1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/*
ISC License
Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "kernel/sigtools.h"
#include "kernel/yosys.h"
#include <deque>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
#include "techlibs/microchip/microchip_dsp_CREG_pm.h"
#include "techlibs/microchip/microchip_dsp_cascade_pm.h"
#include "techlibs/microchip/microchip_dsp_pm.h"
void microchip_dsp_pack(microchip_dsp_pm &pm)
{
auto &st = pm.st_microchip_dsp_pack;
log("Analysing %s.%s for Microchip MACC_PA packing.\n", log_id(pm.module), log_id(st.dsp));
Cell *cell = st.dsp;
// pack pre-adder
if (st.preAdderStatic) {
SigSpec &pasub = cell->connections_.at(ID(PASUB));
log(" static PASUB preadder %s (%s)\n", log_id(st.preAdderStatic), log_id(st.preAdderStatic->type));
bool D_SIGNED = st.preAdderStatic->getParam(ID::B_SIGNED).as_bool();
bool B_SIGNED = st.preAdderStatic->getParam(ID::A_SIGNED).as_bool();
st.sigB.extend_u0(18, B_SIGNED);
st.sigD.extend_u0(18, D_SIGNED);
if (st.moveBtoA) {
cell->setPort(ID::A, st.sigA); // if pre-adder feeds into A, original sigB will be moved to port A
}
cell->setPort(ID::B, st.sigB);
cell->setPort(ID::D, st.sigD);
// MACC_PA supports both addition and subtraction with the pre-adder.
// Affects the sign of the 'D' port.
if (st.preAdderStatic->type == ID($add))
pasub[0] = State::S0;
else if (st.preAdderStatic->type == ID($sub))
pasub[0] = State::S1;
else
log_assert(!"strange pre-adder type");
pm.autoremove(st.preAdderStatic);
}
// pack post-adder
if (st.postAdderStatic) {
log(" postadder %s (%s)\n", log_id(st.postAdderStatic), log_id(st.postAdderStatic->type));
SigSpec &sub = cell->connections_.at(ID(SUB));
// Post-adder in MACC_PA also supports subtraction
// Determines the sign of the output from the multiplier.
if (st.postAdderStatic->type == ID($add))
sub[0] = State::S0;
else if (st.postAdderStatic->type == ID($sub))
sub[0] = State::S1;
else
log_assert(!"strange post-adder type");
if (st.useFeedBack) {
cell->setPort(ID(CDIN_FDBK_SEL), {State::S0, State::S1});
} else {
st.sigC.extend_u0(48, st.postAdderStatic->getParam(ID::A_SIGNED).as_bool());
cell->setPort(ID::C, st.sigC);
}
pm.autoremove(st.postAdderStatic);
}
// pack registers
if (st.clock != SigBit()) {
cell->setPort(ID::CLK, st.clock);
// function to absorb a register
auto f = [&pm, cell](SigSpec &A, Cell *ff, IdString ceport, IdString rstport, IdString bypass) {
// input/output ports
SigSpec D = ff->getPort(ID::D);
SigSpec Q = pm.sigmap(ff->getPort(ID::Q));
if (!A.empty())
A.replace(Q, D);
if (rstport != IdString()) {
if (ff->type.in(ID($sdff), ID($sdffe))) {
SigSpec srst = ff->getPort(ID::SRST);
bool rstpol_n = !ff->getParam(ID::SRST_POLARITY).as_bool();
// active low sync rst
cell->setPort(rstport, rstpol_n ? srst : pm.module->Not(NEW_ID, srst));
} else if (ff->type.in(ID($adff), ID($adffe))) {
SigSpec arst = ff->getPort(ID::ARST);
bool rstpol_n = !ff->getParam(ID::ARST_POLARITY).as_bool();
// active low async rst
cell->setPort(rstport, rstpol_n ? arst : pm.module->Not(NEW_ID, arst));
} else {
// active low async/sync rst
cell->setPort(rstport, State::S1);
}
}
if (ff->type.in(ID($dffe), ID($sdffe), ID($adffe))) {
SigSpec ce = ff->getPort(ID::EN);
bool cepol = ff->getParam(ID::EN_POLARITY).as_bool();
// enables are all active high
cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce));
} else {
// enables are all active high
cell->setPort(ceport, State::S1);
}
// bypass set to 0
cell->setPort(bypass, State::S0);
for (auto c : Q.chunks()) {
auto it = c.wire->attributes.find(ID::init);
if (it == c.wire->attributes.end())
continue;
for (int i = c.offset; i < c.offset + c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
}
}
};
// NOTE: flops are not autoremoved because it is possible that they
// are only partially absorbed into DSP, or have fanouts.
if (st.ffA) {
SigSpec A = cell->getPort(ID::A);
if (st.ffA) {
f(A, st.ffA, ID(A_EN), ID(A_SRST_N), ID(A_BYPASS));
}
pm.add_siguser(A, cell);
cell->setPort(ID::A, A);
}
if (st.ffB) {
SigSpec B = cell->getPort(ID::B);
if (st.ffB) {
f(B, st.ffB, ID(B_EN), ID(B_SRST_N), ID(B_BYPASS));
}
pm.add_siguser(B, cell);
cell->setPort(ID::B, B);
}
if (st.ffD) {
SigSpec D = cell->getPort(ID::D);
if (st.ffD->type.in(ID($adff), ID($adffe))) {
f(D, st.ffD, ID(D_EN), ID(D_ARST_N), ID(D_BYPASS));
} else {
f(D, st.ffD, ID(D_EN), ID(D_SRST_N), ID(D_BYPASS));
}
pm.add_siguser(D, cell);
cell->setPort(ID::D, D);
}
if (st.ffP) {
SigSpec P; // unused
f(P, st.ffP, ID(P_EN), ID(P_SRST_N), ID(P_BYPASS));
st.ffP->connections_.at(ID::Q).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP)));
}
log(" clock: %s (%s)\n", log_signal(st.clock), "posedge");
if (st.ffA)
log(" \t ffA:%s\n", log_id(st.ffA));
if (st.ffB)
log(" \t ffB:%s\n", log_id(st.ffB));
if (st.ffD)
log(" \t ffD:%s\n", log_id(st.ffD));
if (st.ffP)
log(" \t ffP:%s\n", log_id(st.ffP));
}
log("\n");
SigSpec P = st.sigP;
if (GetSize(P) < 48)
P.append(pm.module->addWire(NEW_ID, 48 - GetSize(P)));
cell->setPort(ID::P, P);
pm.blacklist(cell);
}
// For packing cascaded DSPs
void microchip_dsp_packC(microchip_dsp_CREG_pm &pm)
{
auto &st = pm.st_microchip_dsp_packC;
log_debug("Analysing %s.%s for Microchip DSP packing (REG_C).\n", log_id(pm.module), log_id(st.dsp));
log_debug("ffC: %s\n", log_id(st.ffC, "--"));
Cell *cell = st.dsp;
if (st.clock != SigBit()) {
cell->setPort(ID::CLK, st.clock);
// same function as above, used for the last CREG we need to absorb
auto f = [&pm, cell](SigSpec &A, Cell *ff, IdString ceport, IdString rstport, IdString bypass) {
// input/output ports
SigSpec D = ff->getPort(ID::D);
SigSpec Q = pm.sigmap(ff->getPort(ID::Q));
if (!A.empty())
A.replace(Q, D);
if (rstport != IdString()) {
if (ff->type.in(ID($sdff), ID($sdffe))) {
SigSpec srst = ff->getPort(ID::SRST);
bool rstpol_n = !ff->getParam(ID::SRST_POLARITY).as_bool();
// active low sync rst
cell->setPort(rstport, rstpol_n ? srst : pm.module->Not(NEW_ID, srst));
} else if (ff->type.in(ID($adff), ID($adffe))) {
SigSpec arst = ff->getPort(ID::ARST);
bool rstpol_n = !ff->getParam(ID::ARST_POLARITY).as_bool();
// active low async rst
cell->setPort(rstport, rstpol_n ? arst : pm.module->Not(NEW_ID, arst));
} else {
// active low async/sync rst
cell->setPort(rstport, State::S1);
}
}
if (ff->type.in(ID($dffe), ID($sdffe), ID($adffe))) {
SigSpec ce = ff->getPort(ID::EN);
bool cepol = ff->getParam(ID::EN_POLARITY).as_bool();
// enables are all active high
cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce));
} else {
// enables are all active high
cell->setPort(ceport, State::S1);
}
// bypass set to 0
cell->setPort(bypass, State::S0);
for (auto c : Q.chunks()) {
auto it = c.wire->attributes.find(ID::init);
if (it == c.wire->attributes.end())
continue;
for (int i = c.offset; i < c.offset + c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
}
}
};
if (st.ffC) {
SigSpec C = cell->getPort(ID::C);
if (st.ffC->type.in(ID($adff), ID($adffe))) {
f(C, st.ffC, ID(C_EN), ID(C_ARST_N), ID(C_BYPASS));
} else {
f(C, st.ffC, ID(C_EN), ID(C_SRST_N), ID(C_BYPASS));
}
pm.add_siguser(C, cell);
cell->setPort(ID::C, C);
}
log(" clock: %s (%s)", log_signal(st.clock), "posedge");
if (st.ffC)
log(" ffC:%s", log_id(st.ffC));
log("\n");
}
pm.blacklist(cell);
}
struct MicrochipDspPass : public Pass {
MicrochipDspPass() : Pass("microchip_dsp", "MICROCHIP: pack resources into DSPs") {}
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" microchip_dsp [options] [selection]\n");
log("\n");
log("Pack input registers 'A', 'B', 'C', and 'D' (with optional enable/reset),\n");
log("output register 'P' (with optional enable/reset), pre-adder and/or post-adder into\n");
log("Microchip DSP resources.\n");
log("\n");
log("Multiply-accumulate operations using the post-adder with feedback on the 'C'\n");
log("input will be folded into the DSP. In this scenario only, the 'C' input can be\n");
log("used to override the current accumulation result with a new value. This will\n");
log("be added to the multiplier result to form the next accumulation result.\n");
log("\n");
log("Use of the dedicated 'PCOUT' -> 'PCIN' cascade path is detected for 'P' -> 'C'\n");
log("connections (optionally, where 'P' is right-shifted by 17-bits and used as an\n");
log("input to the post-adder. This pattern is common for summing partial products to\n");
log("implement wide multipliers). Cascade chains are limited to a mazimum length \n");
log("of 24 cells, corresponding to PolarFire (pf) devices.\n");
log("\n");
log("This pass is a no-op if the scratchpad variable 'microchip_dsp.multonly' is set\n");
log("to 1.\n");
log("\n");
log("\n");
log(" -family {polarfire}\n");
log(" select the family to target\n");
log(" default: polarfire\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing MICROCHIP_DSP pass (pack resources into DSPs).\n");
std::string family = "polarfire";
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if ((args[argidx] == "-family") && argidx + 1 < args.size()) {
family = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules()) {
if (design->scratchpad_get_bool("microchip_dsp.multonly"))
continue;
{
// For more details on PolarFire MACC_PA, consult
// the "PolarFire FPGA Macro Library Guide"
// Main pattern matching step to capture a DSP cell.
// Match for pre-adder, post-adder, as well as
// registers 'A', 'B', 'D', and 'P'. Additionally,
// check for an accumulator pattern based on whether
// a post-adder and PREG are both present AND
// if PREG feeds into this post-adder.
microchip_dsp_pm pm(module, module->selected_cells());
pm.run_microchip_dsp_pack(microchip_dsp_pack);
}
// Separating out CREG packing is necessary since there
// is no guarantee that the cell ordering corresponds
// to the "expected" case (i.e. the order in which
// they appear in the source). There existed the possibility
// where a register got packed as a CREG into a
// downstream DSP that should have otherwise been a
// PREG of an upstream DSP that had not been visited
// yet
{
microchip_dsp_CREG_pm pm(module, module->selected_cells());
pm.run_microchip_dsp_packC(microchip_dsp_packC);
}
// Lastly, identify and utilise PCOUT -> PCIN chains
{
microchip_dsp_cascade_pm pm(module, module->selected_cells());
pm.run_microchip_dsp_cascade();
}
}
}
} MicrochipDspPass;
PRIVATE_NAMESPACE_END
|