1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
from z3 import *
import heapq
import numpy
import time
import random
verbose = True
# Simplistic (and fragile) converter from
# a class of Horn clauses corresponding to
# a transition system into a transition system
# representation as <init, trans, goal>
# It assumes it is given three Horn clauses
# of the form:
# init(x) => Invariant(x)
# Invariant(x) and trans(x,x') => Invariant(x')
# Invariant(x) and goal(x) => Goal(x)
# where Invariant and Goal are uninterpreted predicates
class Horn2Transitions:
def __init__(self):
self.trans = True
self.init = True
self.inputs = []
self.goal = True
self.index = 0
def parse(self, file):
fp = Fixedpoint()
goals = fp.parse_file(file)
for r in fp.get_rules():
if not is_quantifier(r):
continue
b = r.body()
if not is_implies(b):
continue
f = b.arg(0)
g = b.arg(1)
if self.is_goal(f, g):
continue
if self.is_transition(f, g):
continue
if self.is_init(f, g):
continue
def is_pred(self, p, name):
return is_app(p) and p.decl().name() == name
def is_goal(self, body, head):
if not self.is_pred(head, "Goal"):
return False
pred, inv = self.is_body(body)
if pred is None:
return False
self.goal = self.subst_vars("x", inv, pred)
self.goal = self.subst_vars("i", self.goal, self.goal)
self.inputs += self.vars
self.inputs = list(set(self.inputs))
return True
def is_body(self, body):
if not is_and(body):
return None, None
fmls = [f for f in body.children() if self.is_inv(f) is None]
inv = None
for f in body.children():
if self.is_inv(f) is not None:
inv = f;
break
return And(fmls), inv
def is_inv(self, f):
if self.is_pred(f, "Invariant"):
return f
return None
def is_transition(self, body, head):
pred, inv0 = self.is_body(body)
if pred is None:
return False
inv1 = self.is_inv(head)
if inv1 is None:
return False
pred = self.subst_vars("x", inv0, pred)
self.xs = self.vars
pred = self.subst_vars("xn", inv1, pred)
self.xns = self.vars
pred = self.subst_vars("i", pred, pred)
self.inputs += self.vars
self.inputs = list(set(self.inputs))
self.trans = pred
return True
def is_init(self, body, head):
for f in body.children():
if self.is_inv(f) is not None:
return False
inv = self.is_inv(head)
if inv is None:
return False
self.init = self.subst_vars("x", inv, body)
return True
def subst_vars(self, prefix, inv, fml):
subst = self.mk_subst(prefix, inv)
self.vars = [ v for (k,v) in subst ]
return substitute(fml, subst)
def mk_subst(self, prefix, inv):
self.index = 0
if self.is_inv(inv) is not None:
return [(f, self.mk_bool(prefix)) for f in inv.children()]
else:
vars = self.get_vars(inv)
return [(f, self.mk_bool(prefix)) for f in vars]
def mk_bool(self, prefix):
self.index += 1
return Bool("%s%d" % (prefix, self.index))
def get_vars(self, f, rs=[]):
if is_var(f):
return z3util.vset(rs + [f], str)
else:
for f_ in f.children():
rs = self.get_vars(f_, rs)
return z3util.vset(rs, str)
# Produce a finite domain solver.
# The theory QF_FD covers bit-vector formulas
# and pseudo-Boolean constraints.
# By default cardinality and pseudo-Boolean
# constraints are converted to clauses. To override
# this default for cardinality constraints
# we set sat.cardinality.solver to True
def fd_solver():
s = SolverFor("QF_FD")
s.set("sat.cardinality.solver", True)
return s
# negate, avoid double negation
def negate(f):
if is_not(f):
return f.arg(0)
else:
return Not(f)
def cube2clause(cube):
return Or([negate(f) for f in cube])
class State:
def __init__(self, s):
self.R = set([])
self.solver = s
def add(self, clause):
if clause not in self.R:
self.R |= { clause }
self.solver.add(clause)
def is_seq(f):
return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
# Check if the initial state is bad
def check_disjoint(a, b):
s = fd_solver()
s.add(a)
s.add(b)
return unsat == s.check()
# Remove clauses that are subsumed
def prune(R):
removed = set([])
s = fd_solver()
for f1 in R:
s.push()
for f2 in R:
if f2 not in removed:
s.add(Not(f2) if f1.eq(f2) else f2)
if s.check() == unsat:
removed |= { f1 }
s.pop()
return R - removed
# Quip variant of IC3
must = True
may = False
class QLemma:
def __init__(self, c):
self.cube = c
self.clause = cube2clause(c)
self.bad = False
def __hash__(self):
return hash(tuple(set(self.cube)))
def __eq__(self, qlemma2):
if set(self.cube) == set(qlemma2.cube) and self.bad == qlemma2.bad:
return True
else:
return False
def __ne__():
if not self.__eq__(self, qlemma2):
return True
else:
return False
class QGoal:
def __init__(self, cube, parent, level, must, encounter):
self.level = level
self.cube = cube
self.parent = parent
self.must = must
def __lt__(self, other):
return self.level < other.level
class QReach:
# it is assumed that there is a single initial state
# with all latches set to 0 in hardware design, so
# here init will always give a state where all variable are set to 0
def __init__(self, init, xs):
self.xs = xs
self.constant_xs = [Not(x) for x in self.xs]
s = fd_solver()
s.add(init)
is_sat = s.check()
assert is_sat == sat
m = s.model()
# xs is a list, "for" will keep the order when iterating
self.states = numpy.array([[False for x in self.xs]]) # all set to False
assert not numpy.max(self.states) # since all element is False, so maximum should be False
# check if new state exists
def is_exist(self, state):
if state in self.states:
return True
return False
def enumerate(self, i, state_b, state):
while i < len(state) and state[i] not in self.xs:
i += 1
if i >= len(state):
if state_b.tolist() not in self.states.tolist():
self.states = numpy.append(self.states, [state_b], axis = 0)
return state_b
else:
return None
state_b[i] = False
if self.enumerate(i+1, state_b, state) is not None:
return state_b
else:
state_b[i] = True
return self.enumerate(i+1, state_b, state)
def is_full_state(self, state):
for i in range(len(self.xs)):
if state[i] in self.xs:
return False
return True
def add(self, cube):
state = self.cube2partial_state(cube)
assert len(state) == len(self.xs)
if not self.is_exist(state):
return None
if self.is_full_state(state):
self.states = numpy.append(self.states, [state], axis = 0)
else:
# state[i] is instance, state_b[i] is boolean
state_b = numpy.array(state)
for i in range(len(state)): # state is of same length as self.xs
# i-th literal in state hasn't been assigned value
# init un-assigned literals in state_b as True
# make state_b only contain boolean value
if state[i] in self.xs:
state_b[i] = True
else:
state_b[i] = is_true(state[i])
if self.enumerate(0, state_b, state) is not None:
lits_to_remove = set([negate(f) for f in list(set(cube) - set(self.constant_xs))])
self.constant_xs = list(set(self.constant_xs) - lits_to_remove)
return state
return None
def cube2partial_state(self, cube):
s = fd_solver()
s.add(And(cube))
is_sat = s.check()
assert is_sat == sat
m = s.model()
state = numpy.array([m.eval(x) for x in self.xs])
return state
def state2cube(self, s):
result = copy.deepcopy(self.xs) # x1, x2, ...
for i in range(len(self.xs)):
if not s[i]:
result[i] = Not(result[i])
return result
def intersect(self, cube):
state = self.cube2partial_state(cube)
mask = True
for i in range(len(self.xs)):
if is_true(state[i]) or is_false(state[i]):
mask = (self.states[:, i] == state[i]) & mask
intersects = numpy.reshape(self.states[mask], (-1, len(self.xs)))
if intersects.size > 0:
return And(self.state2cube(intersects[0])) # only need to return one single intersect
return None
class Quip:
def __init__(self, init, trans, goal, x0, inputs, xn):
self.x0 = x0
self.inputs = inputs
self.xn = xn
self.init = init
self.bad = goal
self.trans = trans
self.min_cube_solver = fd_solver()
self.min_cube_solver.add(Not(trans))
self.goals = []
s = State(fd_solver())
s.add(init)
s.solver.add(trans) # check if a bad state can be reached in one step from current level
self.states = [s]
self.s_bad = fd_solver()
self.s_good = fd_solver()
self.s_bad.add(self.bad)
self.s_good.add(Not(self.bad))
self.reachable = QReach(self.init, x0)
self.frames = [] # frames is a 2d list, each row (representing level) is a set containing several (clause, bad) pairs
self.count_may = 0
def next(self, f):
if is_seq(f):
return [self.next(f1) for f1 in f]
return substitute(f, zip(self.x0, self.xn))
def prev(self, f):
if is_seq(f):
return [self.prev(f1) for f1 in f]
return substitute(f, zip(self.xn, self.x0))
def add_solver(self):
s = fd_solver()
s.add(self.trans)
self.states += [State(s)]
def R(self, i):
return And(self.states[i].R)
def value2literal(self, m, x):
value = m.eval(x)
if is_true(value):
return x
if is_false(value):
return Not(x)
return None
def values2literals(self, m, xs):
p = [self.value2literal(m, x) for x in xs]
return [x for x in p if x is not None]
def project0(self, m):
return self.values2literals(m, self.x0)
def projectI(self, m):
return self.values2literals(m, self.inputs)
def projectN(self, m):
return self.values2literals(m, self.xn)
# Block a cube by asserting the clause corresponding to its negation
def block_cube(self, i, cube):
self.assert_clause(i, cube2clause(cube))
# Add a clause to levels 1 until i
def assert_clause(self, i, clause):
for j in range(1, i + 1):
self.states[j].add(clause)
assert str(self.states[j].solver) != str([False])
# minimize cube that is core of Dual solver.
# this assumes that props & cube => Trans
# which means props & cube can only give us a Tr in Trans,
# and it will never make !Trans sat
def minimize_cube(self, cube, inputs, lits):
# min_cube_solver has !Trans (min_cube.solver.add(!Trans))
is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs])
assert is_sat == unsat
# unsat_core gives us some lits which make Tr sat,
# so that we can ignore other lits and include more states
core = self.min_cube_solver.unsat_core()
assert core
return [c for c in core if c in set(cube)]
# push a goal on a heap
def push_heap(self, goal):
heapq.heappush(self.goals, (goal.level, goal))
# make sure cube to be blocked excludes all reachable states
def check_reachable(self, cube):
s = fd_solver()
for state in self.reachable.states:
s.push()
r = self.reachable.state2cube(state)
s.add(And(self.prev(r)))
s.add(self.prev(cube))
is_sat = s.check()
s.pop()
if is_sat == sat:
# if sat, it means the cube to be blocked contains reachable states
# so it is an invalid cube
return False
# if all fail, is_sat will be unsat
return True
# Rudimentary generalization:
# If the cube is already unsat with respect to transition relation
# extract a core (not necessarily minimal)
# otherwise, just return the cube.
def generalize(self, cube, f):
s = self.states[f - 1].solver
if unsat == s.check(cube):
core = s.unsat_core()
if self.check_reachable(core):
return core, f
return cube, f
def valid_reachable(self, level):
s = fd_solver()
s.add(self.init)
for i in range(level):
s.add(self.trans)
for state in self.reachable.states:
s.push()
s.add(And(self.next(self.reachable.state2cube(state))))
print self.reachable.state2cube(state)
print s.check()
s.pop()
def lemmas(self, level):
return [(l.clause, l.bad) for l in self.frames[level]]
# whenever a new reachable state is found, we use it to mark some existing lemmas as bad lemmas
def mark_bad_lemmas(self, new):
s = fd_solver()
reset = False
for frame in self.frames:
for lemma in frame:
s.push()
s.add(lemma.clause)
is_sat = s.check(new)
if is_sat == unsat:
reset = True
lemma.bad = True
s.pop()
if reset:
self.states = [self.states[0]]
for i in range(1, len(self.frames)):
self.add_solver()
for lemma in self.frames[i]:
if not lemma.bad:
self.states[i].add(lemma.clause)
# prev & tras -> r', such that r' intersects with cube
def add_reachable(self, prev, cube):
s = fd_solver()
s.add(self.trans)
s.add(prev)
s.add(self.next(And(cube)))
is_sat = s.check()
assert is_sat == sat
m = s.model()
new = self.projectN(m)
state = self.reachable.add(self.prev(new)) # always add as non-primed
if state is not None: # if self.states do not have new state yet
self.mark_bad_lemmas(self.prev(new))
# Check if the negation of cube is inductive at level f
def is_inductive(self, f, cube):
s = self.states[f - 1].solver
s.push()
s.add(self.prev(Not(And(cube))))
is_sat = s.check(cube)
if is_sat == sat:
m = s.model()
s.pop()
if is_sat == sat:
cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m)))
elif is_sat == unsat:
cube, f = self.generalize(cube, f)
cube = self.next(cube)
return cube, f, is_sat
# Determine if there is a cube for the current state
# that is potentially reachable.
def unfold(self, level):
core = []
self.s_bad.push()
R = self.R(level)
self.s_bad.add(R) # check if current frame intersects with bad states, no trans
is_sat = self.s_bad.check()
if is_sat == sat:
m = self.s_bad.model()
cube = self.project0(m)
props = cube + self.projectI(m)
self.s_good.push()
self.s_good.add(R)
is_sat2 = self.s_good.check(props)
assert is_sat2 == unsat
core = self.s_good.unsat_core()
assert core
core = [c for c in core if c in set(cube)]
self.s_good.pop()
self.s_bad.pop()
return is_sat, core
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def quip_blocked(self, s0, f0):
self.push_heap(QGoal(self.next(s0), None, f0, must, 0))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
if not g.must:
self.count_may -= 1
sys.stdout.flush()
if f == 0:
if g.must:
s = fd_solver()
s.add(self.init)
s.add(self.prev(g.cube))
# since init is a complete assignment, so g.cube must equal to init in sat solver
assert is_sat == s.check()
if verbose:
print("")
return g
self.add_reachable(self.init, g.parent.cube)
continue
r0 = self.reachable.intersect(self.prev(g.cube))
if r0 is not None:
if g.must:
if verbose:
print ""
s = fd_solver()
s.add(self.trans)
# make it as a concrete reachable state
# intersect returns an And(...), so use children to get cube list
g.cube = r0.children()
while True:
is_sat = s.check(self.next(g.cube))
assert is_sat == sat
r = self.next(self.project0(s.model()))
r = self.reachable.intersect(self.prev(r))
child = QGoal(self.next(r.children()), g, 0, g.must, 0)
g = child
if not check_disjoint(self.init, self.prev(g.cube)):
# g is init, break the loop
break
init = g
while g.parent is not None:
g.parent.level = g.level + 1
g = g.parent
return init
if g.parent is not None:
self.add_reachable(r0, g.parent.cube)
continue
cube = None
is_sat = sat
f_1 = len(self.frames) - 1
while f_1 >= f:
for l in self.frames[f_1]:
if not l.bad and len(l.cube) > 0 and set(l.cube).issubset(g.cube):
cube = l.cube
is_sat == unsat
break
f_1 -= 1
if cube is None:
cube, f_1, is_sat = self.is_inductive(f, g.cube)
if is_sat == unsat:
self.frames[f_1].add(QLemma(self.prev(cube)))
self.block_cube(f_1, self.prev(cube))
if f_1 < f0:
# learned clause might also be able to block same bad states in higher level
if set(list(cube)) != set(list(g.cube)):
self.push_heap(QGoal(cube, None, f_1 + 1, may, 0))
self.count_may += 1
else:
# re-queue g.cube in higher level, here g.parent is simply for tracking down the trace when output.
self.push_heap(QGoal(g.cube, g.parent, f_1 + 1, g.must, 0))
if not g.must:
self.count_may += 1
else:
# qcube is a predecessor of g
qcube = QGoal(cube, g, f_1 - 1, g.must, 0)
if not g.must:
self.count_may += 1
self.push_heap(qcube)
if verbose:
print("")
return None
# Check if there are two states next to each other that have the same clauses.
def is_valid(self):
i = 1
inv = None
while True:
# self.states[].R contains full lemmas
# self.frames[] contains delta-encoded lemmas
while len(self.states) <= i+1:
self.add_solver()
while len(self.frames) <= i+1:
self.frames.append(set())
duplicates = set([])
for l in self.frames[i+1]:
if l in self.frames[i]:
duplicates |= {l}
self.frames[i] = self.frames[i] - duplicates
pushed = set([])
for l in (self.frames[i] - self.frames[i+1]):
if not l.bad:
s = self.states[i].solver
s.push()
s.add(self.next(Not(l.clause)))
s.add(l.clause)
is_sat = s.check()
s.pop()
if is_sat == unsat:
self.frames[i+1].add(l)
self.states[i+1].add(l.clause)
pushed |= {l}
self.frames[i] = self.frames[i] - pushed
if (not (self.states[i].R - self.states[i+1].R)
and len(self.states[i].R) != 0):
inv = prune(self.states[i].R)
F_inf = self.frames[i]
j = i + 1
while j < len(self.states):
for l in F_inf:
self.states[j].add(l.clause)
j += 1
self.frames[len(self.states)-1] = F_inf
self.frames[i] = set([])
break
elif (len(self.states[i].R) == 0
and len(self.states[i+1].R) == 0):
break
i += 1
if inv is not None:
self.s_bad.push()
self.s_bad.add(And(inv))
is_sat = self.s_bad.check()
if is_sat == unsat:
self.s_bad.pop()
return And(inv)
self.s_bad.pop()
return None
def run(self):
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
inv = self.is_valid() # self.add_solver() here
if inv is not None:
return inv
is_sat, cube = self.unfold(level)
if is_sat == unsat:
level += 1
if verbose:
print("Unfold %d" % level)
sys.stdout.flush()
elif is_sat == sat:
cex = self.quip_blocked(cube, level)
if cex is not None:
return cex
else:
return is_sat
def test(file):
h2t = Horn2Transitions()
h2t.parse(file)
if verbose:
print("Test file: %s") % file
mp = Quip(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns)
start_time = time.time()
result = mp.run()
end_time = time.time()
if isinstance(result, QGoal):
g = result
if verbose:
print("Trace")
while g:
if verbose:
print(g.level, g.cube)
g = g.parent
print("--- used %.3f seconds ---" % (end_time - start_time))
validate(mp, result, mp.trans)
return
if isinstance(result, ExprRef):
if verbose:
print("Invariant:\n%s " % result)
print("--- used %.3f seconds ---" % (end_time - start_time))
validate(mp, result, mp.trans)
return
print(result)
def validate(var, result, trans):
if isinstance(result, QGoal):
g = result
s = fd_solver()
s.add(trans)
while g.parent is not None:
s.push()
s.add(var.prev(g.cube))
s.add(var.next(g.parent.cube))
assert sat == s.check()
s.pop()
g = g.parent
if verbose:
print "--- validation succeed ----"
return
if isinstance(result, ExprRef):
inv = result
s = fd_solver()
s.add(trans)
s.push()
s.add(var.prev(inv))
s.add(Not(var.next(inv)))
assert unsat == s.check()
s.pop()
cube = var.prev(var.init)
step = 0
while True:
step += 1
# too many steps to reach invariant
if step > 1000:
if verbose:
print "--- validation failed --"
return
if not check_disjoint(var.prev(cube), var.prev(inv)):
# reach invariant
break
s.push()
s.add(cube)
assert s.check() == sat
cube = var.projectN(s.model())
s.pop()
if verbose:
print "--- validation succeed ----"
return
test("data/horn1.smt2")
test("data/horn2.smt2")
test("data/horn3.smt2")
test("data/horn4.smt2")
test("data/horn5.smt2")
# test("data/horn6.smt2") # not able to finish
|