File: ql_dsp_macc.cc

package info (click to toggle)
yosys 0.52-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 69,796 kB
  • sloc: ansic: 696,955; cpp: 239,736; python: 14,617; yacc: 3,529; sh: 2,175; makefile: 1,945; lex: 697; perl: 445; javascript: 323; tcl: 162; vhdl: 115
file content (214 lines) | stat: -rw-r--r-- 7,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
 * Copyright 2020-2022 F4PGA Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 */

#include "kernel/sigtools.h"
#include "kernel/yosys.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

#include "techlibs/quicklogic/ql_dsp_macc_pm.h"

// ============================================================================

static void create_ql_macc_dsp(ql_dsp_macc_pm &pm)
{
    auto &st = pm.st_ql_dsp_macc;

    // Get port widths
    size_t a_width = GetSize(st.mul->getPort(ID(A)));
    size_t b_width = GetSize(st.mul->getPort(ID(B)));
    size_t z_width = GetSize(st.ff->getPort(ID(Q)));

    size_t min_width = std::min(a_width, b_width);
    size_t max_width = std::max(a_width, b_width);

    // Signed / unsigned
    bool ab_signed = st.mul->getParam(ID(A_SIGNED)).as_bool();
    log_assert(ab_signed == st.mul->getParam(ID(B_SIGNED)).as_bool());

    // Determine DSP type or discard if too narrow / wide
    RTLIL::IdString type;
    size_t tgt_a_width;
    size_t tgt_b_width;
    size_t tgt_z_width;

    string cell_base_name = "dsp_t1";
    string cell_size_name = "";
    string cell_cfg_name = "";
    string cell_full_name = "";

    if (min_width <= 2 && max_width <= 2 && z_width <= 4) {
        log_debug("\trejected: too narrow (%zd %zd %zd)\n", min_width, max_width, z_width);
        return;
    } else if (min_width <= 9 && max_width <= 10 && z_width <= 19) {
        cell_size_name = "_10x9x32";
        tgt_a_width = 10;
        tgt_b_width = 9;
        tgt_z_width = 19;
    } else if (min_width <= 18 && max_width <= 20 && z_width <= 38) {
        cell_size_name = "_20x18x64";
        tgt_a_width = 20;
        tgt_b_width = 18;
        tgt_z_width = 38;
    } else {
        log_debug("\trejected: too wide (%zd %zd %zd)\n", min_width, max_width, z_width);
        return;
    }

    type = RTLIL::escape_id(cell_base_name + cell_size_name + "_cfg_ports");
    log("Inferring MACC %zux%zu->%zu as %s from:\n", a_width, b_width, z_width, log_id(type));

    for (auto cell : {st.mul, st.add, st.mux, st.ff})
    if (cell)
        log("  %s (%s)\n", log_id(cell), log_id(cell->type));

    // Add the DSP cell
    RTLIL::Cell *cell = pm.module->addCell(NEW_ID, type);

    // Set attributes
    cell->set_bool_attribute(ID(is_inferred), true);

    // Get input/output data signals
    RTLIL::SigSpec sig_a, sig_b, sig_z;
    sig_a = st.mul->getPort(ID(A));
    sig_b = st.mul->getPort(ID(B));
    sig_z = st.output_registered ? st.ff->getPort(ID(Q)) : st.ff->getPort(ID(D));

    if (a_width < b_width)
        std::swap(sig_a, sig_b);

    // Connect input data ports, sign extend / pad with zeros
    sig_a.extend_u0(tgt_a_width, ab_signed);
    sig_b.extend_u0(tgt_b_width, ab_signed);
    cell->setPort(ID(a_i), sig_a);
    cell->setPort(ID(b_i), sig_b);

    // Connect output data port, pad if needed
    if ((size_t) GetSize(sig_z) < tgt_z_width) {
        auto *wire = pm.module->addWire(NEW_ID, tgt_z_width - GetSize(sig_z));
        sig_z.append(wire);
    }
    cell->setPort(ID(z_o), sig_z);

    // Connect clock, reset and enable
    cell->setPort(ID(clock_i), st.ff->getPort(ID(CLK)));

    RTLIL::SigSpec rst;
    RTLIL::SigSpec ena;

    if (st.ff->hasPort(ID(ARST))) {
        if (st.ff->getParam(ID(ARST_POLARITY)).as_int() != 1) {
            rst = pm.module->Not(NEW_ID, st.ff->getPort(ID(ARST)));
        } else {
            rst = st.ff->getPort(ID(ARST));
        }
    } else {
        rst = RTLIL::SigSpec(RTLIL::S0);
    }

    if (st.ff->hasPort(ID(EN))) {
        if (st.ff->getParam(ID(EN_POLARITY)).as_int() != 1) {
            ena = pm.module->Not(NEW_ID, st.ff->getPort(ID(EN)));
        } else {
            ena = st.ff->getPort(ID(EN));
        }
    } else {
        ena = RTLIL::SigSpec(RTLIL::S1);
    }

    cell->setPort(ID(reset_i), rst);
    cell->setPort(ID(load_acc_i), ena);

    // Insert feedback_i control logic used for clearing / loading the accumulator
    if (st.mux_in_pattern) {
        RTLIL::SigSpec sig_s = st.mux->getPort(ID(S));

        // Depending on the mux port ordering insert inverter if needed
        log_assert(st.mux_ab.in(ID(A), ID(B)));
        if (st.mux_ab == ID(A))
            sig_s = pm.module->Not(NEW_ID, sig_s);

        // Assemble the full control signal for the feedback_i port
        RTLIL::SigSpec sig_f;
        sig_f.append(sig_s);
        sig_f.append(RTLIL::S0);
        sig_f.append(RTLIL::S0);
        cell->setPort(ID(feedback_i), sig_f);
    }
    // No acc clear/load
    else {
        cell->setPort(ID(feedback_i), RTLIL::SigSpec(RTLIL::S0, 3));
    }

    // Connect control ports
    cell->setPort(ID(unsigned_a_i), RTLIL::SigSpec(ab_signed ? RTLIL::S0 : RTLIL::S1));
    cell->setPort(ID(unsigned_b_i), RTLIL::SigSpec(ab_signed ? RTLIL::S0 : RTLIL::S1));

    // Connect config bits
    cell->setPort(ID(saturate_enable_i), RTLIL::SigSpec(RTLIL::S0));
    cell->setPort(ID(shift_right_i), RTLIL::SigSpec(RTLIL::S0, 6));
    cell->setPort(ID(round_i), RTLIL::SigSpec(RTLIL::S0));
    cell->setPort(ID(register_inputs_i), RTLIL::SigSpec(RTLIL::S0));
    // 3 - output post acc; 1 - output pre acc
    cell->setPort(ID(output_select_i), RTLIL::Const(st.output_registered ? 1 : 3, 3));

    bool subtract = (st.add->type == ID($sub));
    cell->setPort(ID(subtract_i), RTLIL::SigSpec(subtract ? RTLIL::S1 : RTLIL::S0));

    // Mark the cells for removal
    pm.autoremove(st.mul);
    pm.autoremove(st.add);
    if (st.mux != nullptr) {
        pm.autoremove(st.mux);
    }
    pm.autoremove(st.ff);
}

struct QlDspMacc : public Pass {
	QlDspMacc() : Pass("ql_dsp_macc", "infer QuickLogic multiplier-accumulator DSP cells") {}

	void help() override
	{
        //   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    ql_dsp_macc [selection]\n");
        log("\n");
        log("This pass looks for a multiply-accumulate pattern based on which it infers a\n");
        log("QuickLogic DSP cell.\n");
		log("\n");
	}

	void execute(std::vector<std::string> a_Args, RTLIL::Design *a_Design) override
	{
		log_header(a_Design, "Executing QL_DSP_MACC pass.\n");

		size_t argidx;
		for (argidx = 1; argidx < a_Args.size(); argidx++) {
			break;
		}
		extra_args(a_Args, argidx, a_Design);

		for (auto module : a_Design->selected_modules())
			ql_dsp_macc_pm(module, module->selected_cells()).run_ql_dsp_macc(create_ql_macc_dsp);
	}

} QlDspMacc;

PRIVATE_NAMESPACE_END