1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*
ISC License
Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
// See document PolarFire Family Fabric User Guide
// section 4.1 for port list.
//LSRAM true dual-port
module $__LSRAM_TDP_ (...);
parameter INIT = 0;
parameter ADDR_BITS = 14;
parameter OPTION_WIDTH_CONFIG = "A";
parameter PORT_A_WIDTH = 1;
parameter PORT_A_WR_EN_WIDTH = 1;
parameter PORT_A_RD_USED = 0;
parameter PORT_A_WR_USED = 0;
parameter PORT_A_OPTION_WRITE_MODE = "NO_CHANGE";
parameter PORT_B_WIDTH = 1;
parameter PORT_B_WR_EN_WIDTH = 1;
parameter PORT_B_RD_USED = 0;
parameter PORT_B_WR_USED = 0;
parameter PORT_B_OPTION_WRITE_MODE = "NO_CHANGE";
input PORT_A_CLK;
input PORT_A_RD_EN;
input [ADDR_BITS-1:0] PORT_A_ADDR;
input [PORT_A_WIDTH-1:0] PORT_A_WR_DATA;
input [PORT_A_WR_EN_WIDTH-1:0] PORT_A_WR_EN;
output [PORT_A_WIDTH-1:0] PORT_A_RD_DATA;
input PORT_B_CLK;
input PORT_B_RD_EN;
input [ADDR_BITS-1:0] PORT_B_ADDR;
input [PORT_B_WIDTH-1:0] PORT_B_WR_DATA;
input [PORT_B_WR_EN_WIDTH-1:0] PORT_B_WR_EN;
output [PORT_B_WIDTH-1:0] PORT_B_RD_DATA;
`include "brams_defs.vh"
// address wires
wire [ADDR_BITS-1:0] A_address;
wire [ADDR_BITS-1:0] B_address;
assign A_address = (OPTION_WIDTH_CONFIG == "REGULAR") ? PORT_A_ADDR : {PORT_A_ADDR, 2'b00};
assign B_address = (OPTION_WIDTH_CONFIG == "REGULAR") ? PORT_B_ADDR : {PORT_B_ADDR, 2'b00};
// if port is not used, set block sel to 0 to disable it (read-data output is set to 0)
parameter PORT_A_RD_USED = 0;
parameter PORT_A_WR_USED = 0;
wire [2:0] A_BLK_SEL = (PORT_A_RD_USED == 1 || PORT_A_WR_USED == 1) ? 3'b111 : 3'b000;
wire [2:0] B_BLK_SEL = (PORT_B_RD_USED == 1 || PORT_B_WR_USED == 1) ? 3'b111 : 3'b000;
// wires for write data
generate
wire [19:0] A_write_data;
wire [19:0] B_write_data;
if (PORT_A_WIDTH == 16) begin
assign A_write_data[7:0] = PORT_A_WR_DATA[7:0];
assign A_write_data[17:10] = PORT_A_WR_DATA[15:8];
assign A_write_data[9:8] = 2'b0;
assign A_write_data[19:18] = 2'b0;
end else begin
assign A_write_data[PORT_A_WIDTH-1:0] = PORT_A_WR_DATA;
end
if (PORT_B_WIDTH == 16) begin
assign B_write_data[7:0] = PORT_B_WR_DATA[7:0];
assign B_write_data[17:10] = PORT_B_WR_DATA[15:8];
assign B_write_data[9:8] = 2'b0;
assign B_write_data[19:18] = 2'b0;
end else begin
assign B_write_data[PORT_B_WIDTH-1:0] = PORT_B_WR_DATA;
end
endgenerate
// wires for read data
wire [19:0] A_read_data;
assign PORT_A_RD_DATA = A_read_data[PORT_A_WIDTH-1:0];
wire [19:0] B_read_data;
assign PORT_B_RD_DATA = B_read_data[PORT_B_WIDTH-1:0];
// byte-write enables
wire [1:0] A_write_EN = (PORT_A_WR_EN_WIDTH == 1) ? {1'b0, PORT_A_WR_EN} : PORT_A_WR_EN;
wire [1:0] B_write_EN = (PORT_B_WR_EN_WIDTH == 1) ? {1'b0, PORT_B_WR_EN} : PORT_B_WR_EN;
// port width
wire [2:0] A_width = (PORT_A_WIDTH == 1) ? 3'b000 :
(PORT_A_WIDTH == 2) ? 3'b001 :
(PORT_A_WIDTH == 4 || PORT_A_WIDTH == 5) ? 3'b010 :
(PORT_A_WIDTH == 8 || PORT_A_WIDTH == 10) ? 3'b011 : 3'b100;
wire [2:0] B_width = (PORT_B_WIDTH == 1) ? 3'b000 :
(PORT_B_WIDTH == 2) ? 3'b001 :
(PORT_B_WIDTH == 4 || PORT_B_WIDTH == 5) ? 3'b010 :
(PORT_B_WIDTH == 8 || PORT_B_WIDTH == 10) ? 3'b011 : 3'b100;
// write modes
wire [1:0] A_write_mode = PORT_A_OPTION_WRITE_MODE == "NO_CHANGE" ? 2'b00 :
PORT_A_OPTION_WRITE_MODE == "WRITE_FIRST" ? 2'b01 : 2'b10;
wire [1:0] B_write_mode = PORT_B_OPTION_WRITE_MODE == "NO_CHANGE" ? 2'b00 :
PORT_B_OPTION_WRITE_MODE == "WRITE_FIRST" ? 2'b01 : 2'b10;
RAM1K20 #(
`PARAMS_INIT_LSRAM
) _TECHMAP_REPLACE_ (
// port A
.A_ADDR(A_address),
.A_BLK_EN(A_BLK_SEL),
.A_CLK(PORT_A_CLK),
.A_DIN(A_write_data),
.A_DOUT(A_read_data),
.A_WEN(A_write_EN),
.A_REN(PORT_A_RD_EN),
.A_WIDTH(A_width),
.A_WMODE(A_write_mode),
.A_BYPASS(1'b1),
.A_DOUT_EN(1'b1),
.A_DOUT_SRST_N(1'b1),
.A_DOUT_ARST_N(1'b1),
// port B
.B_ADDR(B_address),
.B_BLK_EN(B_BLK_SEL),
.B_CLK(PORT_B_CLK),
.B_DIN(B_write_data),
.B_DOUT(B_read_data),
.B_WEN(B_write_EN),
.B_REN(PORT_B_RD_EN),
.B_WIDTH(B_width),
.B_WMODE(B_write_mode),
.B_BYPASS(1'b1),
.B_DOUT_EN(1'b1),
.B_DOUT_SRST_N(1'b1),
.B_DOUT_ARST_N(1'b1),
// Disable ECC for TDP
.ECC_EN(1'b0),
.ECC_BYPASS(1'b1),
.BUSY_FB(1'b0)
);
endmodule
// single dual port configuration
module $__LSRAM_SDP_ (...);
parameter INIT = 0;
parameter OPTION_WIDTH_CONFIG = "REGULAR";
parameter ADDR_BITS = 14;
parameter PORT_W_WIDTH = 1;
parameter PORT_W_WR_EN_WIDTH = 4;
parameter PORT_W_USED = 1;
parameter PORT_R_WIDTH = 1;
parameter PORT_R_USED = 0;
input PORT_W_CLK;
input [ADDR_BITS-1:0] PORT_W_ADDR;
input [PORT_W_WIDTH-1:0] PORT_W_WR_DATA;
input [PORT_W_WR_EN_WIDTH-1:0] PORT_W_WR_EN;
input PORT_R_CLK;
input PORT_R_RD_EN;
input [ADDR_BITS-1:0] PORT_R_ADDR;
output [PORT_R_WIDTH-1:0] PORT_R_RD_DATA;
input PORT_R_RD_SRST;
`include "brams_defs.vh"
// address wires
wire [ADDR_BITS-1:0] A_address;
wire [ADDR_BITS-1:0] B_address;
assign A_address = (OPTION_WIDTH_CONFIG == "REGULAR") ? PORT_R_ADDR : {PORT_R_ADDR, 2'b00};
assign B_address = (OPTION_WIDTH_CONFIG == "REGULAR") ? PORT_W_ADDR : {PORT_W_ADDR, 2'b00};
// if port is not used, set block sel to 0 to disable it (read-data output is set to 0)
// port A is for read, port B for write
parameter PORT_W_USED = 0;
parameter PORT_R_USED = 0;
wire [2:0] A_BLK_SEL = (PORT_R_USED == 1) ? 3'b111 : 3'b000;
wire [2:0] B_BLK_SEL = (PORT_W_USED == 1) ? 3'b111 : 3'b000;
// read/write data & write enables
// Currently support only wide write, width = {32, 40}
generate
wire [19:0] A_write_data;
wire [19:0] B_write_data;
wire [1:0] A_write_EN;
wire [1:0] B_write_EN;
// write port (A provides MSB)
if (PORT_W_WIDTH == 32) begin
assign B_write_data[3:0] = PORT_W_WR_DATA[3:0];
assign B_write_data[8:5] = PORT_W_WR_DATA[7:4];
assign B_write_data[13:10] = PORT_W_WR_DATA[11:8];
assign B_write_data[18:15] = PORT_W_WR_DATA[15:12];
assign B_write_data[4] = 1'b0;
assign B_write_data[9] = 1'b0;
assign B_write_data[14] = 1'b0;
assign B_write_data[19] = 1'b0;
assign A_write_data[3:0] = PORT_W_WR_DATA[19:16];
assign A_write_data[8:5] = PORT_W_WR_DATA[23:20];
assign A_write_data[13:10] = PORT_W_WR_DATA[27:24];
assign A_write_data[18:15] = PORT_W_WR_DATA[31:28];
assign A_write_data[4] = 1'b0;
assign A_write_data[9] = 1'b0;
assign A_write_data[14] = 1'b0;
assign A_write_data[19] = 1'b0;
end else if (PORT_W_WIDTH == 40) begin
assign B_write_data = PORT_W_WR_DATA[19:0];
assign A_write_data = PORT_W_WR_DATA[39:20];
end
// byte-write enables
assign A_write_EN = PORT_W_WR_EN[1:0];
assign B_write_EN = PORT_W_WR_EN[3:2];
// read ports (A provides MSB)
wire [19:0] A_read_data;
wire [19:0] B_read_data;
if (PORT_R_WIDTH == 32) begin
assign PORT_R_RD_DATA[3:0] = B_read_data[3:0];
assign PORT_R_RD_DATA[8:5] = B_read_data[7:4];
assign PORT_R_RD_DATA[13:10] = B_read_data[11:8];
assign PORT_R_RD_DATA[18:15] = B_read_data[15:12];
assign PORT_R_RD_DATA[19:16] = A_read_data[3:0];
assign PORT_R_RD_DATA[23:20] = A_read_data[8:5];
assign PORT_R_RD_DATA[27:24] = A_read_data[13:10];
assign PORT_R_RD_DATA[31:28] = A_read_data[18:15];
end else if (PORT_R_WIDTH == 40) begin
assign PORT_R_RD_DATA[19:0] = B_read_data[19:0];
assign PORT_R_RD_DATA[39:20] = A_read_data[19:0];
end
endgenerate
// port width
wire [2:0] A_width = (PORT_R_WIDTH == 1) ? 3'b000 :
(PORT_R_WIDTH == 2) ? 3'b001 :
(PORT_R_WIDTH == 4 || PORT_R_WIDTH == 5) ? 3'b010 :
(PORT_R_WIDTH == 8 || PORT_R_WIDTH == 10) ? 3'b011 :
(PORT_R_WIDTH == 16 || PORT_R_WIDTH == 20) ? 3'b100 : 3'b101;
wire [2:0] B_width = (PORT_W_WIDTH == 1) ? 3'b000 :
(PORT_W_WIDTH == 2) ? 3'b001 :
(PORT_W_WIDTH == 4 || PORT_W_WIDTH == 5) ? 3'b010 :
(PORT_W_WIDTH == 8 || PORT_W_WIDTH == 10) ? 3'b011 :
(PORT_W_WIDTH == 16 || PORT_W_WIDTH == 20) ? 3'b100 : 3'b101;
// write modes
wire [1:0] A_write_mode = 2'b00;
wire [1:0] B_write_mode = 2'b00;
RAM1K20 #(
`PARAMS_INIT_LSRAM
) _TECHMAP_REPLACE_ (
// port A - read
.A_ADDR(A_address),
.A_BLK_EN(A_BLK_SEL),
.A_CLK(PORT_R_CLK),
.A_DIN(A_write_data),
.A_DOUT(A_read_data),
.A_WEN(A_write_EN),
.A_REN(PORT_R_RD_EN),
.A_WIDTH(A_width),
.A_WMODE(A_write_mode),
.A_BYPASS(1'b1),
.A_DOUT_EN(1'b1),
.A_DOUT_SRST_N(1'b1),
.A_DOUT_ARST_N(1'b1),
// port B - write
.B_ADDR(B_address),
.B_BLK_EN(B_BLK_SEL),
.B_CLK(PORT_W_CLK),
.B_DIN(B_write_data),
.B_DOUT(B_read_data),
.B_WEN(B_write_EN),
.B_REN(PORT_R_RD_EN),
.B_WIDTH(B_width),
.B_WMODE(B_write_mode),
.B_BYPASS(1'b1),
.B_DOUT_EN(1'b1),
.B_DOUT_SRST_N(1'b1),
.B_DOUT_ARST_N(1'b1),
// Disable ECC for SDP
.ECC_EN(1'b0),
.ECC_BYPASS(1'b1),
.BUSY_FB(1'b0)
);
endmodule
|