLIL::AttrObject {
	bool removed;
	Cell *cell;
	int wide_log2;
	bool clk_enable, clk_polarity;
	std::vector<bool> priority_mask;
	SigSpec clk, en, addr, data;

	MemWr() : removed(false), cell(nullptr) {}

	// Returns the address of given subword index accessed by this port.
	SigSpec sub_addr(int sub) {
		SigSpec res = addr;
		for (int i = 0; i < wide_log2; i++)
			res[i] = State(sub >> i & 1);
		return res;
	}

	std::pair<SigSpec, std::vector<int>> compress_en();
	SigSpec decompress_en(const std::vector<int> &swizzle, SigSpec sig);
};

struct MemInit : RTLIL::AttrObject {
	bool removed;
	Cell *cell;
	Const addr;
	Const data;
	Const en;
	MemInit() : removed(false), cell(nullptr) {}
};

struct Mem : RTLIL::AttrObject {
	Module *module;
	IdString memid;
	bool packed;
	RTLIL::Memory *mem;
	Cell *cell;
	int width, start_offset, size;
	std::vector<MemInit> inits;
	std::vector<MemRd> rd_ports;
	std::vector<MemWr> wr_ports;

	// Removes this memory from the module.  The data in helper structures
	// is unaffected except for the cell/mem fields.
	void remove();

	// Commits all changes in helper structures into the module — ports and
	// inits marked as removed are actually removed, new ports/inits create
	// new cells, modified port/inits are commited into their existing
	// cells.  Note that this reindexes the ports and inits array (actually
	// removing the ports/inits marked as removed).
	void emit();

	// Marks all inits as removed.
	void clear_inits();

	// Coalesces inits: whenever two inits have overlapping or touching
	// address ranges, they are combined into one, with the higher-priority
	// one's data overwriting the other.  Running this results in
	// an inits list equivalent to the original, in which all entries
	// cover disjoint (and non-touching) address ranges, and all enable
	// masks are all-1.
	void coalesce_inits();

	// Checks consistency of this memory and all its ports/inits, using
	// log_assert.
	void check();

	// Gathers all initialization data into a single big const covering
	// the whole memory.  For all non-initialized bits, Sx will be returned.
	Const get_init_data() const;

	// Constructs and returns the helper structures for all memories
	// in a module.
	static std::vector<Mem> get_all_memories(Module *module);

	// Constructs and returns the helper structures for all selected
	// memories in a module.
	static std::vector<Mem> get_selected_memories(Module *module);

	// Converts a synchronous read port into an asynchronous one by
	// extracting the data (or, in some rare cases, address) register
	// into a separate cell, together with any soft-transparency
	// logic necessary to preserve its semantics.  Returns the created
	// register cell, if any.  Note that in some rare cases this function
	// may succeed and perform a conversion without creating a new
	// register — a nullptr result doesn't imply nothing was done.
	Cell *extract_rdff(int idx, FfInitVals *initvals);

	// Splits all wide ports in this memory into equivalent narrow ones.
	// This function performs no modifications at all to the actual
	// netlist unless and until emit() is called.
	void narrow();

	// If write port idx2 currently has priority over write port idx1,
	// inserts extra logic on idx1's enable signal to disable writes
	// when idx2 is writing to the same address, then removes the priority
	// from the priority mask.  If there is a memory port that is
	// transparent with idx1, but not with idx2, that port is converted
	// to use soft transparency logic.
	void emulate_priority(int idx1, int idx2, FfInitVals *initvals);

	// Creates soft-transparency logic on read port ridx, bypassing the
	// data from write port widx.  Should only be called when ridx is
	// transparent wrt widx in the first place.  Once we're done, the
	// transparency_mask bit will be cleared, and the collision_x_mask
	// bit will be set instead (since whatever value is read will be
	// replaced by the soft transparency logic).
	void emulate_transparency(int widx, int ridx, FfInitVals *initvals);

	// Prepares for merging write port idx2 into idx1 (where idx1 < idx2).
	// Specifically, takes care of priority masks: any priority relations
	// that idx2 had are replicated onto idx1, unless they conflict with
	// priorities already present on idx1, in which case emulate_priority
	// is called.  Likewise, ensures transparency and undefined collision
	// masks of all read ports have the same values for both ports,
	// calling emulate_transparency if necessary.
	void prepare_wr_merge(int idx1, int idx2, FfInitVals *initvals);

	// Prepares for merging read port idx2 into idx1.
	// Specifically, makes sure the transparency and undefined collision
	// masks of both ports are equal, by changing undefined behavior
	// of one port to the other's defined behavior, or by calling
	// emulate_transparency if necessary.
	void prepare_rd_merge(int idx1, int idx2, FfInitVals *initvals);

	// Prepares the memory for widening a port to a given width.  This
	// involves ensuring that start_offset and size are aligned to the
	// target width.
	void widen_prep(int wide_log2);

	// Widens a write port up to a given width.  The newly port is
	// equivalent to the original, made by replicating enable/data bits
	// and masking enable bits with decoders on the low part of the
	// original address.
	void widen_wr_port(int idx, int wide_log2);

	// Emulates a sync read port's enable functionality in soft logic,
	// changing the actual read port's enable to be always-on.
	void emulate_rden(int idx, FfInitVals *initvals);

	// Emulates a sync read port's initial/reset value functionality in
	// soft logic, removing it from the actual read port.
	void emulate_reset(int idx, bool emu_init, bool emu_arst, bool emu_srst, FfInitVals *initvals);

	// Given a read port with ce_over_srst set, converts it to a port
	// with ce_over_srst unset without changing its behavior by adding
	// emulation logic.
	void emulate_rd_ce_over_srst(int idx);

	// Given a read port with ce_over_srst unset, converts it to a port
	// with ce_over_srst set without changing its behavior by adding
	// emulation logic.
	void emulate_rd_srst_over_ce(int idx);

	// Returns true iff emulate_read_first makes sense to call.
	bool emulate_read_first_ok();

	// Emulates all read-first read-write port relationships in terms of
	// all-transparent ports, by delaying all write ports by one cycle.
	// This can only be used when all read ports and all write ports are
	// in the same clock domain.
	void emulate_read_first(FfInitVals *initvals);

	Mem(Module *module, IdString memid, int width, int start_offset, int size) : module(module), memid(memid), packed(false), mem(nullptr), cell(nullptr), width(width), start_offset(start_offset), size(size) {}
};

// MemContents efficiently represents the contents of a potentially sparse memory by storing only those segments that are actually defined
class MemContents {
public:
	class range; class iterator;
	using addr_t = uint32_t;
private:
	// we ban _addr_width == sizeof(addr_t) * 8 because it adds too many cornercases
	int _addr_width;
	int _data_width;
	RTLIL::Const _default_value;
	// for each range, store the concatenation of the words at the start address
	// invariants:
	// - no overlapping or adjacent ranges
	// - no empty ranges
	// - all Consts are a multiple of the word size
	std::map<addr_t, RTLIL::Const> _values;
	// returns an iterator to the range containing addr, if it exists, or the first range past addr
	std::map<addr_t, RTLIL::Const>::iterator _range_at(addr_t addr) const;
	addr_t _range_size(std::map<addr_t, RTLIL::Const>::iterator it) const { return it->second.size() / _data_width; }
	addr_t _range_begin(std::map<addr_t, RTLIL::Const>::iterator it) const { return it->first; }
	addr_t _range_end(std::map<addr_t, RTLIL::Const>::iterator it) const { return _range_begin(it) + _range_size(it); }
	// check if the iterator points to a range containing addr
	bool _range_contains(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const;
	// check if the iterator points to a range containing [begin_addr, end_addr). assumes end_addr >= begin_addr.
	bool _range_contains(std::map<addr_t, RTLIL::Const>::iterator it, addr_t begin_addr, addr_t end_addr) const;
	// check if the iterator points to a range overlapping with [begin_addr, end_addr)
	bool _range_overlaps(std::map<addr_t, RTLIL::Const>::iterator it, addr_t begin_addr, addr_t end_addr) const;
	// return the offset the addr would have in the range at `it`
	size_t _range_offset(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const { return (addr - it->first) * _data_width; }
	// assuming _range_contains(it, addr), return an iterator pointing to the data at addr
	std::vector<State>::iterator _range_data(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) { return it->second.bits().begin() + _range_offset(it, addr); }
	// internal version of reserve_range that returns an iterator to the range
	std::map<addr_t, RTLIL::Const>::iterator _reserve_range(addr_t begin_addr, addr_t end_addr);
	// write a single word at addr, return iterator to next word
	std::vector<State>::iterator _range_write(std::vector<State>::iterator it, RTLIL::Const const &data);
public:
	class range {
		int _data_width;
		addr_t _base;
		RTLIL::Const const &_values;
		friend class iterator;
		range(int data_width, addr_t base, RTLIL::Const const &values)
		: _data_width(data_width), _base(base), _values(values) {}
	public:
		addr_t base() const { return _base; }
		addr_t size() const { return ((addr_t) _values.size()) / _data_width; }
		addr_t limit() const { return _base + size(); }
		RTLIL::Const const &concatenated() const { return _values; }
		RTLIL::Const operator[](addr_t addr) const {
			log_assert(addr - _base < size());
			return _values.extract((addr - _base) * _data_width, _data_width);
		}
		RTLIL::Const at_offset(addr_t offset) const { return (*this)[_base + offset]; }
	};
	class iterator {
		MemContents const *_memory;
		// storing addr instead of an iterator gives more well-defined behaviour under insertions/deletions
		// use ~0 for end so that all end iterators compare the same
		addr_t _addr;
		friend class MemContents;
		iterator(MemContents const *memory, addr_t addr) : _memory(memory), _addr(addr) {}
	public:
		using iterator_category = std::input_iterator_tag;
		using value_type = range;
		using pointer = arrow_proxy<range>;
		using reference = range;
		using difference_type = addr_t;
		reference operator *() const { return range(_memory->_data_width, _addr, _memory->_values.at(_addr)); }
		pointer operator->() const { return arrow_proxy<range>(**this); }
		bool operator !=(iterator const &other) const { return _memory != other._memory || _addr != other._addr; }
		bool operator ==(iterator const &other) const { return !(*this != other); }
		iterator &operator++();
	};
	MemContents(int addr_width, int data_width, RTLIL::Const default_value)
		: _addr_width(addr_width), _data_width(data_width)
		, _default_value((default_value.extu(data_width), std::move(default_value)))
	{ log_assert(_addr_width > 0 && _addr_width < (int)sizeof(addr_t) * 8); log_assert(_data_width > 0); }
	MemContents(int addr_width, int data_width) : MemContents(addr_width, data_width, RTLIL::Const(State::Sx, data_width)) {}
	explicit MemContents(Mem *mem);
	int addr_width() const { return _addr_width; }
	int data_width() const { return _data_width; }
	RTLIL::Const const &default_value() const { return _default_value; }
	// return the value at the address if it exists, the default_value of the memory otherwise. address must not exceed 2**addr_width.
	RTLIL::Const operator [](addr_t addr) const;
	// return the number of defined words in the range [begin_addr, end_addr)
	addr_t count_range(addr_t begin_addr, addr_t end_addr) const;
	// allocate memory for the range [begin_addr, end_addr), but leave the contents undefined.
	void reserve_range(addr_t begin_addr, addr_t end_addr) { _reserve_range(begin_addr, end_addr); }
	// insert multiple words (provided as a single concatenated RTLIL::Const) at the given address, overriding any previous assignment.
	void insert_concatenated(addr_t addr, RTLIL::Const const &values);
	// insert multiple words at the given address, overriding any previous assignment.
	template<typename Iterator> void insert_range(addr_t addr, Iterator begin, Iterator end) {
		auto words = end - begin;
		log_assert(addr < (addr_t)(1<<_addr_width)); log_assert(words <= (addr_t)(1<<_addr_width) - addr);
		auto range = _reserve_range(addr, addr + words);
		auto it = _range_data(range, addr);
		for(; begin != end; ++begin)
			it = _range_write(it, *begin);
	}
	// undefine all words in the range [begin_addr, end_addr)
	void clear_range(addr_t begin_addr, addr_t end_addr);
	// check invariants, abort if invariants failed
	void check();
	iterator end() const { return iterator(nullptr, ~(addr_t) 0); }
	iterator begin() const { return _values.empty() ? end() : iterator(this, _values.begin()->first); }
	bool empty() const { return _values.empty(); }
};

YOSYS_NAMESPACE_END

#endif