1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
from itertools import chain
import random
def write_rtlil_cell(f, cell_type, inputs, outputs, parameters):
f.write('autoidx 1\n')
f.write('module \\gold\n')
idx = 1
for name, width in inputs.items():
f.write(f'\twire width {width} input {idx} \\{name}\n')
idx += 1
for name, width in outputs.items():
f.write(f'\twire width {width} output {idx} \\{name}\n')
idx += 1
f.write(f'\tcell ${cell_type} \\UUT\n')
for (name, value) in parameters.items():
if value >= 2**32:
f.write(f'\t\tparameter \\{name} {value.bit_length()}\'{value:b}\n')
else:
f.write(f'\t\tparameter \\{name} {value}\n')
for name in chain(inputs.keys(), outputs.keys()):
f.write(f'\t\tconnect \\{name} \\{name}\n')
f.write(f'\tend\nend\n')
class BaseCell:
def __init__(self, name, parameters, inputs, outputs, test_values):
self.name = name
self.parameters = parameters
self.inputs = inputs
self.outputs = outputs
self.test_values = test_values
def get_port_width(self, port, parameters):
def parse_specifier(spec):
if isinstance(spec, int):
return spec
if isinstance(spec, str):
return parameters[spec]
if callable(spec):
return spec(parameters)
assert False, "expected int, str or lambda"
if port in self.inputs:
return parse_specifier(self.inputs[port])
elif port in self.outputs:
return parse_specifier(self.outputs[port])
else:
assert False, "expected input or output"
def generate_tests(self, rnd):
def print_parameter(v):
if isinstance(v, bool):
return "S" if v else "U"
else:
return str(v)
for values in self.test_values:
if isinstance(values, int):
values = [values]
name = '-'.join([print_parameter(v) for v in values])
parameters = {parameter: int(values[i]) for i, parameter in enumerate(self.parameters)}
if self.is_test_valid(values):
yield (name, parameters)
def write_rtlil_file(self, path, parameters):
inputs = {port: self.get_port_width(port, parameters) for port in self.inputs}
outputs = {port: self.get_port_width(port, parameters) for port in self.outputs}
with open(path, 'w') as f:
write_rtlil_cell(f, self.name, inputs, outputs, parameters)
def is_test_valid(self, values):
return True
class UnaryCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['A_WIDTH', 'Y_WIDTH', 'A_SIGNED'], {'A': 'A_WIDTH'}, {'Y': 'Y_WIDTH'}, values)
class BinaryCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['A_WIDTH', 'B_WIDTH', 'Y_WIDTH', 'A_SIGNED', 'B_SIGNED'], {'A': 'A_WIDTH', 'B': 'B_WIDTH'}, {'Y': 'Y_WIDTH'}, values)
class ShiftCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['A_WIDTH', 'B_WIDTH', 'Y_WIDTH', 'A_SIGNED', 'B_SIGNED'], {'A': 'A_WIDTH', 'B': 'B_WIDTH'}, {'Y': 'Y_WIDTH'}, values)
def is_test_valid(self, values):
(a_width, b_width, y_width, a_signed, b_signed) = values
if not self.name in ('shift', 'shiftx') and b_signed: return False
if self.name == 'shiftx' and a_signed: return False
return True
class MuxCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['WIDTH'], {'A': 'WIDTH', 'B': 'WIDTH', 'S': 1}, {'Y': 'WIDTH'}, values)
class BWCell(BaseCell):
def __init__(self, name, values):
inputs = {'A': 'WIDTH', 'B': 'WIDTH'}
if name == "bwmux": inputs['S'] = 'WIDTH'
super().__init__(name, ['WIDTH'], inputs, {'Y': 'WIDTH'}, values)
class PMuxCell(BaseCell):
def __init__(self, name, values):
b_width = lambda par: par['WIDTH'] * par['S_WIDTH']
super().__init__(name, ['WIDTH', 'S_WIDTH'], {'A': 'WIDTH', 'B': b_width, 'S': 'S_WIDTH'}, {'Y': 'WIDTH'}, values)
class BMuxCell(BaseCell):
def __init__(self, name, values):
a_width = lambda par: par['WIDTH'] << par['S_WIDTH']
super().__init__(name, ['WIDTH', 'S_WIDTH'], {'A': a_width, 'S': 'S_WIDTH'}, {'Y': 'WIDTH'}, values)
class DemuxCell(BaseCell):
def __init__(self, name, values):
y_width = lambda par: par['WIDTH'] << par['S_WIDTH']
super().__init__(name, ['WIDTH', 'S_WIDTH'], {'A': 'WIDTH', 'S': 'S_WIDTH'}, {'Y': y_width}, values)
class LUTCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['WIDTH', 'LUT'], {'A': 'WIDTH'}, {'Y': 1}, values)
def generate_tests(self, rnd):
for width in self.test_values:
lut = rnd(f'lut-{width}').getrandbits(2**width)
yield (f'{width}', {'WIDTH' : width, 'LUT' : lut})
class ConcatCell(BaseCell):
def __init__(self, name, values):
y_width = lambda par: par['A_WIDTH'] + par['B_WIDTH']
super().__init__(name, ['A_WIDTH', 'B_WIDTH'], {'A': 'A_WIDTH', 'B': 'B_WIDTH'}, {'Y': y_width}, values)
class SliceCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['A_WIDTH', 'OFFSET', 'Y_WIDTH'], {'A': 'A_WIDTH'}, {'Y': 'Y_WIDTH'}, values)
class FACell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['WIDTH'], {'A': 'WIDTH', 'B': 'WIDTH', 'C': 'WIDTH'}, {'X': 'WIDTH', 'Y': 'WIDTH'}, values)
self.sim_preprocessing = "techmap" # because FA is not implemented in yosys sim
class LCUCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['WIDTH'], {'P': 'WIDTH', 'G': 'WIDTH', 'CI': 1}, {'CO': 'WIDTH'}, values)
self.sim_preprocessing = "techmap" # because LCU is not implemented in yosys sim
class ALUCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['A_WIDTH', 'B_WIDTH', 'Y_WIDTH', 'A_SIGNED', 'B_SIGNED'], {'A': 'A_WIDTH', 'B': 'B_WIDTH', 'CI': 1, 'BI': 1}, {'X': 'Y_WIDTH', 'Y': 'Y_WIDTH', 'CO': 'Y_WIDTH'}, values)
self.sim_preprocessing = "techmap" # because ALU is not implemented in yosys sim
class FailCell(BaseCell):
def __init__(self, name):
super().__init__(name, [], {}, {})
def generate_tests(self, rnd):
yield ('', {})
def write_rtlil_file(self, path, parameters):
raise Exception(f'\'{self.name}\' cell unimplemented in test generator')
class FFCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['WIDTH'], ['D'], ['Q'], values)
def write_rtlil_file(self, path, parameters):
from test_functional import yosys_synth
verilog_file = path.parent / 'verilog.v'
with open(verilog_file, 'w') as f:
width = parameters['WIDTH']
f.write(f"""
module gold(
input wire clk,
input wire [{width-1}:0] D,
output reg [{width-1}:0] Q
);
initial Q = {width}'b{("101" * width)[:width]};
always @(posedge clk)
Q <= D;
endmodule""")
yosys_synth(verilog_file, path)
class MemCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['DATA_WIDTH', 'ADDR_WIDTH'], {'WA': 'ADDR_WIDTH', 'RA': 'ADDR_WIDTH', 'WD': 'DATA_WIDTH'}, {'RD': 'DATA_WIDTH'}, values)
def write_rtlil_file(self, path, parameters):
from test_functional import yosys_synth
verilog_file = path.parent / 'verilog.v'
with open(verilog_file, 'w') as f:
f.write("""
module gold(
input wire clk,
input wire [{1}:0] WA,
input wire [{0}:0] WD,
input wire [{1}:0] RA,
output reg [{0}:0] RD
);
reg [{0}:0] mem[0:{2}];
integer i;
initial
for(i = 0; i <= {2}; i = i + 1)
mem[i] = 9192 * (i + 1);
always @(*)
RD = mem[RA];
always @(posedge clk)
mem[WA] <= WD;
endmodule""".format(parameters['DATA_WIDTH'] - 1, parameters['ADDR_WIDTH'] - 1, 2**parameters['ADDR_WIDTH'] - 1))
yosys_synth(verilog_file, path)
class MemDualCell(BaseCell):
def __init__(self, name, values):
super().__init__(name, ['DATA_WIDTH', 'ADDR_WIDTH'],
{'WA1': 'ADDR_WIDTH', 'WA2': 'ADDR_WIDTH',
'RA1': 'ADDR_WIDTH', 'RA2': 'ADDR_WIDTH',
'WD1': 'DATA_WIDTH', 'WD2': 'DATA_WIDTH'},
{'RD1': 'DATA_WIDTH', 'RD2': 'DATA_WIDTH'}, values)
self.sim_preprocessing = "memory_map" # issue #4496 in yosys -sim prevents this example from working without memory_map
def write_rtlil_file(self, path, parameters):
from test_functional import yosys_synth
verilog_file = path.parent / 'verilog.v'
with open(verilog_file, 'w') as f:
f.write("""
module gold(
input wire clk,
input wire [{1}:0] WA1,
input wire [{0}:0] WD1,
input wire [{1}:0] WA2,
input wire [{0}:0] WD2,
input wire [{1}:0] RA1,
input wire [{1}:0] RA2,
output reg [{0}:0] RD1,
output reg [{0}:0] RD2
);
reg [{0}:0] mem[0:{2}];
integer i;
initial
for(i = 0; i <= {2}; i = i + 1)
mem[i] = 9192 * (i + 1);
always @(*)
RD1 = mem[RA1];
always @(*)
RD2 = mem[RA2];
always @(posedge clk) begin
mem[WA1] <= WD1;
mem[WA2] <= WD2;
end
endmodule""".format(parameters['DATA_WIDTH'] - 1, parameters['ADDR_WIDTH'] - 1, 2**parameters['ADDR_WIDTH'] - 1))
yosys_synth(verilog_file, path)
class PicorvCell(BaseCell):
def __init__(self):
super().__init__("picorv", [], {}, {}, [()])
self.smt_max_steps = 50 # z3 is too slow for more steps
def write_rtlil_file(self, path, parameters):
from test_functional import yosys, base_path, quote
tb_file = base_path / 'tests/functional/picorv32_tb.v'
cpu_file = base_path / 'tests/functional/picorv32.v'
yosys(f"read_verilog {quote(tb_file)} {quote(cpu_file)}; prep -top gold; flatten; write_rtlil {quote(path)}")
binary_widths = [
# try to cover extending A operand, extending B operand, extending/truncating result
(16, 32, 48, True, True),
(16, 32, 48, False, False),
(32, 16, 48, True, True),
(32, 16, 48, False, False),
(32, 32, 16, True, True),
(32, 32, 16, False, False),
# have at least one test that checks small inputs, which will exercise the cornercases more
(4, 4, 8, True, True),
(4, 4, 8, False, False)
]
unary_widths = [
(6, 12, True),
(6, 12, False),
(32, 16, True),
(32, 16, False)
]
# note that meaningless combinations of signednesses are eliminated,
# like e.g. most shift operations don't take signed shift amounts
shift_widths = [
# one set of tests that definitely checks all possible shift amounts
# with a bigger result width to make sure it's not truncated
(32, 6, 64, True, False),
(32, 6, 64, False, False),
(32, 6, 64, True, True),
(32, 6, 64, False, True),
# one set that checks very oversized shifts
(32, 32, 64, True, False),
(32, 32, 64, False, False),
(32, 32, 64, True, True),
(32, 32, 64, False, True),
# at least one test where the result is going to be truncated
(32, 6, 16, False, False),
# since 1-bit shifts are special cased
(1, 4, 1, False, False),
(1, 4, 1, True, False),
]
rtlil_cells = [
UnaryCell("not", unary_widths),
UnaryCell("pos", unary_widths),
UnaryCell("neg", unary_widths),
BinaryCell("and", binary_widths),
BinaryCell("or", binary_widths),
BinaryCell("xor", binary_widths),
BinaryCell("xnor", binary_widths),
UnaryCell("reduce_and", unary_widths),
UnaryCell("reduce_or", unary_widths),
UnaryCell("reduce_xor", unary_widths),
UnaryCell("reduce_xnor", unary_widths),
UnaryCell("reduce_bool", unary_widths),
ShiftCell("shl", shift_widths),
ShiftCell("shr", shift_widths),
ShiftCell("sshl", shift_widths),
ShiftCell("sshr", shift_widths),
ShiftCell("shift", shift_widths),
ShiftCell("shiftx", shift_widths),
FACell("fa", [8, 20]),
LCUCell("lcu", [1, 10]),
ALUCell("alu", binary_widths),
BinaryCell("lt", binary_widths),
BinaryCell("le", binary_widths),
BinaryCell("eq", binary_widths),
BinaryCell("ne", binary_widths),
BinaryCell("eqx", binary_widths),
BinaryCell("nex", binary_widths),
BinaryCell("ge", binary_widths),
BinaryCell("gt", binary_widths),
BinaryCell("add", binary_widths),
BinaryCell("sub", binary_widths),
BinaryCell("mul", binary_widths),
# BinaryCell("macc"),
BinaryCell("div", binary_widths),
BinaryCell("mod", binary_widths),
BinaryCell("divfloor", binary_widths),
BinaryCell("modfloor", binary_widths),
BinaryCell("pow", binary_widths),
UnaryCell("logic_not", unary_widths),
BinaryCell("logic_and", binary_widths),
BinaryCell("logic_or", binary_widths),
SliceCell("slice", [(32, 10, 15), (8, 0, 4), (10, 0, 10)]),
ConcatCell("concat", [(16, 16), (8, 14), (20, 10)]),
MuxCell("mux", [10, 16, 40]),
BMuxCell("bmux", [(10, 1), (10, 2), (10, 4)]),
PMuxCell("pmux", [(10, 1), (10, 4), (20, 4)]),
DemuxCell("demux", [(10, 1), (32, 2), (16, 4)]),
LUTCell("lut", [4, 6, 8]),
# ("sop", ["A", "Y"]),
# ("tribuf", ["A", "EN", "Y"]),
# ("specify2", ["EN", "SRC", "DST"]),
# ("specify3", ["EN", "SRC", "DST", "DAT"]),
# ("specrule", ["EN_SRC", "EN_DST", "SRC", "DST"]),
BWCell("bweqx", [10, 16, 40]),
BWCell("bwmux", [10, 16, 40]),
FFCell("ff", [10, 20, 40]),
MemCell("mem", [(16, 4)]),
MemDualCell("mem-dual", [(16, 4)]),
# ("assert", ["A", "EN"]),
# ("assume", ["A", "EN"]),
# ("live", ["A", "EN"]),
# ("fair", ["A", "EN"]),
# ("cover", ["A", "EN"]),
# ("initstate", ["Y"]),
# ("anyconst", ["Y"]),
# ("anyseq", ["Y"]),
# ("anyinit", ["D", "Q"]),
# ("allconst", ["Y"]),
# ("allseq", ["Y"]),
# ("equiv", ["A", "B", "Y"]),
# ("print", ["EN", "TRG", "ARGS"]),
# ("check", ["A", "EN", "TRG", "ARGS"]),
# ("set_tag", ["A", "SET", "CLR", "Y"]),
# ("get_tag", ["A", "Y"]),
# ("overwrite_tag", ["A", "SET", "CLR"]),
# ("original_tag", ["A", "Y"]),
# ("future_ff", ["A", "Y"]),
# ("scopeinfo", []),
PicorvCell()
]
def generate_test_cases(per_cell, rnd):
tests = []
names = []
for cell in rtlil_cells:
seen_names = set()
for (name, parameters) in cell.generate_tests(rnd):
if not name in seen_names:
seen_names.add(name)
tests.append((cell, parameters))
names.append(f'{cell.name}-{name}' if name != '' else cell.name)
if per_cell is not None and len(seen_names) >= per_cell:
break
return (names, tests)
|