1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
#ifndef BIGINTEGER_H
#define BIGINTEGER_H
#include "BigUnsigned.hh"
/* A BigInteger object represents a signed integer of size limited only by
* available memory. BigUnsigneds support most mathematical operators and can
* be converted to and from most primitive integer types.
*
* A BigInteger is just an aggregate of a BigUnsigned and a sign. (It is no
* longer derived from BigUnsigned because that led to harmful implicit
* conversions.) */
class BigInteger {
public:
typedef BigUnsigned::Blk Blk;
typedef BigUnsigned::Index Index;
typedef BigUnsigned::CmpRes CmpRes;
static const CmpRes
less = BigUnsigned::less ,
equal = BigUnsigned::equal ,
greater = BigUnsigned::greater;
// Enumeration for the sign of a BigInteger.
enum Sign { negative = -1, zero = 0, positive = 1 };
protected:
Sign sign;
BigUnsigned mag;
public:
// Constructs zero.
BigInteger() : sign(zero), mag() {}
// Copy constructor
BigInteger(const BigInteger &x) : sign(x.sign), mag(x.mag) {};
// Assignment operator
void operator=(const BigInteger &x);
// Constructor that copies from a given array of blocks with a sign.
BigInteger(const Blk *b, Index blen, Sign s);
// Nonnegative constructor that copies from a given array of blocks.
BigInteger(const Blk *b, Index blen) : mag(b, blen) {
sign = mag.isZero() ? zero : positive;
}
// Constructor from a BigUnsigned and a sign
BigInteger(const BigUnsigned &x, Sign s);
// Nonnegative constructor from a BigUnsigned
BigInteger(const BigUnsigned &x) : mag(x) {
sign = mag.isZero() ? zero : positive;
}
// Constructors from primitive integer types
BigInteger(unsigned long x);
BigInteger( long x);
BigInteger(unsigned int x);
BigInteger( int x);
BigInteger(unsigned short x);
BigInteger( short x);
/* Converters to primitive integer types
* The implicit conversion operators caused trouble, so these are now
* named. */
unsigned long toUnsignedLong () const;
long toLong () const;
unsigned int toUnsignedInt () const;
int toInt () const;
unsigned short toUnsignedShort() const;
short toShort () const;
protected:
// Helper
template <class X> X convertToUnsignedPrimitive() const;
template <class X, class UX> X convertToSignedPrimitive() const;
public:
// ACCESSORS
Sign getSign() const { return sign; }
/* The client can't do any harm by holding a read-only reference to the
* magnitude. */
const BigUnsigned &getMagnitude() const { return mag; }
// Some accessors that go through to the magnitude
Index getLength() const { return mag.getLength(); }
Index getCapacity() const { return mag.getCapacity(); }
Blk getBlock(Index i) const { return mag.getBlock(i); }
bool isZero() const { return sign == zero; } // A bit special
// COMPARISONS
// Compares this to x like Perl's <=>
CmpRes compareTo(const BigInteger &x) const;
// Ordinary comparison operators
bool operator ==(const BigInteger &x) const {
return sign == x.sign && mag == x.mag;
}
bool operator !=(const BigInteger &x) const { return !operator ==(x); };
bool operator < (const BigInteger &x) const { return compareTo(x) == less ; }
bool operator <=(const BigInteger &x) const { return compareTo(x) != greater; }
bool operator >=(const BigInteger &x) const { return compareTo(x) != less ; }
bool operator > (const BigInteger &x) const { return compareTo(x) == greater; }
// OPERATORS -- See the discussion in BigUnsigned.hh.
void add (const BigInteger &a, const BigInteger &b);
void subtract(const BigInteger &a, const BigInteger &b);
void multiply(const BigInteger &a, const BigInteger &b);
/* See the comment on BigUnsigned::divideWithRemainder. Semantics
* differ from those of primitive integers when negatives and/or zeros
* are involved. */
void divideWithRemainder(const BigInteger &b, BigInteger &q);
void negate(const BigInteger &a);
/* Bitwise operators are not provided for BigIntegers. Use
* getMagnitude to get the magnitude and operate on that instead. */
BigInteger operator +(const BigInteger &x) const;
BigInteger operator -(const BigInteger &x) const;
BigInteger operator *(const BigInteger &x) const;
BigInteger operator /(const BigInteger &x) const;
BigInteger operator %(const BigInteger &x) const;
BigInteger operator -() const;
void operator +=(const BigInteger &x);
void operator -=(const BigInteger &x);
void operator *=(const BigInteger &x);
void operator /=(const BigInteger &x);
void operator %=(const BigInteger &x);
void flipSign();
// INCREMENT/DECREMENT OPERATORS
void operator ++( );
void operator ++(int);
void operator --( );
void operator --(int);
};
// NORMAL OPERATORS
/* These create an object to hold the result and invoke
* the appropriate put-here operation on it, passing
* this and x. The new object is then returned. */
inline BigInteger BigInteger::operator +(const BigInteger &x) const {
BigInteger ans;
ans.add(*this, x);
return ans;
}
inline BigInteger BigInteger::operator -(const BigInteger &x) const {
BigInteger ans;
ans.subtract(*this, x);
return ans;
}
inline BigInteger BigInteger::operator *(const BigInteger &x) const {
BigInteger ans;
ans.multiply(*this, x);
return ans;
}
inline BigInteger BigInteger::operator /(const BigInteger &x) const {
if (x.isZero()) throw "BigInteger::operator /: division by zero";
BigInteger q, r;
r = *this;
r.divideWithRemainder(x, q);
return q;
}
inline BigInteger BigInteger::operator %(const BigInteger &x) const {
if (x.isZero()) throw "BigInteger::operator %: division by zero";
BigInteger q, r;
r = *this;
r.divideWithRemainder(x, q);
return r;
}
inline BigInteger BigInteger::operator -() const {
BigInteger ans;
ans.negate(*this);
return ans;
}
/*
* ASSIGNMENT OPERATORS
*
* Now the responsibility for making a temporary copy if necessary
* belongs to the put-here operations. See Assignment Operators in
* BigUnsigned.hh.
*/
inline void BigInteger::operator +=(const BigInteger &x) {
add(*this, x);
}
inline void BigInteger::operator -=(const BigInteger &x) {
subtract(*this, x);
}
inline void BigInteger::operator *=(const BigInteger &x) {
multiply(*this, x);
}
inline void BigInteger::operator /=(const BigInteger &x) {
if (x.isZero()) throw "BigInteger::operator /=: division by zero";
/* The following technique is slightly faster than copying *this first
* when x is large. */
BigInteger q;
divideWithRemainder(x, q);
// *this contains the remainder, but we overwrite it with the quotient.
*this = q;
}
inline void BigInteger::operator %=(const BigInteger &x) {
if (x.isZero()) throw "BigInteger::operator %=: division by zero";
BigInteger q;
// Mods *this by x. Don't care about quotient left in q.
divideWithRemainder(x, q);
}
// This one is trivial
inline void BigInteger::flipSign() {
sign = Sign(-sign);
}
#endif
|