1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
/*****************************************************************************
* Gnome Wave Cleaner Version 0.19
* Copyright (C) 2001 Jeffrey J. Welty
* (Modified by Damien Zammit for zam-plugins 2014)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*******************************************************************************/
#include "Denoise.hpp"
#include "bessel.inc"
void Denoise::compute_bark_z(int FFT_SIZE, int rate)
{
int k;
/* compute the bark z value for this frequency bin */
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
double freq = (double)rate / 2.0 /(double)(FFT_SIZE/2)*(double)k;
bark_z[k] = 7.0*log(freq/650.0 + sqrt(1 + (freq/650.0)*(freq/650.0)));
}
}
void Denoise::compute_johnston_gain(int FFT_SIZE, double tonality_factor)
{
int k;
for (k = 1; k <= FFT_SIZE/2 ; ++k) {
int j;
for(j = k-1 ; j > 0 ; j--) {
double bark_diff = bark_z[k] - bark_z[j];
double johnston = 15.81 + 7.5*(bark_diff+.474) - 17.5*sqrt(1.0+(bark_diff+0.474)*(bark_diff+0.474));
double johnston_masked = johnston - (tonality_factor*(14.5+bark_z[j])+5.5*(1.0 - tonality_factor));
double gain = pow(10.0, johnston_masked/10.0);
jg_lower[k][k-j] = gain;
if(k - j > 10) break;
}
for(j = k ; j <= FFT_SIZE/2 ; j++) {
double bark_diff = bark_z[j] - bark_z[k];
double johnston = 15.81 + 7.5*(bark_diff+.474) - 17.5*sqrt(1.0+(bark_diff+0.474)*(bark_diff+0.474));
double johnston_masked = johnston - (tonality_factor*(14.5+bark_z[j])+5.5*(1.0 - tonality_factor));
double gain = pow(10.0, johnston_masked/10.0);
jg_upper[k][j-k] = gain;
if(j - k > 10) break;
}
}
}
int Denoise::get_window_delta()
{
if(window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
return FFT_SIZE/2;
} else {
if(window_type == DENOISE_WINDOW_BLACKMAN)
return FFT_SIZE/smoothness;
else
return 3*FFT_SIZE/4;
}
}
void Denoise::compute_sum_window_wgts()
{
int delta = get_window_delta();
int i, k;
for(i = 0 ; i < FFT_SIZE ; i++) {
sum_window_wgts[i] = 0.0;
for(k = i ; k < FFT_SIZE+i ; k += delta) {
sum_window_wgts[i] += window_coef[k%FFT_SIZE];
}
}
}
double Denoise::gain_weiner(double Yk2, double Dk2)
{
double gain;
double Xk2 = Yk2 - Dk2;
if(Yk2 > Dk2)
gain = (Xk2) / (Xk2+Dk2);
else
gain = 0.0;
return gain;
}
double Denoise::gain_power_subtraction(double Yk2, double Dk2)
{
double level = MAX(Yk2-Dk2, 0.0);
if(Yk2 > DBL_MIN)
return level/Yk2;
else
return 0.0;
}
double Denoise::alpha_lorber(double snr)
{
double snr_db = 10.*log10(snr);
double alpha;
if(snr_db > 20) return 1.0;
alpha = MIN((3.0 - 0.10*snr_db), 3.5);
return alpha;
}
double Denoise::hypergeom(double theta)
{
if(theta < 7.389056)
return exp(-theta/2.0)*(1.0+theta*i0(theta/2.0)+theta*i1(theta/2.0));
else
return exp(0.09379 + 0.50447*log(theta));
}
double Denoise::gain_em(double Rprio, double Rpost, double alpha)
{
/* Ephraim-Malah classic noise suppression, from 1984 paper */
double gain = 0.886226925*sqrt(1.0/(1.0+Rpost)*(Rprio/(1.0+Rprio)));
gain *= hypergeom((1.0+Rpost)*(Rprio/(1.0+Rprio)));
return gain;
}
double Denoise::blackman(int k, int N)
{
double p = ((double)(k))/(double)(N-1);
return 0.42-0.5*cos(2.0*M_PI*p) + 0.08*cos(4.0*M_PI*p);
}
double Denoise::hanning(int k, int N)
{
double p = ((double)(k))/(double)(N-1);
return 0.5 - 0.5 * cos(2.0*M_PI*p);
}
double Denoise::blackman_hybrid(int k, int n_flat, int N)
{
if(k >= (N-n_flat)/2 && k <= n_flat+(N-n_flat)/2-1) {
return 1.0;
} else {
double p;
if(k >= n_flat+(N-n_flat)/2-1) k -= n_flat;
p = (double)(k)/(double)(N-n_flat-1);
return 0.42-0.5*cos(2.0*M_PI*p) + 0.08*cos(4.0*M_PI*p);
}
}
double Denoise::welty_alpha(double w, double x)
{
double alpha = ( log(acos(-2.0*w+1)) - log(M_PI) ) / log(1.0 - x);
return alpha;
}
double Denoise::fft_window(int k, int N, int window_type)
{
if(window_type == DENOISE_WINDOW_BLACKMAN) {
return blackman(k, N);
} else if(window_type == DENOISE_WINDOW_BLACKMAN_HYBRID) {
return blackman_hybrid(k, N-N/4, N);
} else if(window_type == DENOISE_WINDOW_HANNING_OVERLAP_ADD) {
return hanning(k, N);
}
return 0.0;
}
double Denoise::db2w(double db)
{
return pow(10,db/10);
}
void Denoise::fft_remove_noise(const float* ins, float* outs, uint32_t frames, fftw_real noise_min2[], fftw_real noise_max2[], fftw_real noise_avg2[], FFTW(plan) *pFor, FFTW(plan) *pBak)
{
int k;
uint32_t i;
fftw_real noise2[DENOISE_MAX_FFT/2+1];
fftw_real Y2[DENOISE_MAX_FFT/2+1];
fftw_real masked[DENOISE_MAX_FFT/2+1];
fftw_real gain_k[DENOISE_MAX_FFT];
static fftw_real bsig_prev[DENOISE_MAX_FFT],bY2_prev[DENOISE_MAX_FFT/2+1],bgain_prev[DENOISE_MAX_FFT/2+1];
fftw_real *sig_prev, *Y2_prev,*gain_prev;
double SFM;
sig_prev = bsig_prev;
Y2_prev = bY2_prev;
gain_prev = bgain_prev;
for (i = 0; i < frames; i++) {
windowed[i] = ins[i];
}
for (i = frames; i < (uint32_t)FFT_SIZE; i++) {
windowed[i] = 0.f;
}
FFTW(execute)(*pFor);
{
double sum_log_p = 0.0;
double sum_p = 0.0;
double kinv = 1./(double)(FFT_SIZE/2.0);
for (k = 1; k <= FFT_SIZE/2 ; ++k) {
//noise2[k] = noise_max2[k];
noise2[k] = noise_min2[k] + 0.5*(noise_max2[k] - noise_min2[k]);
//noise2[k] = noise_avg2[k];
if(k < FFT_SIZE/2) {
Y2[k] = out[k]*out[k] + out[FFT_SIZE-k]*out[FFT_SIZE-k];
} else {
Y2[k] = out[k]*out[k];
}
sum_log_p += log10(Y2[k]);
sum_p += Y2[k];
}
SFM = 10.0*( kinv*sum_log_p - log10(sum_p*kinv) );
tonality_factor = MIN(SFM/-60.0, 1);
}
for (k = 1; k <= FFT_SIZE/2 ; ++k) {
int j ;
masked[k] = 0.0 ;
for(j = k-1 ; j > 0 ; j--) {
double gain = jg_lower[k][k-j] ;
if(k - j > 10) break ;
masked[k] += MAX((Y2[j]-noise2[j]),0.0)*gain ;
}
for(j = k ; j <= FFT_SIZE/2 ; j++) {
double gain = jg_upper[k][j-k] ;
if(gain < 1.e-2) break ;
if(j - k > 10) break ;
masked[k] += MAX((Y2[j]-noise2[j]),0.0)*gain ;
}
}
for (k = 1; k <= FFT_SIZE/2 ; ++k) {
if(noise2[k] > DBL_MIN) {
double gain, Fk, Gk;
/*
double Rpost = MAX(Y2[k]/noise2[k]-1.0, 0.0);
double alpha = dn_gamma;
double Rprio;
if(prev_sample == 1)
Rprio = (1.0-alpha)*Rpost+alpha*gain_prev[k]*gain_prev[k]*Y2_prev[k]/noise2[k];
else
Rprio = Rpost;
gain = gain_em(Rprio, Rpost, alpha);
gain_prev[k] = gain;
Y2_prev[k] = Y2[k];
*/
double Rpost = MAX(Y2[k]/noise2[k]-1.0, 0.0) ;
double alpha = dn_gamma ;
double Rprio ;
if(prev_sample == 1)
Rprio = (1.0-alpha)*Rpost+alpha*gain_prev[k]*gain_prev[k]*Y2_prev[k]/noise2[k] ;
else
Rprio = Rpost ;
Y2_prev[k] = Y2[k] ;
if(Y2[k] > masked[k]) {
gain = MAX(masked[k]/Y2[k], Rprio/(Rprio+1.0)) ;
} else {
gain = 1.0 ;
}
gain_prev[k] = gain ;
Fk = amount*(1.0-gain);
if(Fk < 0.0) Fk = 0.0;
if(Fk > 1.0) Fk = 1.0;
Gk = 1.0 - Fk;
out[k] *= Gk;
if(k < FFT_SIZE/2) out[FFT_SIZE-k] *= Gk;
gain_k[k] = Gk;
}
}
/* the inverse fft */
FFTW(execute)(*pBak);
for(k = 0 ; k < FFT_SIZE ; k++)
windowed[k] /= (double)(FFT_SIZE);
prev_sample = 1;
for (i = 0; i < frames; i++) {
outs[i] = windowed[i];
}
}
Denoise::Denoise(float srate) {
int k;
FFT_SIZE = 16384;
dn_gamma = 0.95;
n_noise_samples = FFT_SIZE;
rate = (int) srate;
amount = 0.3;
smoothness = 11;
randomness = 0.0;
estimate_power_floor = 0;
noisebufpos = 0;
prev_sample = 0;
pFor = FFTW(plan_r2r_1d)(FFT_SIZE, windowed, out, FFTW_R2HC, FFTW_ESTIMATE);
pBak = FFTW(plan_r2r_1d)(FFT_SIZE, out, windowed, FFTW_HC2R, FFTW_ESTIMATE);
pForLeft = FFTW(plan_r2r_1d)(FFT_SIZE, left, tmp, FFTW_R2HC, FFTW_ESTIMATE);
window_type = DENOISE_WINDOW_BLACKMAN;
for(k = 0; k < FFT_SIZE; k++) {
window_coef[k] = fft_window(k,FFT_SIZE, window_type);
left_prev_frame[k] = 0.0;
left[k] = 0.0;
}
}
void Denoise::process(const float* ins, float* outs, float* noisebuffer, uint32_t frames, int togglenoise) {
if (togglenoise == 1) {
uint32_t i;
for (i = 0; i < frames; i++) {
noisebuffer[noisebufpos] = ins[i];
noisebufpos++;
if (noisebufpos >= n_noise_samples)
noisebufpos = 0;
if (noisebufpos % (n_noise_samples/2) == 0) {
get_noise_sample(noisebuffer, left_noise_min, left_noise_max, left_noise_avg);
}
outs[i] = ins[i];
}
} else {
fft_remove_noise(ins, outs, frames, left_noise_min, left_noise_max, left_noise_avg, &pFor, &pBak);
}
}
Denoise::~Denoise() {
FFTW(destroy_plan)(pForLeft);
FFTW(destroy_plan)(pBak);
FFTW(destroy_plan)(pFor);
}
void Denoise::get_noise_sample(float* noisebuffer, fftw_real *left_noise_min, fftw_real *left_noise_max, fftw_real *left_noise_avg)
{
int i, k;
for(k = 0 ; k < FFT_SIZE ; k++) {
window_coef[k] = 1.0;
left_noise_max[k] = 0.0;
left_noise_avg[k] = 0.0;
left_noise_min[k] = DBL_MAX;
}
for(k = 0 ; k < FFT_SIZE ; k++) {
left[k] = noisebuffer[k]*window_coef[k];
}
FFTW(execute)(pForLeft);
/* convert noise sample to power spectrum */
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
double p2;
if(k < FFT_SIZE/2) {
p2 = tmp[k] * tmp[k] + tmp[FFT_SIZE-k]*tmp[FFT_SIZE-k];
} else {
/* Nyquist Frequency */
p2 = tmp[k] * tmp[k];
}
left_noise_min[k] = MIN(left_noise_min[k], p2);
left_noise_max[k] = MAX(left_noise_max[k], p2);
left_noise_avg[k] += p2;
}
//}
/* average out the power spectrum samples */
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
left_noise_avg[k] /= (double)n_noise_samples;
}
compute_bark_z(FFT_SIZE, rate);
compute_johnston_gain(FFT_SIZE, tonality_factor);
/*
if(freq_filter) {
if(estimate_power_floor) {
double half_freq_w = (max_sample_freq - min_sample_freq)/2.0;
double sum_left = 0.0;
double n_left = 0.0;
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
double freq = (double)rate / 2.0 /(double)(FFT_SIZE/2)*(double)k;
if(freq < min_sample_freq && freq > min_sample_freq-half_freq_w) {
sum_left += left_noise_avg[k];
n_left += 1.0;
}
if(freq > max_sample_freq && freq < max_sample_freq+half_freq_w) {
sum_left += left_noise_avg[k];
n_left += 1.0;
}
}
if(n_left > 1.e-30) sum_left /= n_left;
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
double freq = (double)rate / 2.0 /(double)(FFT_SIZE/2)*(double)k;
if(freq < min_sample_freq || freq > max_sample_freq) {
left_noise_avg[k] -= sum_left;
}
}
}
for(k = 1 ; k <= FFT_SIZE/2 ; k++) {
double freq = (double)rate / 2.0 /(double)(FFT_SIZE/2)*(double)k;
if(freq < min_sample_freq || freq > max_sample_freq) {
left_noise_avg[k] = 0.0;
}
}
}
// audio_normalize(1);
*/
}
|