1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef MEM_H
#define MEM_H
#include "kernel/yosys.h"
#include "kernel/ffinit.h"
#include "kernel/utils.h"
YOSYS_NAMESPACE_BEGIN
struct MemRd : RTLIL::AttrObject {
bool removed;
Cell *cell;
int wide_log2;
bool clk_enable, clk_polarity, ce_over_srst;
Const arst_value, srst_value, init_value;
// One bit for every write port, true iff simultanous read on this
// port and write on the other port will bypass the written data
// to this port's output (default behavior is to read old value).
// Can only be set for write ports that have the same clock domain.
std::vector<bool> transparency_mask;
// One bit for every write port, true iff simultanous read on this
// port and write on the other port will return an all-X (don't care)
// value. Mutually exclusive with transparency_mask.
// Can only be set for write ports that have the same clock domain.
// For optimization purposes, this will also be set if we can
// determine that the two ports can never be active simultanously
// (making the above vacuously true).
std::vector<bool> collision_x_mask;
SigSpec clk, en, arst, srst, addr, data;
MemRd() : removed(false), cell(nullptr), wide_log2(0), clk_enable(false), clk_polarity(true), ce_over_srst(false), clk(State::Sx), en(State::S1), arst(State::S0), srst(State::S0) {}
// Returns the address of given subword index accessed by this port.
SigSpec sub_addr(int sub) {
SigSpec res = addr;
for (int i = 0; i < wide_log2; i++)
res[i] = State(sub >> i & 1);
return res;
}
};
struct MemWr : RTLIL::AttrObject {
bool removed;
Cell *cell;
int wide_log2;
bool clk_enable, clk_polarity;
std::vector<bool> priority_mask;
SigSpec clk, en, addr, data;
MemWr() : removed(false), cell(nullptr) {}
// Returns the address of given subword index accessed by this port.
SigSpec sub_addr(int sub) {
SigSpec res = addr;
for (int i = 0; i < wide_log2; i++)
res[i] = State(sub >> i & 1);
return res;
}
std::pair<SigSpec, std::vector<int>> compress_en();
SigSpec decompress_en(const std::vector<int> &swizzle, SigSpec sig);
};
struct MemInit : RTLIL::AttrObject {
bool removed;
Cell *cell;
Const addr;
Const data;
Const en;
MemInit() : removed(false), cell(nullptr) {}
};
struct Mem : RTLIL::AttrObject {
Module *module;
IdString memid;
bool packed;
RTLIL::Memory *mem;
Cell *cell;
int width, start_offset, size;
std::vector<MemInit> inits;
std::vector<MemRd> rd_ports;
std::vector<MemWr> wr_ports;
// Removes this memory from the module. The data in helper structures
// is unaffected except for the cell/mem fields.
void remove();
// Commits all changes in helper structures into the module — ports and
// inits marked as removed are actually removed, new ports/inits create
// new cells, modified port/inits are commited into their existing
// cells. Note that this reindexes the ports and inits array (actually
// removing the ports/inits marked as removed).
void emit();
// Marks all inits as removed.
void clear_inits();
// Coalesces inits: whenever two inits have overlapping or touching
// address ranges, they are combined into one, with the higher-priority
// one's data overwriting the other. Running this results in
// an inits list equivalent to the original, in which all entries
// cover disjoint (and non-touching) address ranges, and all enable
// masks are all-1.
void coalesce_inits();
// Checks consistency of this memory and all its ports/inits, using
// log_assert.
void check();
// Gathers all initialization data into a single big const covering
// the whole memory. For all non-initialized bits, Sx will be returned.
Const get_init_data() const;
// Constructs and returns the helper structures for all memories
// in a module.
static std::vector<Mem> get_all_memories(Module *module);
// Constructs and returns the helper structures for all selected
// memories in a module.
static std::vector<Mem> get_selected_memories(Module *module);
// Converts a synchronous read port into an asynchronous one by
// extracting the data (or, in some rare cases, address) register
// into a separate cell, together with any soft-transparency
// logic necessary to preserve its semantics. Returns the created
// register cell, if any. Note that in some rare cases this function
// may succeed and perform a conversion without creating a new
// register — a nullptr result doesn't imply nothing was done.
Cell *extract_rdff(int idx, FfInitVals *initvals);
// Splits all wide ports in this memory into equivalent narrow ones.
// This function performs no modifications at all to the actual
// netlist unless and until emit() is called.
void narrow();
// If write port idx2 currently has priority over write port idx1,
// inserts extra logic on idx1's enable signal to disable writes
// when idx2 is writing to the same address, then removes the priority
// from the priority mask. If there is a memory port that is
// transparent with idx1, but not with idx2, that port is converted
// to use soft transparency logic.
void emulate_priority(int idx1, int idx2, FfInitVals *initvals);
// Creates soft-transparency logic on read port ridx, bypassing the
// data from write port widx. Should only be called when ridx is
// transparent wrt widx in the first place. Once we're done, the
// transparency_mask bit will be cleared, and the collision_x_mask
// bit will be set instead (since whatever value is read will be
// replaced by the soft transparency logic).
void emulate_transparency(int widx, int ridx, FfInitVals *initvals);
// Prepares for merging write port idx2 into idx1 (where idx1 < idx2).
// Specifically, takes care of priority masks: any priority relations
// that idx2 had are replicated onto idx1, unless they conflict with
// priorities already present on idx1, in which case emulate_priority
// is called. Likewise, ensures transparency and undefined collision
// masks of all read ports have the same values for both ports,
// calling emulate_transparency if necessary.
void prepare_wr_merge(int idx1, int idx2, FfInitVals *initvals);
// Prepares for merging read port idx2 into idx1.
// Specifically, makes sure the transparency and undefined collision
// masks of both ports are equal, by changing undefined behavior
// of one port to the other's defined behavior, or by calling
// emulate_transparency if necessary.
void prepare_rd_merge(int idx1, int idx2, FfInitVals *initvals);
// Prepares the memory for widening a port to a given width. This
// involves ensuring that start_offset and size are aligned to the
// target width.
void widen_prep(int wide_log2);
// Widens a write port up to a given width. The newly port is
// equivalent to the original, made by replicating enable/data bits
// and masking enable bits with decoders on the low part of the
// original address.
void widen_wr_port(int idx, int wide_log2);
// Emulates a sync read port's enable functionality in soft logic,
// changing the actual read port's enable to be always-on.
void emulate_rden(int idx, FfInitVals *initvals);
// Emulates a sync read port's initial/reset value functionality in
// soft logic, removing it from the actual read port.
void emulate_reset(int idx, bool emu_init, bool emu_arst, bool emu_srst, FfInitVals *initvals);
// Given a read port with ce_over_srst set, converts it to a port
// with ce_over_srst unset without changing its behavior by adding
// emulation logic.
void emulate_rd_ce_over_srst(int idx);
// Given a read port with ce_over_srst unset, converts it to a port
// with ce_over_srst set without changing its behavior by adding
// emulation logic.
void emulate_rd_srst_over_ce(int idx);
// Returns true iff emulate_read_first makes sense to call.
bool emulate_read_first_ok();
// Emulates all read-first read-write port relationships in terms of
// all-transparent ports, by delaying all write ports by one cycle.
// This can only be used when all read ports and all write ports are
// in the same clock domain.
void emulate_read_first(FfInitVals *initvals);
Mem(Module *module, IdString memid, int width, int start_offset, int size) : module(module), memid(memid), packed(false), mem(nullptr), cell(nullptr), width(width), start_offset(start_offset), size(size) {}
};
// MemContents efficiently represents the contents of a potentially sparse memory by storing only those segments that are actually defined
class MemContents {
public:
class range; class iterator;
using addr_t = uint32_t;
private:
// we ban _addr_width == sizeof(addr_t) * 8 because it adds too many cornercases
int _addr_width;
int _data_width;
RTLIL::Const _default_value;
// for each range, store the concatenation of the words at the start address
// invariants:
// - no overlapping or adjacent ranges
// - no empty ranges
// - all Consts are a multiple of the word size
std::map<addr_t, RTLIL::Const> _values;
// returns an iterator to the range containing addr, if it exists, or the first range past addr
std::map<addr_t, RTLIL::Const>::iterator _range_at(addr_t addr) const;
addr_t _range_size(std::map<addr_t, RTLIL::Const>::iterator it) const { return it->second.size() / _data_width; }
addr_t _range_begin(std::map<addr_t, RTLIL::Const>::iterator it) const { return it->first; }
addr_t _range_end(std::map<addr_t, RTLIL::Const>::iterator it) const { return _range_begin(it) + _range_size(it); }
// check if the iterator points to a range containing addr
bool _range_contains(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const;
// check if the iterator points to a range containing [begin_addr, end_addr). assumes end_addr >= begin_addr.
bool _range_contains(std::map<addr_t, RTLIL::Const>::iterator it, addr_t begin_addr, addr_t end_addr) const;
// check if the iterator points to a range overlapping with [begin_addr, end_addr)
bool _range_overlaps(std::map<addr_t, RTLIL::Const>::iterator it, addr_t begin_addr, addr_t end_addr) const;
// return the offset the addr would have in the range at `it`
size_t _range_offset(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const { return (addr - it->first) * _data_width; }
// assuming _range_contains(it, addr), return an iterator pointing to the data at addr
std::vector<State>::iterator _range_data(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) { return it->second.bits().begin() + _range_offset(it, addr); }
// internal version of reserve_range that returns an iterator to the range
std::map<addr_t, RTLIL::Const>::iterator _reserve_range(addr_t begin_addr, addr_t end_addr);
// write a single word at addr, return iterator to next word
std::vector<State>::iterator _range_write(std::vector<State>::iterator it, RTLIL::Const const &data);
public:
class range {
int _data_width;
addr_t _base;
RTLIL::Const const &_values;
friend class iterator;
range(int data_width, addr_t base, RTLIL::Const const &values)
: _data_width(data_width), _base(base), _values(values) {}
public:
addr_t base() const { return _base; }
addr_t size() const { return ((addr_t) _values.size()) / _data_width; }
addr_t limit() const { return _base + size(); }
RTLIL::Const const &concatenated() const { return _values; }
RTLIL::Const operator[](addr_t addr) const {
log_assert(addr - _base < size());
return _values.extract((addr - _base) * _data_width, _data_width);
}
RTLIL::Const at_offset(addr_t offset) const { return (*this)[_base + offset]; }
};
class iterator {
MemContents const *_memory;
// storing addr instead of an iterator gives more well-defined behaviour under insertions/deletions
// use ~0 for end so that all end iterators compare the same
addr_t _addr;
friend class MemContents;
iterator(MemContents const *memory, addr_t addr) : _memory(memory), _addr(addr) {}
public:
using iterator_category = std::input_iterator_tag;
using value_type = range;
using pointer = arrow_proxy<range>;
using reference = range;
using difference_type = addr_t;
reference operator *() const { return range(_memory->_data_width, _addr, _memory->_values.at(_addr)); }
pointer operator->() const { return arrow_proxy<range>(**this); }
bool operator !=(iterator const &other) const { return _memory != other._memory || _addr != other._addr; }
bool operator ==(iterator const &other) const { return !(*this != other); }
iterator &operator++();
};
MemContents(int addr_width, int data_width, RTLIL::Const default_value)
: _addr_width(addr_width), _data_width(data_width)
, _default_value((default_value.extu(data_width), std::move(default_value)))
{ log_assert(_addr_width > 0 && _addr_width < (int)sizeof(addr_t) * 8); log_assert(_data_width > 0); }
MemContents(int addr_width, int data_width) : MemContents(addr_width, data_width, RTLIL::Const(State::Sx, data_width)) {}
explicit MemContents(Mem *mem);
int addr_width() const { return _addr_width; }
int data_width() const { return _data_width; }
RTLIL::Const const &default_value() const { return _default_value; }
// return the value at the address if it exists, the default_value of the memory otherwise. address must not exceed 2**addr_width.
RTLIL::Const operator [](addr_t addr) const;
// return the number of defined words in the range [begin_addr, end_addr)
addr_t count_range(addr_t begin_addr, addr_t end_addr) const;
// allocate memory for the range [begin_addr, end_addr), but leave the contents undefined.
void reserve_range(addr_t begin_addr, addr_t end_addr) { _reserve_range(begin_addr, end_addr); }
// insert multiple words (provided as a single concatenated RTLIL::Const) at the given address, overriding any previous assignment.
void insert_concatenated(addr_t addr, RTLIL::Const const &values);
// insert multiple words at the given address, overriding any previous assignment.
template<typename Iterator> void insert_range(addr_t addr, Iterator begin, Iterator end) {
auto words = end - begin;
log_assert(addr < (addr_t)(1<<_addr_width)); log_assert(words <= (addr_t)(1<<_addr_width) - addr);
auto range = _reserve_range(addr, addr + words);
auto it = _range_data(range, addr);
for(; begin != end; ++begin)
it = _range_write(it, *begin);
}
// undefine all words in the range [begin_addr, end_addr)
void clear_range(addr_t begin_addr, addr_t end_addr);
// check invariants, abort if invariants failed
void check();
iterator end() const { return iterator(nullptr, ~(addr_t) 0); }
iterator begin() const { return _values.empty() ? end() : iterator(this, _values.begin()->first); }
bool empty() const { return _values.empty(); }
};
YOSYS_NAMESPACE_END
#endif
|