File: callbacks.rst

package info (click to toggle)
yt 4.1.4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 76,192 kB
  • sloc: python: 125,909; ansic: 6,303; cpp: 3,590; sh: 556; javascript: 352; makefile: 131; csh: 36
file content (947 lines) | stat: -rw-r--r-- 31,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
.. _callbacks:

Plot Modifications: Overplotting Contours, Velocities, Particles, and More
==========================================================================

Adding callbacks to plots
-------------------------

After a plot is generated using the standard tools (e.g. SlicePlot,
ProjectionPlot, etc.), it can be annotated with any number of ``callbacks``
before being saved to disk.  These callbacks can modify the plots by adding
lines, text, markers, streamlines, velocity vectors, contours, and more.

Callbacks can be applied to plots created with
:class:`~yt.visualization.plot_window.SlicePlot`,
:class:`~yt.visualization.plot_window.ProjectionPlot`,
:class:`~yt.visualization.plot_window.AxisAlignedSlicePlot`,
:class:`~yt.visualization.plot_window.AxisAlignedProjectionPlot`,
:class:`~yt.visualization.plot_window.OffAxisSlicePlot`, or
:class:`~yt.visualization.plot_window.OffAxisProjectionPlot`, by calling
one of the ``annotate_`` methods that hang off of the plot object.
The ``annotate_`` methods are dynamically generated based on the list
of available callbacks.  For example:

.. code-block:: python

   slc = SlicePlot(ds, "x", ("gas", "density"))
   slc.annotate_title("This is a Density plot")

would add the :func:`~yt.visualization.plot_modifications.TitleCallback` to
the plot object.  All of the callbacks listed below are available via
similar ``annotate_`` functions.

To clear one or more annotations from an existing plot, see the
:ref:`clear_annotations function <clear-annotations>`.

For a brief demonstration of a few of these callbacks in action together,
see the cookbook recipe: :ref:`annotations-recipe`.

Also note that new ``annotate_`` methods can be defined without modifying yt's
source code, see :ref:`extend-annotations`.


Coordinate Systems in Callbacks
-------------------------------

Many of the callbacks (e.g.
:class:`~yt.visualization.plot_modifications.TextLabelCallback`) are specified
to occur at user-defined coordinate locations (like where to place a marker
or text on the plot).  There are several different coordinate systems used
to identify these locations.  These coordinate systems can be specified with
the ``coord_system`` keyword in the relevant callback, which is by default
set to ``data``.  The valid coordinate systems are:

    ``data`` – the 3D dataset coordinates

    ``plot`` – the 2D coordinates defined by the actual plot limits

    ``axis`` – the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right

    ``figure`` – the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right

Here we will demonstrate these different coordinate systems for an projection
of the x-plane (i.e. with axes in the y and z directions):

.. python-script::

    import yt

    ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
    s = yt.SlicePlot(ds, "x", ("gas", "density"))
    s.set_axes_unit("kpc")

    # Plot marker and text in data coords
    s.annotate_marker((0.2, 0.5, 0.9), coord_system="data")
    s.annotate_text((0.2, 0.5, 0.9), "data: (0.2, 0.5, 0.9)", coord_system="data")

    # Plot marker and text in plot coords
    s.annotate_marker((200, -300), coord_system="plot")
    s.annotate_text((200, -300), "plot: (200, -300)", coord_system="plot")

    # Plot marker and text in axis coords
    s.annotate_marker((0.1, 0.2), coord_system="axis")
    s.annotate_text((0.1, 0.2), "axis: (0.1, 0.2)", coord_system="axis")

    # Plot marker and text in figure coords
    # N.B. marker will not render outside of axis bounds
    s.annotate_marker((0.1, 0.2), coord_system="figure", color="black")
    s.annotate_text(
        (0.1, 0.2),
        "figure: (0.1, 0.2)",
        coord_system="figure",
        text_args={"color": "black"},
    )
    s.save()

Note that for non-cartesian geometries and ``coord_system="data"``, the coordinates
are still interpreted in the corresponding cartesian system. For instance using a polar
dataset from AMRVAC :

.. python-script::

    import yt

    ds = yt.load("amrvac/bw_polar_2D0000.dat")
    s = yt.plot_2d(ds, ("gas", "density"))
    s.set_background_color("density", "black")

    # Plot marker and text in data coords
    s.annotate_marker((0.2, 0.5, 0.9), coord_system="data")
    s.annotate_text((0.2, 0.5, 0.9), "data: (0.2, 0.5, 0.9)", coord_system="data")

    # Plot marker and text in plot coords
    s.annotate_marker((0.4, -0.5), coord_system="plot")
    s.annotate_text((0.4, -0.5), "plot: (0.4, -0.5)", coord_system="plot")

    # Plot marker and text in axis coords
    s.annotate_marker((0.1, 0.2), coord_system="axis")
    s.annotate_text((0.1, 0.2), "axis: (0.1, 0.2)", coord_system="axis")

    # Plot marker and text in figure coords
    # N.B. marker will not render outside of axis bounds
    s.annotate_marker((0.6, 0.2), coord_system="figure")
    s.annotate_text((0.6, 0.2), "figure: (0.6, 0.2)", coord_system="figure")
    s.save()

Available Callbacks
-------------------

The underlying functions are more thoroughly documented in :ref:`callback-api`.

.. _clear-annotations:

Clear Callbacks (Some or All)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: clear_annotations(index=None)

    This function will clear previous annotations (callbacks) in the plot.
    If no index is provided, it will clear all annotations to the plot.
    If an index is provided, it will clear only the Nth annotation
    to the plot.  Note that the index goes from 0..N, and you can
    specify the index of the last added annotation as -1.

    (This is a proxy for
    :func:`~yt.visualization.plot_window.clear_annotations`.)

.. python-script::

    import yt

    ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
    p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
    p.annotate_scale()
    p.annotate_timestamp()

    # Oops, I didn't want any of that.
    p.clear_annotations()
    p.save()

.. _annotate-list:

List Currently Applied Callbacks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: list_annotations()

   This function will print a list of each of the currently applied
   callbacks together with their index.  The index can be used with
   :ref:`clear_annotations() function <clear-annotations>` to remove a
   specific callback.

   (This is a proxy for
   :func:`~yt.visualization.plot_window.list_annotations`.)

.. python-script::

    import yt

    ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
    p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
    p.annotate_scale()
    p.annotate_timestamp()
    p.list_annotations()

.. _annotate-arrow:

Overplot Arrow
~~~~~~~~~~~~~~

.. function:: annotate_arrow(self, pos, length=0.03, coord_system='data', **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ArrowCallback`.)

    Overplot an arrow pointing at a position for highlighting a specific
    feature.  Arrow points from lower left to the designated position with
    arrow length "length".

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="c")
   slc.annotate_arrow((0.5, 0.5, 0.5), length=0.06, color="blue")
   slc.save()

.. _annotate-clumps:

Clump Finder Callback
~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_clumps(self, clumps, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ClumpContourCallback`.)

   Take a list of ``clumps`` and plot them as a set of
   contours.

.. python-script::

   import numpy as np

   import yt
   from yt.data_objects.level_sets.api import Clump, find_clumps

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   data_source = ds.disk([0.5, 0.5, 0.5], [0.0, 0.0, 1.0], (8.0, "kpc"), (1.0, "kpc"))

   c_min = 10 ** np.floor(np.log10(data_source[("gas", "density")]).min())
   c_max = 10 ** np.floor(np.log10(data_source[("gas", "density")]).max() + 1)

   master_clump = Clump(data_source, ("gas", "density"))
   master_clump.add_validator("min_cells", 20)

   find_clumps(master_clump, c_min, c_max, 2.0)
   leaf_clumps = master_clump.leaves

   prj = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   prj.annotate_clumps(leaf_clumps)
   prj.save("clumps")

.. _annotate-contours:

Overplot Contours
~~~~~~~~~~~~~~~~~

.. function:: annotate_contour(self, field, ncont=5, factor=4, take_log=False,\
                               clim=None, plot_args=None, label=False, \
                               text_args=None, data_source=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ContourCallback`.)

   Add contours in ``field`` to the plot.  ``ncont`` governs the number of
   contours generated, ``factor`` governs the number of points used in the
   interpolation, ``take_log`` governs how it is contoured and ``clim`` gives
   the (upper, lower) limits for contouring.

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   s = yt.SlicePlot(ds, "x", ("gas", "density"), center="max")
   s.annotate_contour(("gas", "temperature"))
   s.save()

.. _annotate-quivers:

Overplot Quivers
~~~~~~~~~~~~~~~~

Axis-Aligned Data Sources
^^^^^^^^^^^^^^^^^^^^^^^^^

.. function:: annotate_quiver(self, field_x, field_y, field_c=None, *, factor=16, scale=None, \
                              scale_units=None, normalize=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.QuiverCallback`.)

   Adds a 'quiver' plot to any plot, using the ``field_x`` and ``field_y`` from
   the associated data, skipping every ``factor`` pixels in the
   discretization. A third field, ``field_c``, can be used as color; which is the
   counterpart of ``matplotlib.axes.Axes.quiver``'s final positional argument ``C``.
   ``scale`` is the data units per arrow length unit using
   ``scale_units``. If ``normalize`` is ``True``, the fields will be scaled by
   their local (in-plane) length, allowing morphological features to be more
   clearly seen for fields with substantial variation in field strength.
   All additional keyword arguments are passed down to ``matplotlib.Axes.axes.quiver``.

   Example using a constant color

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(
       ds,
       "z",
       ("gas", "density"),
       center=[0.5, 0.5, 0.5],
       weight_field="density",
       width=(20, "kpc"),
   )
   p.annotate_quiver(
      ("gas", "velocity_x"),
      ("gas", "velocity_y"),
      factor=16,
      color="purple",
   )
   p.save()


And now using a continuous colormap

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(
       ds,
       "z",
       ("gas", "density"),
       center=[0.5, 0.5, 0.5],
       weight_field="density",
       width=(20, "kpc"),
   )
   p.annotate_quiver(
      ("gas", "velocity_x"),
      ("gas", "velocity_y"),
      ("gas", "vorticity_z"),
      factor=16,
      cmap="inferno_r",
   )
   p.save()


Off-Axis Data Sources
^^^^^^^^^^^^^^^^^^^^^

.. function:: annotate_cquiver(self, field_x, field_y, field_c=None, *, factor=16, scale=None, \
                               scale_units=None, normalize=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.CuttingQuiverCallback`.)

   Get a quiver plot on top of a cutting plane, using the ``field_x`` and
   ``field_y`` from the associated data, skipping every ``factor`` datapoints in
   the discretization. ``scale`` is the data units per arrow length unit using
   ``scale_units``. If ``normalize`` is ``True``, the fields will be scaled by
   their local (in-plane) length, allowing morphological features to be more
   clearly seen for fields with substantial variation in field strength.
   Additional arguments can be passed to the ``plot_args`` dictionary, see
   matplotlib.axes.Axes.quiver for more info.

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   s = yt.OffAxisSlicePlot(ds, [1, 1, 0], [("gas", "density")], center="c")
   s.annotate_cquiver(
       ("gas", "cutting_plane_velocity_x"),
       ("gas", "cutting_plane_velocity_y"),
       factor=10,
       color="orange",
   )
   s.zoom(1.5)
   s.save()

.. _annotate-grids:

Overplot Grids
~~~~~~~~~~~~~~

.. function:: annotate_grids(self, alpha=0.7, min_pix=1, min_pix_ids=20, \
                             draw_ids=False, id_loc="lower left", \
                             periodic=True, min_level=None, \
                             max_level=None, cmap='B-W Linear_r', \
                             edgecolors=None, linewidth=1.0)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.GridBoundaryCallback`.)

   Adds grid boundaries to a plot, optionally with alpha-blending via the
   ``alpha`` keyword. Cuttoff for display is at ``min_pix`` wide. ``draw_ids``
   puts the grid id in the ``id_loc`` corner of the grid. (``id_loc`` can be
   upper/lower left/right. ``draw_ids`` is not so great in projections...)

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="max")
   slc.annotate_grids()
   slc.save()

.. _annotate-cell-edges:

Overplot Cell Edges
~~~~~~~~~~~~~~~~~~~

.. function:: annotate_cell_edges(line_width=0.002, alpha=1.0, color='black')

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.CellEdgesCallback`.)

    Annotate the edges of cells, where the ``line_width`` relative to size of
    the longest plot axis is specified.  The ``alpha`` of the overlaid image and
    the ``color`` of the lines are also specifiable.  Note that because the
    lines are drawn from both sides of a cell, the image sometimes has the
    effect of doubling the line width.  Color here is a matplotlib color name or
    a 3-tuple of RGB float values.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   slc = yt.SlicePlot(ds, "z", ("gas", "density"), width=(10, "kpc"), center="max")
   slc.annotate_cell_edges()
   slc.save()


.. _annotate-image-line:

Overplot a Straight Line
~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_line(self, p1, p2, *, coord_system='data', **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.LinePlotCallback`.)

    Overplot a line with endpoints at p1 and p2.  p1 and p2
    should be 2D or 3D coordinates consistent with the coordinate
    system denoted in the "coord_system" keyword.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="m", width=(10, "kpc"))
   p.annotate_line((0.3, 0.4), (0.8, 0.9), coord_system="axis")
   p.save()

.. _annotate-magnetic-field:

Overplot Magnetic Field Quivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_magnetic_field(self, factor=16, *, scale=None, \
                                      scale_units=None, normalize=False, \
                                      **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.MagFieldCallback`.)

   Adds a 'quiver' plot of magnetic field to the plot, skipping every ``factor``
   datapoints in the discretization. ``scale`` is the data units per arrow
   length unit using ``scale_units``. If ``normalize`` is ``True``, the
   magnetic fields will be scaled by their local (in-plane) length, allowing
   morphological features to be more clearly seen for fields with substantial
   variation in field strength. Additional arguments can be passed to the
   ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info.

.. python-script::

   import yt

   ds = yt.load(
       "MHDSloshing/virgo_low_res.0054.vtk",
       units_override={
           "time_unit": (1, "Myr"),
           "length_unit": (1, "Mpc"),
           "mass_unit": (1e17, "Msun"),
       },
   )
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(300, "kpc"))
   p.annotate_magnetic_field(headlength=3)
   p.save()

.. _annotate-marker:

Annotate a Point With a Marker
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_marker(self, pos, marker='x', *, coord_system='data', **kwargs)

    (This is a proxy for
    :class:`~yt.visualization.plot_modifications.MarkerAnnotateCallback`.)

    Overplot a marker on a position for highlighting specific features.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(10, "kpc"))
   s.annotate_marker((-2, -2), coord_system="plot", color="blue", s=500)
   s.save()

.. _annotate-particles:

Overplotting Particle Positions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_particles(self, width, p_size=1.0, col='k', marker='o',\
                                 stride=1, ptype='all', alpha=1.0, data_source=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ParticleCallback`.)

   Adds particle positions, based on a thick slab along ``axis`` with a
   ``width`` along the line of sight.  ``p_size`` controls the number of pixels
   per particle, and ``col`` governs the color.  ``ptype`` will restrict plotted
   particles to only those that are of a given type.  ``data_source`` will only
   plot particles contained within the data_source object.

   WARNING: if ``data_source`` is a :class:`yt.data_objects.selection_data_containers.YTCutRegion`
   then the ``width`` parameter is ignored.

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   p = yt.ProjectionPlot(ds, "x", ("gas", "density"), center="m", width=(10, "Mpc"))
   p.annotate_particles((10, "Mpc"))
   p.save()

To plot only the central particles

.. python-script::

   import yt

   ds = yt.load("Enzo_64/DD0043/data0043")
   p = yt.ProjectionPlot(ds, "x", ("gas", "density"), center="m", width=(10, "Mpc"))
   sp = ds.sphere(p.data_source.center, ds.quan(1, "Mpc"))
   p.annotate_particles((10, "Mpc"), data_source=sp)
   p.save()

.. _annotate-sphere:

Overplot a Circle on a Plot
~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_sphere(self, center, radius, circle_args=None, \
                              coord_system='data', text=None, text_args=None)

    (This is a proxy for
    :class:`~yt.visualization.plot_modifications.SphereCallback`.)

    Overplot a circle with designated center and radius with optional text.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_sphere([0.5, 0.5, 0.5], radius=(2, "kpc"), circle_args={"color": "black"})
   p.save()

.. _annotate-streamlines:

Overplot Streamlines
~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_streamlines(self, field_x, field_y, *, factor=16, \
                                   density=1, display_threshold=None, \
                                   **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.StreamlineCallback`.)

   Add streamlines to any plot, using the ``field_x`` and ``field_y`` from the
   associated data, using ``nx`` and ``ny`` starting points that are bounded by
   ``xstart`` and ``ystart``.  To begin streamlines from the left edge of the
   plot, set ``start_at_xedge`` to ``True``; for the bottom edge, use
   ``start_at_yedge``.  A line with the qmean vector magnitude will cover
   1.0/``factor`` of the image.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   s.annotate_streamlines(("gas", "velocity_x"), ("gas", "velocity_y"))
   s.save()

.. _annotate-line-integral-convolution:

Overplot Line Integral Convolution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_line_integral_convolution(self, field_x, field_y, \
                                                 texture=None, kernellen=50., \
                                                 lim=(0.5,0.6), cmap='binary', \
                                                 alpha=0.8, const_alpha=False)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.LineIntegralConvolutionCallback`.)

   Add line integral convolution to any plot, using the ``field_x`` and ``field_y``
   from the associated data. A white noise background will be used for ``texture``
   as default. Adjust the bounds of ``lim`` in the range of ``[0, 1]`` which applies
   upper and lower bounds to the values of line integral convolution and enhance
   the visibility of plots. When ``const_alpha=False``, alpha will be weighted
   spatially by the values of line integral convolution; otherwise a constant value
   of the given alpha is used.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   s.annotate_line_integral_convolution(("gas", "velocity_x"), ("gas", "velocity_y"), lim=(0.5, 0.65))
   s.save()

.. _annotate-text:

Overplot Text
~~~~~~~~~~~~~

.. function:: annotate_text(self, pos, text, coord_system='data', \
                            text_args=None, inset_box_args=None)

    (This is a proxy for
    :class:`~yt.visualization.plot_modifications.TextLabelCallback`.)

    Overplot text on the plot at a specified position. If you desire an inset
    box around your text, set one with the inset_box_args dictionary
    keyword.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   s = yt.SlicePlot(ds, "z", ("gas", "density"), center="max", width=(10, "kpc"))
   s.annotate_text((2, 2), "Galaxy!", coord_system="plot")
   s.save()

.. _annotate-title:

Add a Title
~~~~~~~~~~~

.. function:: annotate_title(self, title='Plot')

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.TitleCallback`.)

   Accepts a ``title`` and adds it to the plot.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_title("Density Plot")
   p.save()

.. _annotate-velocity:

Overplot Quivers for the Velocity Field
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_velocity(self, factor=16, *, scale=None, scale_units=None, \
                                normalize=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.VelocityCallback`.)

   Adds a 'quiver' plot of velocity to the plot, skipping every ``factor``
   datapoints in the discretization. ``scale`` is the data units per arrow
   length unit using ``scale_units``. If ``normalize`` is ``True``, the
   velocity fields will be scaled by their local (in-plane) length, allowing
   morphological features to be more clearly seen for fields with substantial
   variation in field strength. Additional arguments can be passed to the
   ``plot_args`` dictionary, see matplotlib.axes.Axes.quiver for more info.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", ("gas", "density"), center="m", width=(10, "kpc"))
   p.annotate_velocity(headwidth=4)
   p.save()

.. _annotate-timestamp:

Add the Current Time and/or Redshift
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_timestamp(x_pos=None, y_pos=None, corner='lower_left',\
                                 time=True, redshift=False, \
                                 time_format='t = {time:.1f} {units}', \
                                 time_unit=None, time_offset=None, \
                                 redshift_format='z = {redshift:.2f}', \
                                 draw_inset_box=False, coord_system='axis', \
                                 text_args=None, inset_box_args=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.TimestampCallback`.)

    Annotates the timestamp and/or redshift of the data output at a specified
    location in the image (either in a present corner, or by specifying (x,y)
    image coordinates with the x_pos, y_pos arguments.  If no time_units are
    specified, it will automatically choose appropriate units.  It allows for
    custom formatting of the time and redshift information, the specification
    of an inset box around the text, and changing the value of the timestamp
    via a constant offset.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_timestamp()
   p.save()

.. _annotate-scale:

Add a Physical Scale Bar
~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_scale(corner='lower_right', coeff=None, \
                             unit=None, pos=None, \
                             scale_text_format="{scale} {units}", \
                             max_frac=0.16, min_frac=0.015, \
                             coord_system='axis', text_args=None, \
                             size_bar_args=None, draw_inset_box=False, \
                             inset_box_args=None)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.ScaleCallback`.)

    Annotates the scale of the plot at a specified location in the image
    (either in a preset corner, or by specifying (x,y) image coordinates with
    the pos argument.  Coeff and units (e.g. 1 Mpc or 100 kpc) refer to the
    distance scale you desire to show on the plot.  If no coeff and units are
    specified, an appropriate pair will be determined such that your scale bar
    is never smaller than min_frac or greater than max_frac of your plottable
    axis length.  Additional customization of the scale bar is possible by
    adjusting the text_args and size_bar_args dictionaries.  The text_args
    dictionary accepts matplotlib's font_properties arguments to override
    the default font_properties for the current plot.  The size_bar_args
    dictionary accepts keyword arguments for the AnchoredSizeBar class in
    matplotlib's axes_grid toolkit. Finally, the format of the scale bar text
    can be adjusted using the scale_text_format keyword argument.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", ("gas", "density"), center="c", width=(20, "kpc"))
   p.annotate_scale()
   p.save()

.. _annotate-triangle-facets:

Annotate Triangle Facets Callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_triangle_facets(triangle_vertices, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.TriangleFacetsCallback`.)

   This add a line collection of a SlicePlot's plane-intersection
   with the triangles to the plot. This callback is ideal for a
   dataset representing a geometric model of triangular facets.

.. python-script::

   import os

   import h5py

   import yt

   # Load data file
   ds = yt.load("MoabTest/fng_usrbin22.h5m")

   # Create the desired slice plot
   s = yt.SlicePlot(ds, "z", ("moab", "TALLY_TAG"))

   # get triangle vertices from file (in this case hdf5)

   # setup file path for yt test directory
   filename = os.path.join(
       yt.config.ytcfg.get("yt", "test_data_dir"), "MoabTest/mcnp_n_impr_fluka.h5m"
   )
   f = h5py.File(filename, mode="r")
   coords = f["/tstt/nodes/coordinates"][:]
   conn = f["/tstt/elements/Tri3/connectivity"][:]
   points = coords[conn - 1]

   # Annotate slice-triangle intersection contours to the plot
   s.annotate_triangle_facets(points, colors="black")
   s.save()

.. _annotate-mesh-lines:

Annotate Mesh Lines Callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_mesh_lines(**kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.MeshLinesCallback`.)

   This draws the mesh line boundaries over a plot using a Matplotlib
   line collection. This callback is only useful for unstructured or
   semi-structured mesh datasets.

.. python-script::

   import yt

   ds = yt.load("MOOSE_sample_data/out.e")
   sl = yt.SlicePlot(ds, "z", ("connect1", "nodal_aux"))
   sl.annotate_mesh_lines(color="black")
   sl.save()

.. _annotate-ray:

Overplot the Path of a Ray
~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: annotate_ray(ray, *, arrow=False, **kwargs)

   (This is a proxy for
   :class:`~yt.visualization.plot_modifications.RayCallback`.)

    Adds a line representing the projected path of a ray across the plot.  The
    ray can be either a
    :class:`~yt.data_objects.selection_objects.ray.YTOrthoRay`,
    :class:`~yt.data_objects.selection_objects.ray.YTRay`, or a
    Trident :class:`~trident.light_ray.LightRay`
    object.  annotate_ray() will properly account for periodic rays across the
    volume.

.. python-script::

   import yt

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   oray = ds.ortho_ray(0, (0.3, 0.4))
   ray = ds.ray((0.1, 0.2, 0.3), (0.6, 0.7, 0.8))
   p = yt.ProjectionPlot(ds, "z", ("gas", "density"))
   p.annotate_ray(oray)
   p.annotate_ray(ray)
   p.save()


Applying filters on the final image
-----------------------------------

It is also possible to operate on the plotted image directly by using
one of the fixed resolution buffer filter as described in
:ref:`frb-filters`.
Note that it is necessary to call the plot object's ``refresh`` method
to apply filters.

.. python-script::

   import yt

   ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030')
   p = yt.SlicePlot(ds, 'z', 'density')
   p.frb.apply_gauss_beam(sigma=30)
   p.refresh()
   p.save()


.. _extend-annotations:


Extending annotations methods
-----------------------------

New ``annotate_`` methods can be added to plot objects at runtime (i.e., without
modifying yt's source code) by subclassing the base ``PlotCallback`` class.
This is the recommended way to add custom and unique annotations to yt plots,
as it can be done through local plugins, individual scripts, or even external packages.

Here's a minimal example:


.. python-script::

   import yt
   from yt.visualization.api import PlotCallback


   class TextToPositionCallback(PlotCallback):
      # bind a new `annotate_text_to_position` plot method
      _type_name = "text_to_position"

      def __init__(self, text, x, y):
         # this method can have arbitrary arguments
         # and should store them without alteration,
         # but not run expensive computations
         self.text = text
         self.position = (x, y)

      def __call__(self, plot):
         # this method's signature is required
         # this is where we perform potentially expensive operations

         # the plot argument exposes matplotlib objects:
         # - plot._axes is a matplotlib.axes.Axes object
         # - plot._figure is a matplotlib.figure.Figure object
         plot._axes.annotate(
               self.text,
               xy=self.position,
               xycoords="data",
               xytext=(0.2, 0.6),
               textcoords="axes fraction",
               color="white",
               fontsize=30,
               arrowprops=dict(facecolor="black", shrink=0.05),
         )

   ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
   p = yt.SlicePlot(ds, "z", "density")
   p.annotate_text_to_position("Galactic center !", x=0, y=0)
   p.save()