1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
#
# Unweighted hitting set maxsat solver.
# interleaved with local hill-climbing improvements
# and also maxres relaxation steps to reduce number
# of soft constraints.
#
from z3 import *
import random
counter = 0
def add_def(s, fml):
global counter
name = Bool(f"def-{counter}")
counter += 1
s.add(name == fml)
return name
def relax_core(s, core, Fs):
core = list(core)
if len(core) == 0:
return
prefix = BoolVal(True)
Fs -= { f for f in core }
for i in range(len(core)-1):
prefix = add_def(s, And(core[i], prefix))
Fs |= { add_def(s, Or(prefix, core[i+1])) }
def restrict_cs(s, cs, Fs):
cs = list(cs)
if len(cs) == 0:
return
prefix = BoolVal(False)
Fs -= { f for f in cs }
for i in range(len(cs)-1):
prefix = add_def(s, Or(cs[i], prefix))
Fs |= { add_def(s, And(prefix, cs[i+1])) }
def count_sets_by_size(sets):
sizes = {}
for core in sets:
sz = len(core)
if sz not in sizes:
sizes[sz] = 0
sizes[sz] += 1
sizes = list(sizes.items())
sizes = sorted(sizes, key = lambda p : p[0])
print(sizes)
#set_param("sat.euf", True)
#set_param("tactic.default_tactic","sat")
#set_param("sat.cardinality.solver",False)
#set_param("sat.cardinality.encoding", "circuit")
#set_param(verbose=1)
class Soft:
def __init__(self, soft):
self.formulas = set(soft)
self.original_soft = soft.copy()
self.offset = 0
self.init_names()
def init_names(self):
self.name2formula = { Bool(f"s{s}") : s for s in self.formulas }
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
#
# TODO: try to replace this by a recursive invocation of HsMaxSAT
# such that the invocation is incremental with respect to adding constraints
# and has resource bounded invocation.
#
class HsPicker:
def __init__(self, soft):
self.soft = soft
self.opt_backoff_limit = 0
self.opt_backoff_count = 0
self.timeout_value = 6000
def pick_hs_(self, Ks, lo):
hs = set()
for ks in Ks:
if not any(k in ks for k in hs):
h = random.choice([h for h in ks])
hs = hs | { h }
print("approximate hitting set", len(hs), "smallest possible size", lo)
return hs, lo
#
# This can improve lower bound, but is expensive.
# Note that Z3 does not work well for hitting set optimization.
# MIP solvers contain better
# tuned approaches thanks to LP lower bounds and likely other properties.
# Would be nice to have a good hitting set
# heuristic built into Z3....
#
def pick_hs(self, Ks, lo):
if len(Ks) == 0:
return set(), lo
if self.opt_backoff_count < self.opt_backoff_limit:
self.opt_backoff_count += 1
return self.pick_hs_(Ks, lo)
opt = Optimize()
for k in Ks:
opt.add(Or([self.soft.formula2name[f] for f in k]))
for n in self.soft.formula2name.values():
obj = opt.add_soft(Not(n))
opt.set("timeout", self.timeout_value)
is_sat = opt.check()
lo = max(lo, opt.lower(obj).as_long())
self.opt_backoff_count = 0
if is_sat == sat:
if self.opt_backoff_limit > 1:
self.opt_backoff_limit -= 1
self.timeout_value += 500
mdl = opt.model()
hs = [self.soft.name2formula[n] for n in self.soft.formula2name.values() if is_true(mdl.eval(n))]
return set(hs), lo
else:
print("Timeout", self.timeout_value, "lo", lo, "limit", self.opt_backoff_limit)
self.opt_backoff_limit += 1
self.timeout_value += 500
return self.pick_hs_(Ks, lo)
class HsMaxSAT:
def __init__(self, soft, s):
self.s = s # solver object
self.soft = Soft(soft) # Soft constraints
self.hs = HsPicker(self.soft) # Pick a hitting set
self.model = None # Current best model
self.lo = 0 # Current lower bound
self.hi = len(soft) # Current upper bound
self.Ks = [] # Set of Cores
self.Cs = [] # Set of correction sets
self.small_set_size = 6
self.small_set_threshold = 1
self.num_max_res_failures = 0
self.corr_set_enabled = True
self.patterns = []
def has_many_small_sets(self, sets):
small_count = len([c for c in sets if len(c) <= self.small_set_size])
return self.small_set_threshold <= small_count
def get_small_disjoint_sets(self, sets):
hs = set()
result = []
min_size = min(len(s) for s in sets)
def insert(bound, sets, hs, result):
for s in sets:
if len(s) == bound and not any(c in hs for c in s):
result += [s]
hs = hs | set(s)
return hs, result
for sz in range(min_size, min_size + 3):
hs, result = insert(sz, sets, hs, result)
return result
def reinit_soft(self, num_cores_relaxed):
self.soft.init_names()
self.soft.offset += num_cores_relaxed
self.Ks = []
self.Cs = []
self.lo -= num_cores_relaxed
print("New offset", self.soft.offset)
def maxres(self):
#
# If there are sufficiently many small cores, then
# we reduce the soft constraints by maxres.
#
if self.has_many_small_sets(self.Ks) or (not self.corr_set_enabled and not self.has_many_small_sets(self.Cs) and self.num_max_res_failures > 0):
self.num_max_res_failures = 0
cores = self.get_small_disjoint_sets(self.Ks)
for core in cores:
self.small_set_size = max(4, min(self.small_set_size, len(core) - 2))
relax_core(self.s, core, self.soft.formulas)
self.reinit_soft(len(cores))
self.corr_set_enabled = True
return
#
# If there are sufficiently many small correction sets, then
# we reduce the soft constraints by dual maxres (IJCAI 2015)
#
# TODO: the heuristic for when to invoking correction set restriction
# needs fine-tuning. For example, the if min(Ks)*optimality_gap < min(Cs)*(max(SS))
# we might want to prioritize core relaxation to make progress with less overhead.
# here: max(SS) = |Soft|-min(Cs) is the size of the maximal satisfying subset
# the optimality gap is self.hi - self.offset
# which is a bound on how many cores have to be relaxed before determining optimality.
#
if self.corr_set_enabled and self.has_many_small_sets(self.Cs):
self.num_max_res_failures = 0
cs = self.get_small_disjoint_sets(self.Cs)
for corr_set in cs:
print("restrict cs", len(corr_set))
# self.small_set_size = max(4, min(self.small_set_size, len(corr_set) - 2))
restrict_cs(self.s, corr_set, self.soft.formulas)
self.s.add(Or(corr_set))
self.reinit_soft(0)
self.corr_set_enabled = False
return
#
# Increment the failure count. If the failure count reaches a threshold
# then increment the lower bounds for performing maxres or dual maxres
#
self.num_max_res_failures += 1
print("Small set size", self.small_set_size, "num skips", self.num_max_res_failures)
if self.num_max_res_failures > 3:
self.num_max_res_failures = 0
self.small_set_size += 100
def pick_hs(self):
hs, self.lo = self.hs.pick_hs(self.Ks, self.lo)
return hs
def save_model(self):
#
# You can save a model here.
# For example, add the string: self.model.sexpr()
# to a file, or print bounds in custom format.
#
# print(f"Bound: {self.lo}")
# for f in self.soft.original_soft:
# print(f"{f} := {self.model.eval(f)}")
pass
def add_pattern(self, orig_cs):
named = { f"{f}" : f for f in self.soft.original_soft }
sorted_names = sorted(named.keys())
sorted_soft = [named[f] for f in sorted_names]
bits = [1 if f not in orig_cs else 0 for f in sorted_soft]
def eq_bits(b1, b2):
return all(b1[i] == b2[i] for i in range(len(b1)))
def num_overlaps(b1, b2):
return sum(b1[i] == b2[i] for i in range(len(b1)))
if not any(eq_bits(b, bits) for b in self.patterns):
if len(self.patterns) > 0:
print(num_overlaps(bits, self.patterns[-1]), len(bits), bits)
self.patterns += [bits]
counts = [sum(b[i] for b in self.patterns) for i in range(len(bits))]
print(counts)
#
# Crude, quick core reduction attempt
#
def reduce_core(self, core):
s = self.s
if len(core) <= 4:
return core
s.set("timeout", 200)
i = 0
num_undef = 0
orig_len = len(core)
core = list(core)
while i < len(core):
is_sat = s.check([core[j] for j in range(len(core)) if j != i])
if is_sat == unsat:
core = s.unsat_core()
elif is_sat == sat:
self.improve(s.model())
bound = self.hi - self.soft.offset - 1
else:
num_undef += 1
if num_undef > 3:
break
i += 1
print("Reduce", orig_len, "->", len(core), "iterations", i, "unknown", num_undef)
s.set("timeout", 100000000)
return core
def improve(self, new_model):
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
cs = self.soft.formulas - mss
self.Cs += [cs]
orig_cs = { f for f in self.soft.original_soft if not is_true(new_model.eval(f)) }
cost = len(orig_cs)
if self.model is None:
self.model = new_model
if cost <= self.hi:
self.add_pattern(orig_cs)
print("improve", self.hi, cost)
self.model = new_model
self.save_model()
assert self.model
if cost < self.hi:
self.hi = cost
return True
return False
def try_rotate(self, mss):
backbones = set()
backbone2core = {}
ps = self.soft.formulas - mss
num_sat = 0
num_unsat = 0
improved = False
while len(ps) > 0:
p = random.choice([p for p in ps])
ps = ps - { p }
is_sat = self.s.check(mss | backbones | { p })
if is_sat == sat:
mdl = self.s.model()
mss = mss | {p}
ps = ps - {p}
if self.improve(mdl):
improved = True
num_sat += 1
elif is_sat == unsat:
backbones = backbones | { Not(p) }
core = set()
for c in self.s.unsat_core():
if c in backbone2core:
core = core | backbone2core[c]
else:
core = core | { c }
if len(core) < 20:
self.Ks += [core]
backbone2core[Not(p)] = set(core) - { p }
num_unsat += 1
else:
print("unknown")
print("rotate-1 done, sat", num_sat, "unsat", num_unsat)
if improved:
self.mss_rotate(mss, backbone2core)
return improved
def mss_rotate(self, mss, backbone2core):
counts = { c : 0 for c in mss }
max_count = 0
max_val = None
for core in backbone2core.values():
for c in core:
assert c in mss
counts[c] += 1
if max_count < counts[c]:
max_count = counts[c]
max_val = c
print("rotate max-count", max_count, "num occurrences", len({c for c in counts if counts[c] == max_count}))
print("Number of plateaus", len({ c for c in counts if counts[c] <= 1 }))
for c in counts:
if counts[c] > 1:
print("try-rotate", counts[c])
if self.try_rotate(mss - { c }):
break
def local_mss(self, new_model):
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
########################################
# test effect of random sub-sampling
#
#mss = list(mss)
#ms = set()
#for i in range(len(mss)//2):
# ms = ms | { random.choice([p for p in mss]) }
#mss = ms
####
ps = self.soft.formulas - mss
backbones = set()
qs = set()
backbone2core = {}
while len(ps) > 0:
p = random.choice([p for p in ps])
ps = ps - { p }
is_sat = self.s.check(mss | backbones | { p })
print(len(ps), is_sat)
sys.stdout.flush()
if is_sat == sat:
mdl = self.s.model()
rs = { p }
#
# by commenting this out, we use a more stubborn exploration
# by using the random seed as opposed to current model as a guide
# to what gets satisfied.
#
# Not sure if it really has an effect.
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
#
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
mss = mss | rs
ps = ps - rs
qs = qs - rs
if self.improve(mdl):
self.mss_rotate(mss, backbone2core)
elif is_sat == unsat:
core = set()
for c in self.s.unsat_core():
if c in backbone2core:
core = core | backbone2core[c]
else:
core = core | { c }
core = self.reduce_core(core)
self.Ks += [core]
backbone2core[Not(p)] = set(core) - { p }
backbones = backbones | { Not(p) }
else:
qs = qs | { p }
if len(qs) > 0:
print("Number undetermined", len(qs))
def unsat_core(self):
core = self.s.unsat_core()
return self.reduce_core(core)
def get_cores(self, hs):
core = self.unsat_core()
remaining = self.soft.formulas - hs
num_cores = 0
cores = [core]
if len(core) == 0:
self.lo = self.hi - self.soft.offset
return
while True:
is_sat = self.s.check(remaining)
if unsat == is_sat:
core = self.unsat_core()
if len(core) == 0:
self.lo = self.hi - self.soft.offset
return
cores += [core]
h = random.choice([c for c in core])
remaining = remaining - { h }
elif sat == is_sat and num_cores == len(cores):
self.local_mss(self.s.model())
break
elif sat == is_sat:
self.improve(self.s.model())
#
# Extend the size of the hitting set using the new cores
# and update remaining using these cores.
# The new hitting set contains at least one new element
# from the original cores
#
hs = hs | { random.choice([c for c in cores[i]]) for i in range(num_cores, len(cores)) }
remaining = self.soft.formulas - hs
num_cores = len(cores)
else:
print(is_sat)
break
self.Ks += [set(core) for core in cores]
print("total number of cores", len(self.Ks))
print("total number of correction sets", len(self.Cs))
def step(self):
soft = self.soft
hs = self.pick_hs()
is_sat = self.s.check(soft.formulas - set(hs))
if is_sat == sat:
self.improve(self.s.model())
elif is_sat == unsat:
self.get_cores(hs)
else:
print("unknown")
print("maxsat [", self.lo + soft.offset, ", ", self.hi, "]","offset", soft.offset)
count_sets_by_size(self.Ks)
count_sets_by_size(self.Cs)
self.maxres()
def run(self):
while self.lo + self.soft.offset < self.hi:
self.step()
#set_option(verbose=1)
def main(file):
s = Solver()
opt = Optimize()
opt.from_file(file)
s.add(opt.assertions())
#
# We just assume this is an unweighted MaxSAT optimization problem.
# Weights are ignored.
#
soft = [f.arg(0) for f in opt.objectives()[0].children()]
hs = HsMaxSAT(soft, s)
hs.run()
if __name__ == '__main__':
main(sys.argv[1])
|