File: proc_dff.cc

package info (click to toggle)
yosys 0.52-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 69,796 kB
  • sloc: ansic: 696,955; cpp: 239,736; python: 14,617; yacc: 3,529; sh: 2,175; makefile: 1,945; lex: 697; perl: 445; javascript: 323; tcl: 162; vhdl: 115
file content (319 lines) | stat: -rw-r--r-- 11,548 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/log.h"
#include <sstream>
#include <stdlib.h>
#include <stdio.h>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc)
{
	RTLIL::SigSpec lvalue;

	for (auto sync : proc->syncs)
	for (auto &action : sync->actions)
		if (action.first.size() > 0) {
			lvalue = action.first;
			lvalue.sort_and_unify();
			break;
		}

	for (auto sync : proc->syncs) {
		RTLIL::SigSpec this_lvalue;
		for (auto &action : sync->actions)
			this_lvalue.append(action.first);
		this_lvalue.sort_and_unify();
		RTLIL::SigSpec common_sig = this_lvalue.extract(lvalue);
		if (common_sig.size() > 0)
			lvalue = common_sig;
	}

	return lvalue;
}

void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity,
		std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> &async_rules, RTLIL::Process *proc)
{
	// A signal should be set/cleared if there is a load trigger that is enabled
	// such that the load value is 1/0 and it is the highest priority trigger
	RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size());
	RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size());

	// Reverse iterate through the rules as the first ones are the highest priority
	// so need to be at the top of the mux trees
	for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++)
	{
		const auto& [sync_value, rule] = *it;
		const auto pos_trig = rule->type == RTLIL::SyncType::ST1 ? rule->signal : mod->Not(NEW_ID, rule->signal);

		// If pos_trig is true, we have priority at this point in the tree so
		// set a bit if sync_value has a set bit. Otherwise, defer to the rest
		// of the priority tree
		sig_sr_set = mod->Mux(NEW_ID, sig_sr_set, sync_value, pos_trig);

		// Same deal with clear bit
		const auto sync_value_inv = mod->Not(NEW_ID, sync_value);
		sig_sr_clr = mod->Mux(NEW_ID, sig_sr_clr, sync_value_inv, pos_trig);
	}

	std::stringstream sstr;
	sstr << "$procdff$" << (autoidx++);

	RTLIL::Cell *cell = mod->addDffsr(sstr.str(), clk, sig_sr_set, sig_sr_clr, sig_d, sig_q, clk_polarity);
	cell->attributes = proc->attributes;

	log("  created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n",
			cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
}

void gen_aldff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_out,
		bool clk_polarity, bool set_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec set, RTLIL::Process *proc)
{
	std::stringstream sstr;
	sstr << "$procdff$" << (autoidx++);

	RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($aldff));
	cell->attributes = proc->attributes;

	cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size());
	cell->parameters[ID::ALOAD_POLARITY] = RTLIL::Const(set_polarity, 1);
	cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
	cell->setPort(ID::D, sig_in);
	cell->setPort(ID::Q, sig_out);
	cell->setPort(ID::AD, sig_set);
	cell->setPort(ID::CLK, clk);
	cell->setPort(ID::ALOAD, set);

	log("  created %s cell `%s' with %s edge clock and %s level non-const reset.\n", cell->type.c_str(), cell->name.c_str(),
			clk_polarity ? "positive" : "negative", set_polarity ? "positive" : "negative");
}

void gen_dff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::Const val_rst, RTLIL::SigSpec sig_out,
		bool clk_polarity, bool arst_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec *arst, RTLIL::Process *proc)
{
	std::stringstream sstr;
	sstr << "$procdff$" << (autoidx++);

	RTLIL::Cell *cell = mod->addCell(sstr.str(), clk.empty() ? ID($ff) : arst ? ID($adff) : ID($dff));
	cell->attributes = proc->attributes;

	cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size());
	if (arst) {
		cell->parameters[ID::ARST_POLARITY] = RTLIL::Const(arst_polarity, 1);
		cell->parameters[ID::ARST_VALUE] = val_rst;
	}
	if (!clk.empty()) {
		cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
	}

	cell->setPort(ID::D, sig_in);
	cell->setPort(ID::Q, sig_out);
	if (arst)
		cell->setPort(ID::ARST, *arst);
	if (!clk.empty())
		cell->setPort(ID::CLK, clk);

	if (!clk.empty())
		log("  created %s cell `%s' with %s edge clock", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
	else
		log("  created %s cell `%s' with global clock", cell->type.c_str(), cell->name.c_str());
	if (arst)
		log(" and %s level reset", arst_polarity ? "positive" : "negative");
	log(".\n");
}

void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
{
	while (1)
	{
		RTLIL::SigSpec sig = find_any_lvalue(proc);

		if (sig.size() == 0)
			break;

		log("Creating register for signal `%s.%s' using process `%s.%s'.\n",
				mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str());

		RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
		RTLIL::SyncRule *sync_edge = NULL;
		RTLIL::SyncRule *sync_always = NULL;
		bool global_clock = false;

		// A priority ordered set of rules, pairing the value to be assigned for
		// that rule to the rule
		std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> async_rules;

		// Needed when the async rules are collapsed into one as async_rules
		// works with pointers to SyncRule
		RTLIL::SyncRule single_async_rule;

		for (auto sync : proc->syncs)
		for (auto &action : sync->actions)
		{
			if (action.first.extract(sig).size() == 0)
				continue;

			if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) {
				RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
				sig.replace(action.first, action.second, &rstval);
				async_rules.emplace_back(rstval, sync);
			}
			else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) {
				if (sync_edge != NULL && sync_edge != sync)
					log_error("Multiple edge sensitive events found for this signal!\n");
				sig.replace(action.first, action.second, &insig);
				sync_edge = sync;
			}
			else if (sync->type == RTLIL::SyncType::STa) {
				if (sync_always != NULL && sync_always != sync)
					log_error("Multiple always events found for this signal!\n");
				sig.replace(action.first, action.second, &insig);
				sync_always = sync;
			}
			else if (sync->type == RTLIL::SyncType::STg) {
				sig.replace(action.first, action.second, &insig);
				global_clock = true;
			}
			else {
				log_error("Event with any-edge sensitivity found for this signal!\n");
			}

			action.first.remove2(sig, &action.second);
		}

		// If all async rules assign the same value, priority ordering between
		// them doesn't matter so they can be collapsed together into one rule
		// with the disjunction of triggers
		if (!async_rules.empty() &&
		    std::all_of(async_rules.begin(), async_rules.end(), [&](auto& p) {
		        return p.first == async_rules.front().first;
		    }))
		{
			const auto rstval = async_rules.front().first;

			// The trigger is the disjunction of existing triggers
			// (with appropriate negation)
			RTLIL::SigSpec triggers;
			for (const auto &[_, it] : async_rules)
				triggers.append(it->type == RTLIL::SyncType::ST1 ? it->signal : mod->Not(NEW_ID, it->signal));

			// Put this into the dummy sync rule so it can be treated the same
			// as ones coming from the module
			single_async_rule.type = RTLIL::SyncType::ST1;
			single_async_rule.signal = mod->ReduceOr(NEW_ID, triggers);
			single_async_rule.actions.push_back(RTLIL::SigSig(sig, rstval));

			// Replace existing rules with this new rule
			async_rules.clear();
			async_rules.emplace_back(rstval, &single_async_rule);
		}

		SigSpec sig_q = sig;
		ce.assign_map.apply(insig);
		ce.assign_map.apply(sig);

		// If the reset value assigns the reg to itself, add this as part of
		// the input signal and delete the rule
		if (async_rules.size() == 1 && async_rules.front().first == sig) {
			const auto& [_, rule] = async_rules.front();
			if (rule->type == RTLIL::SyncType::ST1)
				insig = mod->Mux(NEW_ID, insig, sig, rule->signal);
			else
				insig = mod->Mux(NEW_ID, sig, insig, rule->signal);

			async_rules.clear();
		}

		if (sync_always) {
			if (sync_edge || !async_rules.empty())
				log_error("Mixed always event with edge and/or level sensitive events!\n");
			log("  created direct connection (no actual register cell created).\n");
			mod->connect(RTLIL::SigSig(sig, insig));
			continue;
		}

		if (!sync_edge && !global_clock)
			log_error("Missing edge-sensitive event for this signal!\n");

		// More than one reset value so we derive a dffsr formulation
		if (async_rules.size() > 1)
		{
			log_warning("Complex async reset for dff `%s'.\n", log_signal(sig));
			gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, async_rules, proc);
			continue;
		}

		// If there is a reset condition in the async rules, use it
		SigSpec rstval = async_rules.empty() ? RTLIL::SigSpec(RTLIL::State::Sz, sig.size()) : async_rules.front().first;
		RTLIL::SyncRule* sync_level = async_rules.empty() ? nullptr : async_rules.front().second;
		ce.assign_map.apply(rstval);

		if (!rstval.is_fully_const() && !ce.eval(rstval))
		{
			log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval));
			gen_aldff(mod, insig, rstval, sig_q,
					sync_edge->type == RTLIL::SyncType::STp,
					sync_level && sync_level->type == RTLIL::SyncType::ST1,
					sync_edge->signal, sync_level->signal, proc);
			continue;
		}

		gen_dff(mod, insig, rstval.as_const(), sig_q,
				sync_edge && sync_edge->type == RTLIL::SyncType::STp,
				sync_level && sync_level->type == RTLIL::SyncType::ST1,
				sync_edge ? sync_edge->signal : SigSpec(),
				sync_level ? &sync_level->signal : NULL, proc);
	}
}

struct ProcDffPass : public Pass {
	ProcDffPass() : Pass("proc_dff", "extract flip-flops from processes") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    proc_dff [selection]\n");
		log("\n");
		log("This pass identifies flip-flops in the processes and converts them to\n");
		log("d-type flip-flop cells.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		log_header(design, "Executing PROC_DFF pass (convert process syncs to FFs).\n");

		extra_args(args, 1, design);

		for (auto mod : design->modules())
			if (design->selected(mod)) {
				ConstEval ce(mod);
				for (auto &proc_it : mod->processes)
					if (design->selected(mod, proc_it.second))
						proc_dff(mod, proc_it.second, ce);
			}
	}
} ProcDffPass;

PRIVATE_NAMESPACE_END