1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
#include "BigInteger.hh"
void BigInteger::operator =(const BigInteger &x) {
// Calls like a = a have no effect
if (this == &x)
return;
// Copy sign
sign = x.sign;
// Copy the rest
mag = x.mag;
}
BigInteger::BigInteger(const Blk *b, Index blen, Sign s) : mag(b, blen) {
switch (s) {
case zero:
if (!mag.isZero())
throw "BigInteger::BigInteger(const Blk *, Index, Sign): Cannot use a sign of zero with a nonzero magnitude";
sign = zero;
break;
case positive:
case negative:
// If the magnitude is zero, force the sign to zero.
sign = mag.isZero() ? zero : s;
break;
default:
/* g++ seems to be optimizing out this case on the assumption
* that the sign is a valid member of the enumeration. Oh well. */
throw "BigInteger::BigInteger(const Blk *, Index, Sign): Invalid sign";
}
}
BigInteger::BigInteger(const BigUnsigned &x, Sign s) : mag(x) {
switch (s) {
case zero:
if (!mag.isZero())
throw "BigInteger::BigInteger(const BigUnsigned &, Sign): Cannot use a sign of zero with a nonzero magnitude";
sign = zero;
break;
case positive:
case negative:
// If the magnitude is zero, force the sign to zero.
sign = mag.isZero() ? zero : s;
break;
default:
/* g++ seems to be optimizing out this case on the assumption
* that the sign is a valid member of the enumeration. Oh well. */
throw "BigInteger::BigInteger(const BigUnsigned &, Sign): Invalid sign";
}
}
/* CONSTRUCTION FROM PRIMITIVE INTEGERS
* Same idea as in BigUnsigned.cc, except that negative input results in a
* negative BigInteger instead of an exception. */
// Done longhand to let us use initialization.
BigInteger::BigInteger(unsigned long x) : mag(x) { sign = mag.isZero() ? zero : positive; }
BigInteger::BigInteger(unsigned int x) : mag(x) { sign = mag.isZero() ? zero : positive; }
BigInteger::BigInteger(unsigned short x) : mag(x) { sign = mag.isZero() ? zero : positive; }
// For signed input, determine the desired magnitude and sign separately.
namespace {
template <class X, class UX>
BigInteger::Blk magOf(X x) {
/* UX(...) cast needed to stop short(-2^15), which negates to
* itself, from sign-extending in the conversion to Blk. */
return BigInteger::Blk(x < 0 ? UX(-x) : x);
}
template <class X>
BigInteger::Sign signOf(X x) {
return (x == 0) ? BigInteger::zero
: (x > 0) ? BigInteger::positive
: BigInteger::negative;
}
}
BigInteger::BigInteger(long x) : sign(signOf(x)), mag(magOf<long , unsigned long >(x)) {}
BigInteger::BigInteger(int x) : sign(signOf(x)), mag(magOf<int , unsigned int >(x)) {}
BigInteger::BigInteger(short x) : sign(signOf(x)), mag(magOf<short, unsigned short>(x)) {}
// CONVERSION TO PRIMITIVE INTEGERS
/* Reuse BigUnsigned's conversion to an unsigned primitive integer.
* The friend is a separate function rather than
* BigInteger::convertToUnsignedPrimitive to avoid requiring BigUnsigned to
* declare BigInteger. */
template <class X>
inline X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a) {
return a.convertToPrimitive<X>();
}
template <class X>
X BigInteger::convertToUnsignedPrimitive() const {
if (sign == negative)
throw "BigInteger::to<Primitive>: "
"Cannot convert a negative integer to an unsigned type";
else
return convertBigUnsignedToPrimitiveAccess<X>(mag);
}
/* Similar to BigUnsigned::convertToPrimitive, but split into two cases for
* nonnegative and negative numbers. */
template <class X, class UX>
X BigInteger::convertToSignedPrimitive() const {
if (sign == zero)
return 0;
else if (mag.getLength() == 1) {
// The single block might fit in an X. Try the conversion.
Blk b = mag.getBlock(0);
if (sign == positive) {
X x = X(b);
if (x >= 0 && Blk(x) == b)
return x;
} else {
X x = -X(b);
/* UX(...) needed to avoid rejecting conversion of
* -2^15 to a short. */
if (x < 0 && Blk(UX(-x)) == b)
return x;
}
// Otherwise fall through.
}
throw "BigInteger::to<Primitive>: "
"Value is too big to fit in the requested type";
}
unsigned long BigInteger::toUnsignedLong () const { return convertToUnsignedPrimitive<unsigned long > (); }
unsigned int BigInteger::toUnsignedInt () const { return convertToUnsignedPrimitive<unsigned int > (); }
unsigned short BigInteger::toUnsignedShort() const { return convertToUnsignedPrimitive<unsigned short> (); }
long BigInteger::toLong () const { return convertToSignedPrimitive <long , unsigned long> (); }
int BigInteger::toInt () const { return convertToSignedPrimitive <int , unsigned int> (); }
short BigInteger::toShort () const { return convertToSignedPrimitive <short, unsigned short>(); }
// COMPARISON
BigInteger::CmpRes BigInteger::compareTo(const BigInteger &x) const {
// A greater sign implies a greater number
if (sign < x.sign)
return less;
else if (sign > x.sign)
return greater;
else switch (sign) {
// If the signs are the same...
case zero:
return equal; // Two zeros are equal
case positive:
// Compare the magnitudes
return mag.compareTo(x.mag);
case negative:
// Compare the magnitudes, but return the opposite result
return CmpRes(-mag.compareTo(x.mag));
default:
throw "BigInteger internal error";
}
}
/* COPY-LESS OPERATIONS
* These do some messing around to determine the sign of the result,
* then call one of BigUnsigned's copy-less operations. */
// See remarks about aliased calls in BigUnsigned.cc .
#define DTRT_ALIASED(cond, op) \
if (cond) { \
BigInteger tmpThis; \
tmpThis.op; \
*this = tmpThis; \
return; \
}
void BigInteger::add(const BigInteger &a, const BigInteger &b) {
DTRT_ALIASED(this == &a || this == &b, add(a, b));
// If one argument is zero, copy the other.
if (a.sign == zero)
operator =(b);
else if (b.sign == zero)
operator =(a);
// If the arguments have the same sign, take the
// common sign and add their magnitudes.
else if (a.sign == b.sign) {
sign = a.sign;
mag.add(a.mag, b.mag);
} else {
// Otherwise, their magnitudes must be compared.
switch (a.mag.compareTo(b.mag)) {
case equal:
// If their magnitudes are the same, copy zero.
mag = 0;
sign = zero;
break;
// Otherwise, take the sign of the greater, and subtract
// the lesser magnitude from the greater magnitude.
case greater:
sign = a.sign;
mag.subtract(a.mag, b.mag);
break;
case less:
sign = b.sign;
mag.subtract(b.mag, a.mag);
break;
}
}
}
void BigInteger::subtract(const BigInteger &a, const BigInteger &b) {
// Notice that this routine is identical to BigInteger::add,
// if one replaces b.sign by its opposite.
DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
// If a is zero, copy b and flip its sign. If b is zero, copy a.
if (a.sign == zero) {
mag = b.mag;
// Take the negative of _b_'s, sign, not ours.
// Bug pointed out by Sam Larkin on 2005.03.30.
sign = Sign(-b.sign);
} else if (b.sign == zero)
operator =(a);
// If their signs differ, take a.sign and add the magnitudes.
else if (a.sign != b.sign) {
sign = a.sign;
mag.add(a.mag, b.mag);
} else {
// Otherwise, their magnitudes must be compared.
switch (a.mag.compareTo(b.mag)) {
// If their magnitudes are the same, copy zero.
case equal:
mag = 0;
sign = zero;
break;
// If a's magnitude is greater, take a.sign and
// subtract a from b.
case greater:
sign = a.sign;
mag.subtract(a.mag, b.mag);
break;
// If b's magnitude is greater, take the opposite
// of b.sign and subtract b from a.
case less:
sign = Sign(-b.sign);
mag.subtract(b.mag, a.mag);
break;
}
}
}
void BigInteger::multiply(const BigInteger &a, const BigInteger &b) {
DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
// If one object is zero, copy zero and return.
if (a.sign == zero || b.sign == zero) {
sign = zero;
mag = 0;
return;
}
// If the signs of the arguments are the same, the result
// is positive, otherwise it is negative.
sign = (a.sign == b.sign) ? positive : negative;
// Multiply the magnitudes.
mag.multiply(a.mag, b.mag);
}
/*
* DIVISION WITH REMAINDER
* Please read the comments before the definition of
* `BigUnsigned::divideWithRemainder' in `BigUnsigned.cc' for lots of
* information you should know before reading this function.
*
* Following Knuth, I decree that x / y is to be
* 0 if y==0 and floor(real-number x / y) if y!=0.
* Then x % y shall be x - y*(integer x / y).
*
* Note that x = y * (x / y) + (x % y) always holds.
* In addition, (x % y) is from 0 to y - 1 if y > 0,
* and from -(|y| - 1) to 0 if y < 0. (x % y) = x if y = 0.
*
* Examples: (q = a / b, r = a % b)
* a b q r
* === === === ===
* 4 3 1 1
* -4 3 -2 2
* 4 -3 -2 -2
* -4 -3 1 -1
*/
void BigInteger::divideWithRemainder(const BigInteger &b, BigInteger &q) {
// Defend against aliased calls;
// same idea as in BigUnsigned::divideWithRemainder .
if (this == &q)
throw "BigInteger::divideWithRemainder: Cannot write quotient and remainder into the same variable";
if (this == &b || &q == &b) {
BigInteger tmpB(b);
divideWithRemainder(tmpB, q);
return;
}
// Division by zero gives quotient 0 and remainder *this
if (b.sign == zero) {
q.mag = 0;
q.sign = zero;
return;
}
// 0 / b gives quotient 0 and remainder 0
if (sign == zero) {
q.mag = 0;
q.sign = zero;
return;
}
// Here *this != 0, b != 0.
// Do the operands have the same sign?
if (sign == b.sign) {
// Yes: easy case. Quotient is zero or positive.
q.sign = positive;
} else {
// No: harder case. Quotient is negative.
q.sign = negative;
// Decrease the magnitude of the dividend by one.
mag--;
/*
* We tinker with the dividend before and with the
* quotient and remainder after so that the result
* comes out right. To see why it works, consider the following
* list of examples, where A is the magnitude-decreased
* a, Q and R are the results of BigUnsigned division
* with remainder on A and |b|, and q and r are the
* final results we want:
*
* a A b Q R q r
* -3 -2 3 0 2 -1 0
* -4 -3 3 1 0 -2 2
* -5 -4 3 1 1 -2 1
* -6 -5 3 1 2 -2 0
*
* It appears that we need a total of 3 corrections:
* Decrease the magnitude of a to get A. Increase the
* magnitude of Q to get q (and make it negative).
* Find r = (b - 1) - R and give it the desired sign.
*/
}
// Divide the magnitudes.
mag.divideWithRemainder(b.mag, q.mag);
if (sign != b.sign) {
// More for the harder case (as described):
// Increase the magnitude of the quotient by one.
q.mag++;
// Modify the remainder.
mag.subtract(b.mag, mag);
mag--;
}
// Sign of the remainder is always the sign of the divisor b.
sign = b.sign;
// Set signs to zero as necessary. (Thanks David Allen!)
if (mag.isZero())
sign = zero;
if (q.mag.isZero())
q.sign = zero;
// WHEW!!!
}
// Negation
void BigInteger::negate(const BigInteger &a) {
DTRT_ALIASED(this == &a, negate(a));
// Copy a's magnitude
mag = a.mag;
// Copy the opposite of a.sign
sign = Sign(-a.sign);
}
// INCREMENT/DECREMENT OPERATORS
// Prefix increment
void BigInteger::operator ++() {
if (sign == negative) {
mag--;
if (mag == 0)
sign = zero;
} else {
mag++;
sign = positive; // if not already
}
}
// Postfix increment: same as prefix
void BigInteger::operator ++(int) {
operator ++();
}
// Prefix decrement
void BigInteger::operator --() {
if (sign == positive) {
mag--;
if (mag == 0)
sign = zero;
} else {
mag++;
sign = negative;
}
}
// Postfix decrement: same as prefix
void BigInteger::operator --(int) {
operator --();
}
|