1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]]
// Yiqiong Shi; Chan Wai Ting; Bah-Hwee Gwee; Ye Ren, "A highly efficient method for extracting FSMs from flattened gate-level netlist,"
// Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2610,2613, May 30 2010-June 2 2010
// doi: 10.1109/ISCAS.2010.5537093
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "fsmdata.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
static RTLIL::Module *module;
static SigMap assign_map;
typedef std::pair<RTLIL::IdString, RTLIL::IdString> sig2driver_entry_t;
static SigSet<sig2driver_entry_t> sig2driver, sig2trigger;
static std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> exclusive_ctrls;
static bool find_states(RTLIL::SigSpec sig, const RTLIL::SigSpec &dff_out, RTLIL::SigSpec &ctrl, std::map<RTLIL::Const, int> &states, RTLIL::Const *reset_state = NULL)
{
sig.extend_u0(dff_out.size(), false);
if (sig == dff_out)
return true;
assign_map.apply(sig);
if (sig.is_fully_const()) {
if (sig.is_fully_def() && states.count(sig.as_const()) == 0) {
log(" found state code: %s\n", log_signal(sig));
states[sig.as_const()] = -1;
}
return true;
}
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(sig, cellport_list);
if (GetSize(cellport_list) > 1) {
log(" found %d combined drivers for state signal %s.\n", GetSize(cellport_list), log_signal(sig));
return false;
}
if (GetSize(cellport_list) < 1) {
log(" found no driver for state signal %s.\n", log_signal(sig));
return false;
}
for (auto &cellport : cellport_list)
{
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$mux" && cell->type != "$pmux") || cellport.second != "\\Y") {
log(" unexpected cell type %s (%s) found in state selection tree.\n", cell->type.c_str(), cell->name.c_str());
return false;
}
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_s = assign_map(cell->getPort("\\S"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
RTLIL::SigSpec sig_aa = sig;
sig_aa.replace(sig_y, sig_a);
RTLIL::SigSpec sig_bb;
for (int i = 0; i < GetSize(sig_b)/GetSize(sig_a); i++) {
RTLIL::SigSpec s = sig;
s.replace(sig_y, sig_b.extract(i*GetSize(sig_a), GetSize(sig_a)));
sig_bb.append(s);
}
if (reset_state && RTLIL::SigSpec(*reset_state).is_fully_undef())
do {
SigSpec new_reset_state;
if (sig_aa.is_fully_def())
new_reset_state = sig_aa.as_const();
else if (sig_bb.is_fully_def())
new_reset_state = sig_bb.as_const();
else
break;
new_reset_state.extend_u0(GetSize(*reset_state));
*reset_state = new_reset_state.as_const();
log(" found reset state: %s (guessed from mux tree)\n", log_signal(*reset_state));
} while (0);
for (auto sig_s_bit : sig_s) {
if (ctrl.extract(sig_s_bit).empty()) {
log(" found ctrl input: %s\n", log_signal(sig_s_bit));
ctrl.append(sig_s_bit);
}
}
if (!find_states(sig_aa, dff_out, ctrl, states))
return false;
for (int i = 0; i < GetSize(sig_bb)/GetSize(sig_aa); i++) {
if (!find_states(sig_bb.extract(i*GetSize(sig_aa), GetSize(sig_aa)), dff_out, ctrl, states))
return false;
}
}
return true;
}
static RTLIL::Const sig2const(ConstEval &ce, RTLIL::SigSpec sig, RTLIL::State noconst_state, RTLIL::SigSpec dont_care = RTLIL::SigSpec())
{
if (dont_care.size() > 0) {
for (int i = 0; i < GetSize(sig); i++)
if (dont_care.extract(sig[i]).size() > 0)
sig[i] = noconst_state;
}
ce.assign_map.apply(sig);
ce.values_map.apply(sig);
for (int i = 0; i < GetSize(sig); i++)
if (sig[i].wire != NULL)
sig[i] = noconst_state;
return sig.as_const();
}
static void find_transitions(ConstEval &ce, ConstEval &ce_nostop, FsmData &fsm_data, std::map<RTLIL::Const, int> &states, int state_in, RTLIL::SigSpec ctrl_in, RTLIL::SigSpec ctrl_out, RTLIL::SigSpec dff_in, RTLIL::SigSpec dont_care)
{
bool undef_bit_in_next_state_mode = false;
RTLIL::SigSpec undef, constval;
if (ce.eval(ctrl_out, undef) && ce.eval(dff_in, undef))
{
if (0) {
undef_bit_in_next_state:
for (auto &bit : dff_in)
if (bit.wire != nullptr) bit = RTLIL::Sm;
for (auto &bit : ctrl_out)
if (bit.wire != nullptr) bit = RTLIL::Sm;
undef_bit_in_next_state_mode = true;
}
log_assert(ctrl_out.is_fully_const() && dff_in.is_fully_const());
FsmData::transition_t tr;
tr.ctrl_in = sig2const(ce, ctrl_in, RTLIL::State::Sa, dont_care);
tr.ctrl_out = sig2const(ce, ctrl_out, RTLIL::State::Sx);
std::map<RTLIL::SigBit, int> ctrl_in_bit_indices;
for (int i = 0; i < GetSize(ctrl_in); i++)
ctrl_in_bit_indices[ctrl_in[i]] = i;
for (auto &it : ctrl_in_bit_indices)
if (tr.ctrl_in.bits.at(it.second) == RTLIL::S1 && exclusive_ctrls.count(it.first) != 0)
for (auto &dc_bit : exclusive_ctrls.at(it.first))
if (ctrl_in_bit_indices.count(dc_bit))
tr.ctrl_in.bits.at(ctrl_in_bit_indices.at(dc_bit)) = RTLIL::State::Sa;
RTLIL::Const log_state_in = RTLIL::Const(RTLIL::State::Sx, fsm_data.state_bits);
if (state_in >= 0)
log_state_in = fsm_data.state_table.at(state_in);
if (states.count(ce.values_map(ce.assign_map(dff_in)).as_const()) == 0) {
log(" transition: %10s %s -> INVALID_STATE(%s) %s <ignored invalid transistion!>%s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(ce.values_map(ce.assign_map(dff_in))), log_signal(tr.ctrl_out),
undef_bit_in_next_state_mode ? " SHORTENED" : "");
return;
}
tr.state_in = state_in;
tr.state_out = states.at(ce.values_map(ce.assign_map(dff_in)).as_const());
if (dff_in.is_fully_def()) {
fsm_data.transition_table.push_back(tr);
log(" transition: %10s %s -> %10s %s\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
} else {
log(" transition: %10s %s -> %10s %s <ignored undef transistion!>\n",
log_signal(log_state_in), log_signal(tr.ctrl_in),
log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out));
}
return;
}
for (auto &bit : dff_in)
if (bit == RTLIL::Sx)
goto undef_bit_in_next_state;
log_assert(undef.size() > 0);
log_assert(ce.stop_signals.check_all(undef));
undef = undef.extract(0, 1);
constval = undef;
if (ce_nostop.eval(constval))
{
ce.push();
dont_care.append(undef);
ce.set(undef, constval.as_const());
if (exclusive_ctrls.count(undef) && constval == RTLIL::S1)
for (auto &bit : exclusive_ctrls.at(undef)) {
RTLIL::SigSpec bitval = bit;
if (ce.eval(bitval) && bitval != RTLIL::S0)
goto found_contradiction_1;
else
ce.set(bit, RTLIL::S0);
}
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
found_contradiction_1:
ce.pop();
}
else
{
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::S0);
ce_nostop.set(undef, RTLIL::S0);
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
ce.pop(), ce_nostop.pop();
ce.push(), ce_nostop.push();
ce.set(undef, RTLIL::S1);
ce_nostop.set(undef, RTLIL::S1);
if (exclusive_ctrls.count(undef))
for (auto &bit : exclusive_ctrls.at(undef)) {
RTLIL::SigSpec bitval = bit;
if ((ce.eval(bitval) || ce_nostop.eval(bitval)) && bitval != RTLIL::S0)
goto found_contradiction_2;
else
ce.set(bit, RTLIL::S0), ce_nostop.set(bit, RTLIL::S0);
}
find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care);
found_contradiction_2:
ce.pop(), ce_nostop.pop();
}
}
static void extract_fsm(RTLIL::Wire *wire)
{
log("Extracting FSM `%s' from module `%s'.\n", wire->name.c_str(), module->name.c_str());
// get input and output signals for state ff
RTLIL::SigSpec dff_out = assign_map(RTLIL::SigSpec(wire));
RTLIL::SigSpec dff_in(RTLIL::State::Sm, wire->width);
RTLIL::Const reset_state(RTLIL::State::Sx, wire->width);
RTLIL::SigSpec clk = RTLIL::S0;
RTLIL::SigSpec arst = RTLIL::S0;
bool clk_polarity = true;
bool arst_polarity = true;
std::set<sig2driver_entry_t> cellport_list;
sig2driver.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
if ((cell->type != "$dff" && cell->type != "$adff") || cellport.second != "\\Q")
continue;
log(" found %s cell for state register: %s\n", cell->type.c_str(), cell->name.c_str());
RTLIL::SigSpec sig_q = assign_map(cell->getPort("\\Q"));
RTLIL::SigSpec sig_d = assign_map(cell->getPort("\\D"));
clk = cell->getPort("\\CLK");
clk_polarity = cell->parameters["\\CLK_POLARITY"].as_bool();
if (cell->type == "$adff") {
arst = cell->getPort("\\ARST");
arst_polarity = cell->parameters["\\ARST_POLARITY"].as_bool();
reset_state = cell->parameters["\\ARST_VALUE"];
}
sig_q.replace(dff_out, sig_d, &dff_in);
break;
}
log(" root of input selection tree: %s\n", log_signal(dff_in));
if (dff_in.has_marked_bits()) {
log(" fsm extraction failed: incomplete input selection tree root.\n");
return;
}
// find states and control inputs
RTLIL::SigSpec ctrl_in;
std::map<RTLIL::Const, int> states;
if (!arst.is_fully_const()) {
log(" found reset state: %s (from async reset)\n", log_signal(reset_state));
states[reset_state] = -1;
}
if (!find_states(dff_in, dff_out, ctrl_in, states, &reset_state)) {
log(" fsm extraction failed: state selection tree is not closed.\n");
return;
}
if (GetSize(states) <= 1) {
log(" fsm extraction failed: at least two states are required.\n");
return;
}
// find control outputs
// (add the state signals to the list of control outputs. if everything goes right, this signals
// become unused and can then be removed from the fsm control output)
RTLIL::SigSpec ctrl_out = dff_in;
cellport_list.clear();
sig2trigger.find(dff_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec sig_a = assign_map(cell->getPort("\\A"));
RTLIL::SigSpec sig_b;
if (cell->hasPort("\\B"))
sig_b = assign_map(cell->getPort("\\B"));
RTLIL::SigSpec sig_y = assign_map(cell->getPort("\\Y"));
if (cellport.second == "\\A" && !sig_b.is_fully_const())
continue;
if (cellport.second == "\\B" && !sig_a.is_fully_const())
continue;
log(" found ctrl output: %s\n", log_signal(sig_y));
ctrl_out.append(sig_y);
}
ctrl_in.remove(ctrl_out);
ctrl_in.sort_and_unify();
ctrl_out.sort_and_unify();
log(" ctrl inputs: %s\n", log_signal(ctrl_in));
log(" ctrl outputs: %s\n", log_signal(ctrl_out));
// Initialize fsm data struct
FsmData fsm_data;
fsm_data.num_inputs = ctrl_in.size();
fsm_data.num_outputs = ctrl_out.size();
fsm_data.state_bits = wire->width;
fsm_data.reset_state = -1;
for (auto &it : states) {
it.second = fsm_data.state_table.size();
fsm_data.state_table.push_back(it.first);
}
if (!arst.is_fully_const() || RTLIL::SigSpec(reset_state).is_fully_def())
fsm_data.reset_state = states[reset_state];
// Create transition table
ConstEval ce(module), ce_nostop(module);
ce.stop(ctrl_in);
for (int state_idx = 0; state_idx < int(fsm_data.state_table.size()); state_idx++) {
ce.push(), ce_nostop.push();
ce.set(dff_out, fsm_data.state_table[state_idx]);
ce_nostop.set(dff_out, fsm_data.state_table[state_idx]);
find_transitions(ce, ce_nostop, fsm_data, states, state_idx, ctrl_in, ctrl_out, dff_in, RTLIL::SigSpec());
ce.pop(), ce_nostop.pop();
}
// create fsm cell
RTLIL::Cell *fsm_cell = module->addCell(stringf("$fsm$%s$%d", wire->name.c_str(), autoidx++), "$fsm");
fsm_cell->setPort("\\CLK", clk);
fsm_cell->setPort("\\ARST", arst);
fsm_cell->parameters["\\CLK_POLARITY"] = clk_polarity ? RTLIL::S1 : RTLIL::S0;
fsm_cell->parameters["\\ARST_POLARITY"] = arst_polarity ? RTLIL::S1 : RTLIL::S0;
fsm_cell->setPort("\\CTRL_IN", ctrl_in);
fsm_cell->setPort("\\CTRL_OUT", ctrl_out);
fsm_cell->parameters["\\NAME"] = RTLIL::Const(wire->name.str());
fsm_cell->attributes = wire->attributes;
fsm_data.copy_to_cell(fsm_cell);
// rename original state wire
module->wires_.erase(wire->name);
wire->attributes.erase("\\fsm_encoding");
wire->name = stringf("$fsm$oldstate%s", wire->name.c_str());
module->wires_[wire->name] = wire;
// unconnect control outputs from old drivers
cellport_list.clear();
sig2driver.find(ctrl_out, cellport_list);
for (auto &cellport : cellport_list) {
RTLIL::Cell *cell = module->cells_.at(cellport.first);
RTLIL::SigSpec port_sig = assign_map(cell->getPort(cellport.second));
RTLIL::SigSpec unconn_sig = port_sig.extract(ctrl_out);
RTLIL::Wire *unconn_wire = module->addWire(stringf("$fsm_unconnect$%s$%d", log_signal(unconn_sig), autoidx++), unconn_sig.size());
port_sig.replace(unconn_sig, RTLIL::SigSpec(unconn_wire), &cell->connections_[cellport.second]);
}
}
struct FsmExtractPass : public Pass {
FsmExtractPass() : Pass("fsm_extract", "extracting FSMs in design") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fsm_extract [selection]\n");
log("\n");
log("This pass operates on all signals marked as FSM state signals using the\n");
log("'fsm_encoding' attribute. It consumes the logic that creates the state signal\n");
log("and uses the state signal to generate control signal and replaces it with an\n");
log("FSM cell.\n");
log("\n");
log("The generated FSM cell still generates the original state signal with its\n");
log("original encoding. The 'fsm_opt' pass can be used in combination with the\n");
log("'opt_clean' pass to eliminate this signal.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing FSM_EXTRACT pass (extracting FSM from design).\n");
extra_args(args, 1, design);
CellTypes ct;
ct.setup_internals();
ct.setup_internals_mem();
ct.setup_stdcells();
ct.setup_stdcells_mem();
for (auto &mod_it : design->modules_)
{
if (!design->selected(mod_it.second))
continue;
module = mod_it.second;
assign_map.set(module);
sig2driver.clear();
sig2trigger.clear();
exclusive_ctrls.clear();
for (auto cell : module->cells()) {
for (auto &conn_it : cell->connections()) {
if (ct.cell_output(cell->type, conn_it.first) || !ct.cell_known(cell->type)) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2driver.insert(sig, sig2driver_entry_t(cell->name, conn_it.first));
}
if (ct.cell_input(cell->type, conn_it.first) && cell->hasPort("\\Y") &&
cell->getPort("\\Y").size() == 1 && (conn_it.first == "\\A" || conn_it.first == "\\B")) {
RTLIL::SigSpec sig = conn_it.second;
assign_map.apply(sig);
sig2trigger.insert(sig, sig2driver_entry_t(cell->name, conn_it.first));
}
}
if (cell->type == "$pmux") {
RTLIL::SigSpec sel_sig = assign_map(cell->getPort("\\S"));
for (auto &bit1 : sel_sig)
for (auto &bit2 : sel_sig)
if (bit1 != bit2)
exclusive_ctrls[bit1].insert(bit2);
}
}
std::vector<RTLIL::Wire*> wire_list;
for (auto &wire_it : module->wires_)
if (wire_it.second->attributes.count("\\fsm_encoding") > 0 && wire_it.second->attributes["\\fsm_encoding"].decode_string() != "none")
if (design->selected(module, wire_it.second))
wire_list.push_back(wire_it.second);
for (auto wire : wire_list)
extract_fsm(wire);
}
assign_map.clear();
sig2driver.clear();
sig2trigger.clear();
}
} FsmExtractPass;
PRIVATE_NAMESPACE_END
|