1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
// ISC License
//
// Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// This file describes the main pattern matcher setup (of three total) that
// forms the `microchip_dsp` pass described in microchip_dsp.cc
// At a high level, it works as follows:
// ( 1) Starting from a DSP cell. Capture DSP configurations as states
// ( 2) Match for pre-adder
// ( 3) Match for post-adder
// ( 4) Match register 'A', 'B', 'D', 'P'
// ( 5) If post-adder and PREG both present, check if PREG feeds into post-adder.
// This indicates an accumulator situation like the ASCII diagram below:
// +--------------------------------+
// |_________ |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MULT|------ | adder | +----+
// +----+ \-------/
pattern microchip_dsp_pack
state <SigBit> clock
state <SigSpec> sigA sigB sigC sigD sigP
state <Cell*> ffA ffB ffD ffP
state <Cell*> preAdderStatic postAdderStatic
state <bool> moveBtoA useFeedBack
// static ports, used to detect dsp configuration
state <SigSpec> bypassA bypassB bypassC bypassD bypassP
state <SigSpec> bypassPASUB
// Variables used for subpatterns
state <SigSpec> argQ argD
udata <bool> allowAsync
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff
udata <Cell*> u_preAdderStatic u_postAdderStatic
udata <IdString> u_postAddAB
state <IdString> postAddAB
// (1) Starting from a DSP cell
match dsp
select dsp->type.in(\MACC_PA)
endmatch
// detect existing signals connected to DSP
// detect configuration ports
code sigA sigB sigC sigD clock sigP
//helper function to remove unused bits
auto unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
//unextend to remove unused bits
sigA = unextend(port(dsp, \A));
sigB = unextend(port(dsp, \B));
//update signals
sigC = port(dsp, \C, SigSpec());
sigD = port(dsp, \D, SigSpec());
SigSpec P = port(dsp, \P);
// Only care about bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)
if (nusers(P[i]) > 1)
break;
i++;
log_assert(nusers(P.extract_end(i)) <= 1);
// This sigP could have no users if downstream sinks (e.g. $add) is
// narrower than $mul result, for example
if (i == 0)
reject;
sigP = P.extract(0, i);
clock = port(dsp, \CLK, SigBit());
endcode
// capture static configuration ports
code bypassA bypassB bypassC bypassD bypassPASUB bypassP
bypassA = port(dsp, \A_BYPASS, SigSpec());
bypassB = port(dsp, \B_BYPASS, SigSpec());
bypassC = port(dsp, \C_BYPASS, SigSpec());
bypassD = port(dsp, \D_BYPASS, SigSpec());
bypassPASUB = port(dsp, \PASUB_BYPASS, SigSpec());
bypassP = port(dsp, \P_BYPASS, SigSpec());
endcode
// (2) Match for pre-adder
//
code sigA sigB sigD preAdderStatic moveBtoA
subpattern(preAddMatching);
preAdderStatic = u_preAdderStatic;
moveBtoA = false;
if (preAdderStatic) {
if (port(preAdderStatic, \Y) == sigA)
{
//used for packing
moveBtoA = true;
// sigA should be the input to the multiplier without the preAdd. sigB and sigD should be
//the preAdd inputs. If our "A" input into the multiplier is from the preAdd (not sigA), then
// we basically swap it.
sigA = sigB;
}
// port B of preAdderStatic must be mapped to port D of DSP for subtraction
sigD = port(preAdderStatic, \B);
sigB = port(preAdderStatic, \A);
}
endcode
// (3) Match for post-adder
//
code postAdderStatic sigP sigC
u_postAdderStatic = nullptr;
subpattern(postAddMatching);
postAdderStatic = u_postAdderStatic;
if (postAdderStatic) {
//sigC will be whichever input to the postAdder that is NOT from the multiplier
// u_postAddAB is the input to the postAdder from the multiplier
sigC = port(postAdderStatic, u_postAddAB == \A ? \B : \A);
sigP = port(postAdderStatic, \Y);
}
endcode
// (4) Matching registers
//
// 'A' input for REG_A
code argQ bypassA sigA clock ffA
if (bypassA.is_fully_ones()){
argQ = sigA;
allowAsync = false;
subpattern(in_dffe);
if (dff) {
ffA = dff;
clock = dffclock;
sigA = dffD;
}
}
endcode
// 'B' input for REG_B
code argQ bypassB sigB clock ffB
if (bypassB.is_fully_ones()){
argQ = sigB;
allowAsync = false;
subpattern(in_dffe);
if (dff) {
ffB = dff;
clock = dffclock;
sigB = dffD;
}
}
endcode
// 'D' input for REG_D
code argQ bypassP sigD clock ffD
if (bypassD.is_fully_ones()){
argQ = sigD;
allowAsync = true;
subpattern(in_dffe);
if (dff) {
ffD = dff;
clock = dffclock;
sigD = dffD;
}
}
endcode
// 'P' output for REG_P
code argD ffP sigP clock bypassP
if (bypassP.is_fully_ones() && nusers(sigP) == 2) {
argD = sigP;
allowAsync = false;
subpattern(out_dffe);
if (dff) {
ffP = dff;
clock = dffclock;
sigP = dffQ;
}
}
endcode
// (5) If post-adder and PREG both present, check if PREG feeds into post-adder via port C.
// This indicates an accumulator situation. Port C can be freed
// +--------------------------------+
// |_________ |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MULT|------ | adder | +----+
// +----+ \-------/
code useFeedBack
useFeedBack = false;
if (postAdderStatic && ffP) {
if (sigC == sigP) {
useFeedBack = true;
}
}
endcode
// if any cells are absorbed, invoke the callback function
code
if (preAdderStatic || postAdderStatic)
accept;
if (ffA || ffB || ffD || ffP)
accept;
endcode
// #######################
// Subpattern for matching against post-adder
// Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
subpattern postAddMatching
arg sigP
match postAdd
select postAdd->type.in($add, $sub)
select GetSize(port(postAdd, \Y)) <= 48
// AB is the port that connects MUL to ADD
choice <IdString> AB {\A, \B}
select nusers(port(postAdd, AB)) == 2
// has one input coming from multiplier
index <SigBit> port(postAdd, AB)[0] === sigP[0]
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
// Check that remainder of AB is a sign- or zero-extension
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
set postAddAB AB
// optional
endmatch
code
if (postAdd)
{
if (postAdd->type.in(ID($sub)) && postAddAB == \A) {
// if $sub, the multiplier output must match to $sub.B, otherwise no match
} else {
u_postAddAB = postAddAB;
u_postAdderStatic = postAdd;
}
}
endcode
// #######################
// Subpattern for matching against pre-adder
// support static PASUB only
subpattern preAddMatching
arg sigA sigB sigD bypassB bypassD bypassPASUB
code
u_preAdderStatic = nullptr;
// Ensure that preAdder not already used
// Assume we can inspect port D to see if its all zeros.
if (!(sigD.empty() || sigD.is_fully_zero())) reject;
if (!bypassB.is_fully_ones()) reject;
if (!bypassD.is_fully_ones()) reject;
if (!bypassPASUB.is_fully_ones()) reject;
endcode
match preAdd
// can handle add or sub
select preAdd->type.in($add, $sub)
// Output has to be 18 bits or less, and only has single fanout
select GetSize(port(preAdd, \Y)) <= 18
select nusers(port(preAdd, \Y)) == 2
// Adder inputs must be 18 bits or less
select GetSize(port(preAdd, \A)) <= 18
select GetSize(port(preAdd, \B)) <= 18
// Output feeds into one of multiplier input
filter port(preAdd, \Y) == sigB || port(preAdd, \Y) == sigA
// optional
endmatch
code
if (preAdd)
{
u_preAdderStatic = preAdd;
}
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' input.
subpattern in_dffe
arg argQ clock
code
dff = nullptr;
if (argQ.empty())
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant
if (!c.wire)
reject;
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
match ff
// reg D has async rst
// reg A, B has sync rst
select ff->type.in($dff, $dffe, $sdff, $sdffe, $adff, $adffe)
// does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
// it is possible that only part of a dff output matches argQ
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
// only consider async rst flops when flag is set
filter !ff->type.in($adff, $adffe) || allowAsync
// clock must be consistent
filter clock == SigBit() || port(ff, \CLK)[0] == clock
endmatch
code argQ
// Check that reset value, if present, is fully 0.
bool noResetFlop = ff->type.in($dff, $dffe);
bool srstZero = ff->type.in($sdff, $sdffe) && param(ff, \SRST_VALUE).is_fully_zero();
bool arstZero = ff->type.in($adff, $adffe) && param(ff, \ARST_VALUE).is_fully_zero();
bool resetLegal = noResetFlop || srstZero || arstZero;
if (resetLegal)
{
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
SigSpec D = port(ff, \D);
argQ = Q;
dffD.replace(argQ, D);
}
endcode
// #######################
subpattern out_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argD.chunks())
// Abandon matches when 'D' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
endcode
match ff
select ff->type.in($dff, $dffe, $sdff, $sdffe)
// does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
// Check that the rest of argD is present
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
filter clock == SigBit() || port(ff, \CLK)[0] == clock
endmatch
code argQ
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
argQ = argD;
argQ.replace(D, Q);
// Abandon matches when 'Q' has a non-zero init attribute set
for (auto c : argQ.chunks()) {
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
dff = ff;
dffQ = argQ;
dffclock = port(ff, \CLK);
endcode
|