1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/log.h"
#include <sstream>
#include <stdlib.h>
#include <stdio.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc)
{
RTLIL::SigSpec lvalue;
for (auto sync : proc->syncs)
for (auto &action : sync->actions)
if (action.first.size() > 0) {
lvalue = action.first;
lvalue.sort_and_unify();
break;
}
for (auto sync : proc->syncs) {
RTLIL::SigSpec this_lvalue;
for (auto &action : sync->actions)
this_lvalue.append(action.first);
this_lvalue.sort_and_unify();
RTLIL::SigSpec common_sig = this_lvalue.extract(lvalue);
if (common_sig.size() > 0)
lvalue = common_sig;
}
return lvalue;
}
void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity,
std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> &async_rules, RTLIL::Process *proc)
{
// A signal should be set/cleared if there is a load trigger that is enabled
// such that the load value is 1/0 and it is the highest priority trigger
RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size());
RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size());
// Reverse iterate through the rules as the first ones are the highest priority
// so need to be at the top of the mux trees
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++)
{
const auto& [sync_value, rule] = *it;
const auto pos_trig = rule->type == RTLIL::SyncType::ST1 ? rule->signal : mod->Not(NEW_ID, rule->signal);
// If pos_trig is true, we have priority at this point in the tree so
// set a bit if sync_value has a set bit. Otherwise, defer to the rest
// of the priority tree
sig_sr_set = mod->Mux(NEW_ID, sig_sr_set, sync_value, pos_trig);
// Same deal with clear bit
const auto sync_value_inv = mod->Not(NEW_ID, sync_value);
sig_sr_clr = mod->Mux(NEW_ID, sig_sr_clr, sync_value_inv, pos_trig);
}
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addDffsr(sstr.str(), clk, sig_sr_set, sig_sr_clr, sig_d, sig_q, clk_polarity);
cell->attributes = proc->attributes;
log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n",
cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
}
void gen_aldff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_out,
bool clk_polarity, bool set_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec set, RTLIL::Process *proc)
{
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($aldff));
cell->attributes = proc->attributes;
cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size());
cell->parameters[ID::ALOAD_POLARITY] = RTLIL::Const(set_polarity, 1);
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
cell->setPort(ID::D, sig_in);
cell->setPort(ID::Q, sig_out);
cell->setPort(ID::AD, sig_set);
cell->setPort(ID::CLK, clk);
cell->setPort(ID::ALOAD, set);
log(" created %s cell `%s' with %s edge clock and %s level non-const reset.\n", cell->type.c_str(), cell->name.c_str(),
clk_polarity ? "positive" : "negative", set_polarity ? "positive" : "negative");
}
void gen_dff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::Const val_rst, RTLIL::SigSpec sig_out,
bool clk_polarity, bool arst_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec *arst, RTLIL::Process *proc)
{
std::stringstream sstr;
sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addCell(sstr.str(), clk.empty() ? ID($ff) : arst ? ID($adff) : ID($dff));
cell->attributes = proc->attributes;
cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size());
if (arst) {
cell->parameters[ID::ARST_POLARITY] = RTLIL::Const(arst_polarity, 1);
cell->parameters[ID::ARST_VALUE] = val_rst;
}
if (!clk.empty()) {
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
}
cell->setPort(ID::D, sig_in);
cell->setPort(ID::Q, sig_out);
if (arst)
cell->setPort(ID::ARST, *arst);
if (!clk.empty())
cell->setPort(ID::CLK, clk);
if (!clk.empty())
log(" created %s cell `%s' with %s edge clock", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
else
log(" created %s cell `%s' with global clock", cell->type.c_str(), cell->name.c_str());
if (arst)
log(" and %s level reset", arst_polarity ? "positive" : "negative");
log(".\n");
}
void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
{
while (1)
{
RTLIL::SigSpec sig = find_any_lvalue(proc);
if (sig.size() == 0)
break;
log("Creating register for signal `%s.%s' using process `%s.%s'.\n",
mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str());
RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
RTLIL::SyncRule *sync_edge = NULL;
RTLIL::SyncRule *sync_always = NULL;
bool global_clock = false;
// A priority ordered set of rules, pairing the value to be assigned for
// that rule to the rule
std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> async_rules;
// Needed when the async rules are collapsed into one as async_rules
// works with pointers to SyncRule
RTLIL::SyncRule single_async_rule;
for (auto sync : proc->syncs)
for (auto &action : sync->actions)
{
if (action.first.extract(sig).size() == 0)
continue;
if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) {
RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
sig.replace(action.first, action.second, &rstval);
async_rules.emplace_back(rstval, sync);
}
else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) {
if (sync_edge != NULL && sync_edge != sync)
log_error("Multiple edge sensitive events found for this signal!\n");
sig.replace(action.first, action.second, &insig);
sync_edge = sync;
}
else if (sync->type == RTLIL::SyncType::STa) {
if (sync_always != NULL && sync_always != sync)
log_error("Multiple always events found for this signal!\n");
sig.replace(action.first, action.second, &insig);
sync_always = sync;
}
else if (sync->type == RTLIL::SyncType::STg) {
sig.replace(action.first, action.second, &insig);
global_clock = true;
}
else {
log_error("Event with any-edge sensitivity found for this signal!\n");
}
action.first.remove2(sig, &action.second);
}
// If all async rules assign the same value, priority ordering between
// them doesn't matter so they can be collapsed together into one rule
// with the disjunction of triggers
if (!async_rules.empty() &&
std::all_of(async_rules.begin(), async_rules.end(), [&](auto& p) {
return p.first == async_rules.front().first;
}))
{
const auto rstval = async_rules.front().first;
// The trigger is the disjunction of existing triggers
// (with appropriate negation)
RTLIL::SigSpec triggers;
for (const auto &[_, it] : async_rules)
triggers.append(it->type == RTLIL::SyncType::ST1 ? it->signal : mod->Not(NEW_ID, it->signal));
// Put this into the dummy sync rule so it can be treated the same
// as ones coming from the module
single_async_rule.type = RTLIL::SyncType::ST1;
single_async_rule.signal = mod->ReduceOr(NEW_ID, triggers);
single_async_rule.actions.push_back(RTLIL::SigSig(sig, rstval));
// Replace existing rules with this new rule
async_rules.clear();
async_rules.emplace_back(rstval, &single_async_rule);
}
SigSpec sig_q = sig;
ce.assign_map.apply(insig);
ce.assign_map.apply(sig);
// If the reset value assigns the reg to itself, add this as part of
// the input signal and delete the rule
if (async_rules.size() == 1 && async_rules.front().first == sig) {
const auto& [_, rule] = async_rules.front();
if (rule->type == RTLIL::SyncType::ST1)
insig = mod->Mux(NEW_ID, insig, sig, rule->signal);
else
insig = mod->Mux(NEW_ID, sig, insig, rule->signal);
async_rules.clear();
}
if (sync_always) {
if (sync_edge || !async_rules.empty())
log_error("Mixed always event with edge and/or level sensitive events!\n");
log(" created direct connection (no actual register cell created).\n");
mod->connect(RTLIL::SigSig(sig, insig));
continue;
}
if (!sync_edge && !global_clock)
log_error("Missing edge-sensitive event for this signal!\n");
// More than one reset value so we derive a dffsr formulation
if (async_rules.size() > 1)
{
log_warning("Complex async reset for dff `%s'.\n", log_signal(sig));
gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, async_rules, proc);
continue;
}
// If there is a reset condition in the async rules, use it
SigSpec rstval = async_rules.empty() ? RTLIL::SigSpec(RTLIL::State::Sz, sig.size()) : async_rules.front().first;
RTLIL::SyncRule* sync_level = async_rules.empty() ? nullptr : async_rules.front().second;
ce.assign_map.apply(rstval);
if (!rstval.is_fully_const() && !ce.eval(rstval))
{
log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval));
gen_aldff(mod, insig, rstval, sig_q,
sync_edge->type == RTLIL::SyncType::STp,
sync_level && sync_level->type == RTLIL::SyncType::ST1,
sync_edge->signal, sync_level->signal, proc);
continue;
}
gen_dff(mod, insig, rstval.as_const(), sig_q,
sync_edge && sync_edge->type == RTLIL::SyncType::STp,
sync_level && sync_level->type == RTLIL::SyncType::ST1,
sync_edge ? sync_edge->signal : SigSpec(),
sync_level ? &sync_level->signal : NULL, proc);
}
}
struct ProcDffPass : public Pass {
ProcDffPass() : Pass("proc_dff", "extract flip-flops from processes") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" proc_dff [selection]\n");
log("\n");
log("This pass identifies flip-flops in the processes and converts them to\n");
log("d-type flip-flop cells.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing PROC_DFF pass (convert process syncs to FFs).\n");
extra_args(args, 1, design);
for (auto mod : design->modules())
if (design->selected(mod)) {
ConstEval ce(mod);
for (auto &proc_it : mod->processes)
if (design->selected(mod, proc_it.second))
proc_dff(mod, proc_it.second, ce);
}
}
} ProcDffPass;
PRIVATE_NAMESPACE_END
|