1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/*
* ezSAT -- A simple and easy to use CNF generator for SAT solvers
*
* Copyright (C) 2013 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "ezminisat.h"
#include <stdio.h>
#include <assert.h>
#define DIM_X 5
#define DIM_Y 5
#define DIM_Z 5
#define NUM_124 6
#define NUM_223 6
ezMiniSAT ez;
int blockidx = 0;
std::map<int, std::string> blockinfo;
std::vector<int> grid[DIM_X][DIM_Y][DIM_Z];
struct blockgeom_t
{
int center_x, center_y, center_z;
int size_x, size_y, size_z;
int var;
void mirror_x() { center_x *= -1; }
void mirror_y() { center_y *= -1; }
void mirror_z() { center_z *= -1; }
void rotate_x() { int tmp[4] = { center_y, center_z, size_y, size_z }; center_y = tmp[1]; center_z = -tmp[0]; size_y = tmp[3]; size_z = tmp[2]; }
void rotate_y() { int tmp[4] = { center_x, center_z, size_x, size_z }; center_x = tmp[1]; center_z = -tmp[0]; size_x = tmp[3]; size_z = tmp[2]; }
void rotate_z() { int tmp[4] = { center_x, center_y, size_x, size_y }; center_x = tmp[1]; center_y = -tmp[0]; size_x = tmp[3]; size_y = tmp[2]; }
bool operator< (const blockgeom_t &other) const {
if (center_x != other.center_x) return center_x < other.center_x;
if (center_y != other.center_y) return center_y < other.center_y;
if (center_z != other.center_z) return center_z < other.center_z;
if (size_x != other.size_x) return size_x < other.size_x;
if (size_y != other.size_y) return size_y < other.size_y;
if (size_z != other.size_z) return size_z < other.size_z;
if (var != other.var) return var < other.var;
return false;
}
};
// geometry data for spatial symmetry constraints
std::set<blockgeom_t> blockgeom;
int add_block(int pos_x, int pos_y, int pos_z, int size_x, int size_y, int size_z, int blockidx)
{
char buffer[1024];
snprintf(buffer, 1024, "block(%d,%d,%d,%d,%d,%d,%d);", size_x, size_y, size_z, pos_x, pos_y, pos_z, blockidx);
int var = ez.literal();
blockinfo[var] = buffer;
for (int ix = pos_x; ix < pos_x+size_x; ix++)
for (int iy = pos_y; iy < pos_y+size_y; iy++)
for (int iz = pos_z; iz < pos_z+size_z; iz++)
grid[ix][iy][iz].push_back(var);
blockgeom_t bg;
bg.size_x = 2*size_x;
bg.size_y = 2*size_y;
bg.size_z = 2*size_z;
bg.center_x = (2*pos_x + size_x) - DIM_X;
bg.center_y = (2*pos_y + size_y) - DIM_Y;
bg.center_z = (2*pos_z + size_z) - DIM_Z;
bg.var = var;
assert(blockgeom.count(bg) == 0);
blockgeom.insert(bg);
return var;
}
void add_block_positions_124(std::vector<int> &block_positions_124)
{
block_positions_124.clear();
for (int size_x = 1; size_x <= 4; size_x *= 2)
for (int size_y = 1; size_y <= 4; size_y *= 2)
for (int size_z = 1; size_z <= 4; size_z *= 2) {
if (size_x == size_y || size_y == size_z || size_z == size_x)
continue;
for (int ix = 0; ix <= DIM_X-size_x; ix++)
for (int iy = 0; iy <= DIM_Y-size_y; iy++)
for (int iz = 0; iz <= DIM_Z-size_z; iz++)
block_positions_124.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++));
}
}
void add_block_positions_223(std::vector<int> &block_positions_223)
{
block_positions_223.clear();
for (int orientation = 0; orientation < 3; orientation++) {
int size_x = orientation == 0 ? 3 : 2;
int size_y = orientation == 1 ? 3 : 2;
int size_z = orientation == 2 ? 3 : 2;
for (int ix = 0; ix <= DIM_X-size_x; ix++)
for (int iy = 0; iy <= DIM_Y-size_y; iy++)
for (int iz = 0; iz <= DIM_Z-size_z; iz++)
block_positions_223.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++));
}
}
// use simple built-in random number generator to
// ensure determinism of the program across platforms
uint32_t xorshift32() {
static uint32_t x = 314159265;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return x;
}
void condense_exclusives(std::vector<int> &vars)
{
std::map<int, std::set<int>> exclusive;
for (int ix = 0; ix < DIM_X; ix++)
for (int iy = 0; iy < DIM_Y; iy++)
for (int iz = 0; iz < DIM_Z; iz++) {
for (int a : grid[ix][iy][iz])
for (int b : grid[ix][iy][iz])
if (a != b)
exclusive[a].insert(b);
}
std::vector<std::vector<int>> pools;
for (int a : vars)
{
std::vector<int> candidate_pools;
for (size_t i = 0; i < pools.size(); i++)
{
for (int b : pools[i])
if (exclusive[a].count(b) == 0)
goto no_candidate_pool;
candidate_pools.push_back(i);
no_candidate_pool:;
}
if (candidate_pools.size() > 0) {
int p = candidate_pools[xorshift32() % candidate_pools.size()];
pools[p].push_back(a);
} else {
pools.push_back(std::vector<int>());
pools.back().push_back(a);
}
}
std::vector<int> new_vars;
for (auto &pool : pools)
{
std::vector<int> formula;
int var = ez.literal();
for (int a : pool)
formula.push_back(ez.OR(ez.NOT(a), var));
formula.push_back(ez.OR(ez.expression(ezSAT::OpOr, pool), ez.NOT(var)));
ez.assume(ez.onehot(pool, true));
ez.assume(ez.expression(ezSAT::OpAnd, formula));
new_vars.push_back(var);
}
printf("Condensed %d variables into %d one-hot pools.\n", int(vars.size()), int(new_vars.size()));
vars.swap(new_vars);
}
int main()
{
printf("\nCreating SAT encoding..\n");
// add 1x2x4 blocks
std::vector<int> block_positions_124;
add_block_positions_124(block_positions_124);
condense_exclusives(block_positions_124);
ez.assume(ez.manyhot(block_positions_124, NUM_124));
// add 2x2x3 blocks
std::vector<int> block_positions_223;
add_block_positions_223(block_positions_223);
condense_exclusives(block_positions_223);
ez.assume(ez.manyhot(block_positions_223, NUM_223));
// add constraint for max one block per grid element
for (int ix = 0; ix < DIM_X; ix++)
for (int iy = 0; iy < DIM_Y; iy++)
for (int iz = 0; iz < DIM_Z; iz++) {
assert(grid[ix][iy][iz].size() > 0);
ez.assume(ez.onehot(grid[ix][iy][iz], true));
}
printf("Found %d possible block positions.\n", int(blockgeom.size()));
// look for spatial symmetries
std::set<std::set<blockgeom_t>> symmetries;
symmetries.insert(blockgeom);
bool keep_running = true;
while (keep_running) {
keep_running = false;
std::set<std::set<blockgeom_t>> old_sym;
old_sym.swap(symmetries);
for (auto &old_sym_set : old_sym)
{
std::set<blockgeom_t> mx, my, mz;
std::set<blockgeom_t> rx, ry, rz;
for (auto &bg : old_sym_set) {
blockgeom_t bg_mx = bg, bg_my = bg, bg_mz = bg;
blockgeom_t bg_rx = bg, bg_ry = bg, bg_rz = bg;
bg_mx.mirror_x(), bg_my.mirror_y(), bg_mz.mirror_z();
bg_rx.rotate_x(), bg_ry.rotate_y(), bg_rz.rotate_z();
mx.insert(bg_mx), my.insert(bg_my), mz.insert(bg_mz);
rx.insert(bg_rx), ry.insert(bg_ry), rz.insert(bg_rz);
}
if (!old_sym.count(mx) || !old_sym.count(my) || !old_sym.count(mz) ||
!old_sym.count(rx) || !old_sym.count(ry) || !old_sym.count(rz))
keep_running = true;
symmetries.insert(old_sym_set);
symmetries.insert(mx);
symmetries.insert(my);
symmetries.insert(mz);
symmetries.insert(rx);
symmetries.insert(ry);
symmetries.insert(rz);
}
}
// add constraints to eliminate all the spatial symmetries
std::vector<std::vector<int>> vecvec;
for (auto &sym : symmetries) {
std::vector<int> vec;
for (auto &bg : sym)
vec.push_back(bg.var);
vecvec.push_back(vec);
}
for (size_t i = 1; i < vecvec.size(); i++)
ez.assume(ez.ordered(vecvec[0], vecvec[1]));
printf("Found and eliminated %d spatial symmetries.\n", int(symmetries.size()));
printf("Generated %d clauses over %d variables.\n", ez.numCnfClauses(), ez.numCnfVariables());
std::vector<int> modelExpressions;
std::vector<bool> modelValues;
for (auto &it : blockinfo) {
ez.freeze(it.first);
modelExpressions.push_back(it.first);
}
int solution_counter = 0;
while (1)
{
printf("\nSolving puzzle..\n");
bool ok = ez.solve(modelExpressions, modelValues);
if (!ok) {
printf("No more solutions found!\n");
break;
}
printf("Puzzle solution:\n");
std::vector<int> constraint;
for (size_t i = 0; i < modelExpressions.size(); i++)
if (modelValues[i]) {
constraint.push_back(ez.NOT(modelExpressions[i]));
printf("%s\n", blockinfo.at(modelExpressions[i]).c_str());
}
ez.assume(ez.expression(ezSAT::OpOr, constraint));
solution_counter++;
}
printf("\nFound %d distinct solutions.\n", solution_counter);
printf("Have a nice day.\n\n");
return 0;
}
|