1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
|
.. _tutorial:
Tutorial
========
Zarr provides classes and functions for working with N-dimensional arrays that
behave like NumPy arrays but whose data is divided into chunks and each chunk is
compressed. If you are already familiar with HDF5 then Zarr arrays provide
similar functionality, but with some additional flexibility.
.. _tutorial_create:
Creating an array
-----------------
Zarr has several functions for creating arrays. For example::
>>> import zarr
>>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z
<zarr.core.Array (10000, 10000) int32>
The code above creates a 2-dimensional array of 32-bit integers with 10000 rows
and 10000 columns, divided into chunks where each chunk has 1000 rows and 1000
columns (and so there will be 100 chunks in total).
For a complete list of array creation routines see the :mod:`zarr.creation`
module documentation.
.. _tutorial_array:
Reading and writing data
------------------------
Zarr arrays support a similar interface to NumPy arrays for reading and writing
data. For example, the entire array can be filled with a scalar value::
>>> z[:] = 42
Regions of the array can also be written to, e.g.::
>>> import numpy as np
>>> z[0, :] = np.arange(10000)
>>> z[:, 0] = np.arange(10000)
The contents of the array can be retrieved by slicing, which will load the
requested region into memory as a NumPy array, e.g.::
>>> z[0, 0]
0
>>> z[-1, -1]
42
>>> z[0, :]
array([ 0, 1, 2, ..., 9997, 9998, 9999], dtype=int32)
>>> z[:, 0]
array([ 0, 1, 2, ..., 9997, 9998, 9999], dtype=int32)
>>> z[:]
array([[ 0, 1, 2, ..., 9997, 9998, 9999],
[ 1, 42, 42, ..., 42, 42, 42],
[ 2, 42, 42, ..., 42, 42, 42],
...,
[9997, 42, 42, ..., 42, 42, 42],
[9998, 42, 42, ..., 42, 42, 42],
[9999, 42, 42, ..., 42, 42, 42]], dtype=int32)
.. _tutorial_persist:
Persistent arrays
-----------------
In the examples above, compressed data for each chunk of the array was stored in
main memory. Zarr arrays can also be stored on a file system, enabling
persistence of data between sessions. For example::
>>> z1 = zarr.open('data/example.zarr', mode='w', shape=(10000, 10000),
... chunks=(1000, 1000), dtype='i4')
The array above will store its configuration metadata and all compressed chunk
data in a directory called 'data/example.zarr' relative to the current working
directory. The :func:`zarr.convenience.open` function provides a convenient way
to create a new persistent array or continue working with an existing
array. Note that although the function is called "open", there is no need to
close an array: data are automatically flushed to disk, and files are
automatically closed whenever an array is modified.
Persistent arrays support the same interface for reading and writing data,
e.g.::
>>> z1[:] = 42
>>> z1[0, :] = np.arange(10000)
>>> z1[:, 0] = np.arange(10000)
Check that the data have been written and can be read again::
>>> z2 = zarr.open('data/example.zarr', mode='r')
>>> np.all(z1[:] == z2[:])
True
If you are just looking for a fast and convenient way to save NumPy arrays to
disk then load back into memory later, the functions
:func:`zarr.convenience.save` and :func:`zarr.convenience.load` may be
useful. E.g.::
>>> a = np.arange(10)
>>> zarr.save('data/example.zarr', a)
>>> zarr.load('data/example.zarr')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Please note that there are a number of other options for persistent array
storage, see the section on :ref:`tutorial_storage` below.
.. _tutorial_resize:
Resizing and appending
----------------------
A Zarr array can be resized, which means that any of its dimensions can be
increased or decreased in length. For example::
>>> z = zarr.zeros(shape=(10000, 10000), chunks=(1000, 1000))
>>> z[:] = 42
>>> z.resize(20000, 10000)
>>> z.shape
(20000, 10000)
Note that when an array is resized, the underlying data are not rearranged in
any way. If one or more dimensions are shrunk, any chunks falling outside the
new array shape will be deleted from the underlying store.
For convenience, Zarr arrays also provide an ``append()`` method, which can be
used to append data to any axis. E.g.::
>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z = zarr.array(a, chunks=(1000, 100))
>>> z.shape
(10000, 1000)
>>> z.append(a)
(20000, 1000)
>>> z.append(np.vstack([a, a]), axis=1)
(20000, 2000)
>>> z.shape
(20000, 2000)
.. _tutorial_compress:
Compressors
-----------
A number of different compressors can be used with Zarr. A separate package
called NumCodecs_ is available which provides a common interface to various
compressor libraries including Blosc, Zstandard, LZ4, Zlib, BZ2 and
LZMA. Different compressors can be provided via the ``compressor`` keyword
argument accepted by all array creation functions. For example::
>>> from numcodecs import Blosc
>>> compressor = Blosc(cname='zstd', clevel=3, shuffle=Blosc.BITSHUFFLE)
>>> data = np.arange(100000000, dtype='i4').reshape(10000, 10000)
>>> z = zarr.array(data, chunks=(1000, 1000), compressor=compressor)
>>> z.compressor
Blosc(cname='zstd', clevel=3, shuffle=BITSHUFFLE, blocksize=0)
This array above will use Blosc as the primary compressor, using the Zstandard
algorithm (compression level 3) internally within Blosc, and with the
bit-shuffle filter applied.
When using a compressor, it can be useful to get some diagnostics on the
compression ratio. Zarr arrays provide a ``info`` property which can be used to
print some diagnostics, e.g.::
>>> z.info
Type : zarr.core.Array
Data type : int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : C
Read-only : False
Compressor : Blosc(cname='zstd', clevel=3, shuffle=BITSHUFFLE,
: blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 400000000 (381.5M)
No. bytes stored : 3379344 (3.2M)
Storage ratio : 118.4
Chunks initialized : 100/100
If you don't specify a compressor, by default Zarr uses the Blosc
compressor. Blosc is generally very fast and can be configured in a variety of
ways to improve the compression ratio for different types of data. Blosc is in
fact a "meta-compressor", which means that it can use a number of different
compression algorithms internally to compress the data. Blosc also provides
highly optimized implementations of byte- and bit-shuffle filters, which can
improve compression ratios for some data. A list of the internal compression
libraries available within Blosc can be obtained via::
>>> from numcodecs import blosc
>>> blosc.list_compressors()
['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
In addition to Blosc, other compression libraries can also be used. For example,
here is an array using Zstandard compression, level 1::
>>> from numcodecs import Zstd
>>> z = zarr.array(np.arange(100000000, dtype='i4').reshape(10000, 10000),
... chunks=(1000, 1000), compressor=Zstd(level=1))
>>> z.compressor
Zstd(level=1)
Here is an example using LZMA with a custom filter pipeline including LZMA's
built-in delta filter::
>>> import lzma
>>> lzma_filters = [dict(id=lzma.FILTER_DELTA, dist=4),
... dict(id=lzma.FILTER_LZMA2, preset=1)]
>>> from numcodecs import LZMA
>>> compressor = LZMA(filters=lzma_filters)
>>> z = zarr.array(np.arange(100000000, dtype='i4').reshape(10000, 10000),
... chunks=(1000, 1000), compressor=compressor)
>>> z.compressor
LZMA(format=1, check=-1, preset=None, filters=[{'dist': 4, 'id': 3}, {'id': 33, 'preset': 1}])
The default compressor can be changed by setting the value of the
``zarr.storage.default_compressor`` variable, e.g.::
>>> import zarr.storage
>>> from numcodecs import Zstd, Blosc
>>> # switch to using Zstandard
... zarr.storage.default_compressor = Zstd(level=1)
>>> z = zarr.zeros(100000000, chunks=1000000)
>>> z.compressor
Zstd(level=1)
>>> # switch back to Blosc defaults
... zarr.storage.default_compressor = Blosc()
To disable compression, set ``compressor=None`` when creating an array, e.g.::
>>> z = zarr.zeros(100000000, chunks=1000000, compressor=None)
>>> z.compressor is None
True
.. _tutorial_filters:
Filters
-------
In some cases, compression can be improved by transforming the data in some
way. For example, if nearby values tend to be correlated, then shuffling the
bytes within each numerical value or storing the difference between adjacent
values may increase compression ratio. Some compressors provide built-in filters
that apply transformations to the data prior to compression. For example, the
Blosc compressor has built-in implementations of byte- and bit-shuffle filters,
and the LZMA compressor has a built-in implementation of a delta
filter. However, to provide additional flexibility for implementing and using
filters in combination with different compressors, Zarr also provides a
mechanism for configuring filters outside of the primary compressor.
Here is an example using a delta filter with the Blosc compressor::
>>> from numcodecs import Blosc, Delta
>>> filters = [Delta(dtype='i4')]
>>> compressor = Blosc(cname='zstd', clevel=1, shuffle=Blosc.SHUFFLE)
>>> data = np.arange(100000000, dtype='i4').reshape(10000, 10000)
>>> z = zarr.array(data, chunks=(1000, 1000), filters=filters, compressor=compressor)
>>> z.info
Type : zarr.core.Array
Data type : int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : C
Read-only : False
Filter [0] : Delta(dtype='<i4')
Compressor : Blosc(cname='zstd', clevel=1, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 400000000 (381.5M)
No. bytes stored : 1290562 (1.2M)
Storage ratio : 309.9
Chunks initialized : 100/100
For more information about available filter codecs, see the `Numcodecs
<https://numcodecs.readthedocs.io/>`_ documentation.
.. _tutorial_groups:
Groups
------
Zarr supports hierarchical organization of arrays via groups. As with arrays,
groups can be stored in memory, on disk, or via other storage systems that
support a similar interface.
To create a group, use the :func:`zarr.group` function::
>>> root = zarr.group()
>>> root
<zarr.hierarchy.Group '/'>
Groups have a similar API to the Group class from `h5py
<https://www.h5py.org/>`_. For example, groups can contain other groups::
>>> foo = root.create_group('foo')
>>> bar = foo.create_group('bar')
Groups can also contain arrays, e.g.::
>>> z1 = bar.zeros('baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z1
<zarr.core.Array '/foo/bar/baz' (10000, 10000) int32>
Arrays are known as "datasets" in HDF5 terminology. For compatibility with h5py,
Zarr groups also implement the ``create_dataset()`` and ``require_dataset()``
methods, e.g.::
>>> z = bar.create_dataset('quux', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z
<zarr.core.Array '/foo/bar/quux' (10000, 10000) int32>
Members of a group can be accessed via the suffix notation, e.g.::
>>> root['foo']
<zarr.hierarchy.Group '/foo'>
The '/' character can be used to access multiple levels of the hierarchy in one
call, e.g.::
>>> root['foo/bar']
<zarr.hierarchy.Group '/foo/bar'>
>>> root['foo/bar/baz']
<zarr.core.Array '/foo/bar/baz' (10000, 10000) int32>
The :func:`zarr.hierarchy.Group.tree` method can be used to print a tree
representation of the hierarchy, e.g.::
>>> root.tree()
/
└── foo
└── bar
├── baz (10000, 10000) int32
└── quux (10000, 10000) int32
The :func:`zarr.convenience.open` function provides a convenient way to create or
re-open a group stored in a directory on the file-system, with sub-groups stored in
sub-directories, e.g.::
>>> root = zarr.open('data/group.zarr', mode='w')
>>> root
<zarr.hierarchy.Group '/'>
>>> z = root.zeros('foo/bar/baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z
<zarr.core.Array '/foo/bar/baz' (10000, 10000) int32>
Groups can be used as context managers (in a ``with`` statement).
If the underlying store has a ``close`` method, it will be called on exit.
For more information on groups see the :mod:`zarr.hierarchy` and
:mod:`zarr.convenience` API docs.
.. _tutorial_diagnostics:
Array and group diagnostics
---------------------------
Diagnostic information about arrays and groups is available via the ``info``
property. E.g.::
>>> root = zarr.group()
>>> foo = root.create_group('foo')
>>> bar = foo.zeros('bar', shape=1000000, chunks=100000, dtype='i8')
>>> bar[:] = 42
>>> baz = foo.zeros('baz', shape=(1000, 1000), chunks=(100, 100), dtype='f4')
>>> baz[:] = 4.2
>>> root.info
Name : /
Type : zarr.hierarchy.Group
Read-only : False
Store type : zarr.storage.MemoryStore
No. members : 1
No. arrays : 0
No. groups : 1
Groups : foo
>>> foo.info
Name : /foo
Type : zarr.hierarchy.Group
Read-only : False
Store type : zarr.storage.MemoryStore
No. members : 2
No. arrays : 2
No. groups : 0
Arrays : bar, baz
>>> bar.info
Name : /foo/bar
Type : zarr.core.Array
Data type : int64
Shape : (1000000,)
Chunk shape : (100000,)
Order : C
Read-only : False
Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.MemoryStore
No. bytes : 8000000 (7.6M)
No. bytes stored : 33240 (32.5K)
Storage ratio : 240.7
Chunks initialized : 10/10
>>> baz.info
Name : /foo/baz
Type : zarr.core.Array
Data type : float32
Shape : (1000, 1000)
Chunk shape : (100, 100)
Order : C
Read-only : False
Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.MemoryStore
No. bytes : 4000000 (3.8M)
No. bytes stored : 23943 (23.4K)
Storage ratio : 167.1
Chunks initialized : 100/100
Groups also have the :func:`zarr.hierarchy.Group.tree` method, e.g.::
>>> root.tree()
/
└── foo
├── bar (1000000,) int64
└── baz (1000, 1000) float32
If you're using Zarr within a Jupyter notebook (requires
`ipytree <https://github.com/QuantStack/ipytree>`_), calling ``tree()`` will generate an
interactive tree representation, see the `repr_tree.ipynb notebook
<https://nbviewer.org/github/zarr-developers/zarr-python/blob/main/notebooks/repr_tree.ipynb>`_
for more examples.
.. _tutorial_attrs:
User attributes
---------------
Zarr arrays and groups support custom key/value attributes, which can be useful for
storing application-specific metadata. For example::
>>> root = zarr.group()
>>> root.attrs['foo'] = 'bar'
>>> z = root.zeros('zzz', shape=(10000, 10000))
>>> z.attrs['baz'] = 42
>>> z.attrs['qux'] = [1, 4, 7, 12]
>>> sorted(root.attrs)
['foo']
>>> 'foo' in root.attrs
True
>>> root.attrs['foo']
'bar'
>>> sorted(z.attrs)
['baz', 'qux']
>>> z.attrs['baz']
42
>>> z.attrs['qux']
[1, 4, 7, 12]
Internally Zarr uses JSON to store array attributes, so attribute values must be
JSON serializable.
.. _tutorial_indexing:
Advanced indexing
-----------------
As of version 2.2, Zarr arrays support several methods for advanced or "fancy"
indexing, which enable a subset of data items to be extracted or updated in an
array without loading the entire array into memory.
Note that although this functionality is similar to some of the advanced
indexing capabilities available on NumPy arrays and on h5py datasets, **the Zarr
API for advanced indexing is different from both NumPy and h5py**, so please
read this section carefully. For a complete description of the indexing API,
see the documentation for the :class:`zarr.core.Array` class.
Indexing with coordinate arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Items from a Zarr array can be extracted by providing an integer array of
coordinates. E.g.::
>>> z = zarr.array(np.arange(10))
>>> z[:]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> z.get_coordinate_selection([1, 4])
array([1, 4])
Coordinate arrays can also be used to update data, e.g.::
>>> z.set_coordinate_selection([1, 4], [-1, -2])
>>> z[:]
array([ 0, -1, 2, 3, -2, 5, 6, 7, 8, 9])
For multidimensional arrays, coordinates must be provided for each dimension,
e.g.::
>>> z = zarr.array(np.arange(15).reshape(3, 5))
>>> z[:]
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> z.get_coordinate_selection(([0, 2], [1, 3]))
array([ 1, 13])
>>> z.set_coordinate_selection(([0, 2], [1, 3]), [-1, -2])
>>> z[:]
array([[ 0, -1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -2, 14]])
For convenience, coordinate indexing is also available via the ``vindex``
property, as well as the square bracket operator, e.g.::
>>> z.vindex[[0, 2], [1, 3]]
array([-1, -2])
>>> z.vindex[[0, 2], [1, 3]] = [-3, -4]
>>> z[:]
array([[ 0, -3, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -4, 14]])
>>> z[[0, 2], [1, 3]]
array([-3, -4])
When the indexing arrays have different shapes, they are broadcast together.
That is, the following two calls are equivalent::
>>> z[1, [1, 3]]
array([6, 8])
>>> z[[1, 1], [1, 3]]
array([6, 8])
Indexing with a mask array
~~~~~~~~~~~~~~~~~~~~~~~~~~
Items can also be extracted by providing a Boolean mask. E.g.::
>>> z = zarr.array(np.arange(10))
>>> z[:]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[1] = True
>>> sel[4] = True
>>> z.get_mask_selection(sel)
array([1, 4])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([ 0, -1, 2, 3, -2, 5, 6, 7, 8, 9])
Here's a multidimensional example::
>>> z = zarr.array(np.arange(15).reshape(3, 5))
>>> z[:]
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[0, 1] = True
>>> sel[2, 3] = True
>>> z.get_mask_selection(sel)
array([ 1, 13])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([[ 0, -1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -2, 14]])
For convenience, mask indexing is also available via the ``vindex`` property,
e.g.::
>>> z.vindex[sel]
array([-1, -2])
>>> z.vindex[sel] = [-3, -4]
>>> z[:]
array([[ 0, -3, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -4, 14]])
Mask indexing is conceptually the same as coordinate indexing, and is
implemented internally via the same machinery. Both styles of indexing allow
selecting arbitrary items from an array, also known as point selection.
Orthogonal indexing
~~~~~~~~~~~~~~~~~~~
Zarr arrays also support methods for orthogonal indexing, which allows
selections to be made along each dimension of an array independently. For
example, this allows selecting a subset of rows and/or columns from a
2-dimensional array. E.g.::
>>> z = zarr.array(np.arange(15).reshape(3, 5))
>>> z[:]
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> z.get_orthogonal_selection(([0, 2], slice(None))) # select first and third rows
array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14]])
>>> z.get_orthogonal_selection((slice(None), [1, 3])) # select second and fourth columns
array([[ 1, 3],
[ 6, 8],
[11, 13]])
>>> z.get_orthogonal_selection(([0, 2], [1, 3])) # select rows [0, 2] and columns [1, 4]
array([[ 1, 3],
[11, 13]])
Data can also be modified, e.g.::
>>> z.set_orthogonal_selection(([0, 2], [1, 3]), [[-1, -2], [-3, -4]])
>>> z[:]
array([[ 0, -1, 2, -2, 4],
[ 5, 6, 7, 8, 9],
[10, -3, 12, -4, 14]])
For convenience, the orthogonal indexing functionality is also available via the
``oindex`` property, e.g.::
>>> z = zarr.array(np.arange(15).reshape(3, 5))
>>> z.oindex[[0, 2], :] # select first and third rows
array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14]])
>>> z.oindex[:, [1, 3]] # select second and fourth columns
array([[ 1, 3],
[ 6, 8],
[11, 13]])
>>> z.oindex[[0, 2], [1, 3]] # select rows [0, 2] and columns [1, 4]
array([[ 1, 3],
[11, 13]])
>>> z.oindex[[0, 2], [1, 3]] = [[-1, -2], [-3, -4]]
>>> z[:]
array([[ 0, -1, 2, -2, 4],
[ 5, 6, 7, 8, 9],
[10, -3, 12, -4, 14]])
Any combination of integer, slice, 1D integer array and/or 1D Boolean array can
be used for orthogonal indexing.
Indexing fields in structured arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All selection methods support a ``fields`` parameter which allows retrieving or
replacing data for a specific field in an array with a structured dtype. E.g.::
>>> a = np.array([(b'aaa', 1, 4.2),
... (b'bbb', 2, 8.4),
... (b'ccc', 3, 12.6)],
... dtype=[('foo', 'S3'), ('bar', 'i4'), ('baz', 'f8')])
>>> z = zarr.array(a)
>>> z['foo']
array([b'aaa', b'bbb', b'ccc'],
dtype='|S3')
>>> z['baz']
array([ 4.2, 8.4, 12.6])
>>> z.get_basic_selection(slice(0, 2), fields='bar')
array([1, 2], dtype=int32)
>>> z.get_coordinate_selection([0, 2], fields=['foo', 'baz'])
array([(b'aaa', 4.2), (b'ccc', 12.6)],
dtype=[('foo', 'S3'), ('baz', '<f8')])
.. _tutorial_storage:
Storage alternatives
--------------------
Zarr can use any object that implements the ``MutableMapping`` interface from
the :mod:`collections` module in the Python standard library as the store for a
group or an array.
Some pre-defined storage classes are provided in the :mod:`zarr.storage`
module. For example, the :class:`zarr.storage.DirectoryStore` class provides a
``MutableMapping`` interface to a directory on the local file system. This is
used under the hood by the :func:`zarr.convenience.open` function. In other words,
the following code::
>>> z = zarr.open('data/example.zarr', mode='w', shape=1000000, dtype='i4')
...is short-hand for::
>>> store = zarr.DirectoryStore('data/example.zarr')
>>> z = zarr.create(store=store, overwrite=True, shape=1000000, dtype='i4')
...and the following code::
>>> root = zarr.open('data/example.zarr', mode='w')
...is short-hand for::
>>> store = zarr.DirectoryStore('data/example.zarr')
>>> root = zarr.group(store=store, overwrite=True)
Any other compatible storage class could be used in place of
:class:`zarr.storage.DirectoryStore` in the code examples above. For example,
here is an array stored directly into a Zip file, via the
:class:`zarr.storage.ZipStore` class::
>>> store = zarr.ZipStore('data/example.zip', mode='w')
>>> root = zarr.group(store=store)
>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4')
>>> z[:] = 42
>>> store.close()
Re-open and check that data have been written::
>>> store = zarr.ZipStore('data/example.zip', mode='r')
>>> root = zarr.group(store=store)
>>> z = root['foo/bar']
>>> z[:]
array([[42, 42, 42, ..., 42, 42, 42],
[42, 42, 42, ..., 42, 42, 42],
[42, 42, 42, ..., 42, 42, 42],
...,
[42, 42, 42, ..., 42, 42, 42],
[42, 42, 42, ..., 42, 42, 42],
[42, 42, 42, ..., 42, 42, 42]], dtype=int32)
>>> store.close()
Note that there are some limitations on how Zip files can be used, because items
within a Zip file cannot be updated in place. This means that data in the array
should only be written once and write operations should be aligned with chunk
boundaries. Note also that the ``close()`` method must be called after writing
any data to the store, otherwise essential records will not be written to the
underlying zip file.
Another storage alternative is the :class:`zarr.storage.DBMStore` class, added
in Zarr version 2.2. This class allows any DBM-style database to be used for
storing an array or group. Here is an example using a Berkeley DB B-tree
database for storage (requires `bsddb3
<https://www.jcea.es/programacion/pybsddb.htm>`_ to be installed)::
>>> import bsddb3
>>> store = zarr.DBMStore('data/example.bdb', open=bsddb3.btopen)
>>> root = zarr.group(store=store, overwrite=True)
>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4')
>>> z[:] = 42
>>> store.close()
Also added in Zarr version 2.2 is the :class:`zarr.storage.LMDBStore` class which
enables the lightning memory-mapped database (LMDB) to be used for storing an array or
group (requires `lmdb <https://lmdb.readthedocs.io/>`_ to be installed)::
>>> store = zarr.LMDBStore('data/example.lmdb')
>>> root = zarr.group(store=store, overwrite=True)
>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4')
>>> z[:] = 42
>>> store.close()
In Zarr version 2.3 is the :class:`zarr.storage.SQLiteStore` class which
enables the SQLite database to be used for storing an array or group (requires
Python is built with SQLite support)::
>>> store = zarr.SQLiteStore('data/example.sqldb')
>>> root = zarr.group(store=store, overwrite=True)
>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4')
>>> z[:] = 42
>>> store.close()
Also added in Zarr version 2.3 are two storage classes for interfacing with server-client
databases. The :class:`zarr.storage.RedisStore` class interfaces `Redis <https://redis.io/>`_
(an in memory data structure store), and the :class:`zarr.storage.MongoDB` class interfaces
with `MongoDB <https://www.mongodb.com/>`_ (an object oriented NoSQL database). These stores
respectively require the `redis-py <https://redis-py.readthedocs.io>`_ and
`pymongo <https://api.mongodb.com/python/current/>`_ packages to be installed.
For compatibility with the `N5 <https://github.com/saalfeldlab/n5>`_ data format, Zarr also provides
an N5 backend (this is currently an experimental feature). Similar to the zip storage class, an
:class:`zarr.n5.N5Store` can be instantiated directly::
>>> store = zarr.N5Store('data/example.n5')
>>> root = zarr.group(store=store)
>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4')
>>> z[:] = 42
For convenience, the N5 backend will automatically be chosen when the filename
ends with `.n5`::
>>> root = zarr.open('data/example.n5', mode='w')
Distributed/cloud storage
~~~~~~~~~~~~~~~~~~~~~~~~~
It is also possible to use distributed storage systems. The Dask project has
implementations of the ``MutableMapping`` interface for Amazon S3 (`S3Map
<https://s3fs.readthedocs.io/en/latest/api.html#s3fs.mapping.S3Map>`_), Hadoop
Distributed File System (`HDFSMap
<https://hdfs3.readthedocs.io/en/latest/api.html#hdfs3.mapping.HDFSMap>`_) and
Google Cloud Storage (`GCSMap
<http://gcsfs.readthedocs.io/en/latest/api.html#gcsfs.mapping.GCSMap>`_), which
can be used with Zarr.
Here is an example using S3Map to read an array created previously::
>>> import s3fs
>>> import zarr
>>> s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(region_name='eu-west-2'))
>>> store = s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)
>>> root = zarr.group(store=store)
>>> z = root['foo/bar/baz']
>>> z
<zarr.core.Array '/foo/bar/baz' (21,) |S1>
>>> z.info
Name : /foo/bar/baz
Type : zarr.core.Array
Data type : |S1
Shape : (21,)
Chunk shape : (7,)
Order : C
Read-only : False
Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 21
No. bytes stored : 382
Storage ratio : 0.1
Chunks initialized : 3/3
>>> z[:]
array([b'H', b'e', b'l', b'l', b'o', b' ', b'f', b'r', b'o', b'm', b' ',
b't', b'h', b'e', b' ', b'c', b'l', b'o', b'u', b'd', b'!'],
dtype='|S1')
>>> z[:].tobytes()
b'Hello from the cloud!'
Zarr now also has a builtin storage backend for Azure Blob Storage.
The class is :class:`zarr.storage.ABSStore` (requires
`azure-storage-blob <https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-python>`_
to be installed)::
>>> import azure.storage.blob
>>> container_client = azure.storage.blob.ContainerClient(...) # doctest: +SKIP
>>> store = zarr.ABSStore(client=container_client, prefix='zarr-testing') # doctest: +SKIP
>>> root = zarr.group(store=store, overwrite=True) # doctest: +SKIP
>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4') # doctest: +SKIP
>>> z[:] = 42 # doctest: +SKIP
When using an actual storage account, provide ``account_name`` and
``account_key`` arguments to :class:`zarr.storage.ABSStore`, the
above client is just testing against the emulator. Please also note
that this is an experimental feature.
Note that retrieving data from a remote service via the network can be significantly
slower than retrieving data from a local file system, and will depend on network latency
and bandwidth between the client and server systems. If you are experiencing poor
performance, there are several things you can try. One option is to increase the array
chunk size, which will reduce the number of chunks and thus reduce the number of network
round-trips required to retrieve data for an array (and thus reduce the impact of network
latency). Another option is to try to increase the compression ratio by changing
compression options or trying a different compressor (which will reduce the impact of
limited network bandwidth).
As of version 2.2, Zarr also provides the :class:`zarr.storage.LRUStoreCache`
which can be used to implement a local in-memory cache layer over a remote
store. E.g.::
>>> s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(region_name='eu-west-2'))
>>> store = s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)
>>> cache = zarr.LRUStoreCache(store, max_size=2**28)
>>> root = zarr.group(store=cache)
>>> z = root['foo/bar/baz']
>>> from timeit import timeit
>>> # first data access is relatively slow, retrieved from store
... timeit('print(z[:].tobytes())', number=1, globals=globals()) # doctest: +SKIP
b'Hello from the cloud!'
0.1081731989979744
>>> # second data access is faster, uses cache
... timeit('print(z[:].tobytes())', number=1, globals=globals()) # doctest: +SKIP
b'Hello from the cloud!'
0.0009490990014455747
If you are still experiencing poor performance with distributed/cloud storage,
please raise an issue on the GitHub issue tracker with any profiling data you
can provide, as there may be opportunities to optimise further either within
Zarr or within the mapping interface to the storage.
IO with ``fsspec``
~~~~~~~~~~~~~~~~~~
As of version 2.5, zarr supports passing URLs directly to `fsspec`_,
and having it create the "mapping" instance automatically. This means, that
for all of the backend storage implementations `supported by fsspec`_,
you can skip importing and configuring the storage explicitly.
For example::
>>> g = zarr.open_group("s3://zarr-demo/store", storage_options={'anon': True}) # doctest: +SKIP
>>> g['foo/bar/baz'][:].tobytes() # doctest: +SKIP
b'Hello from the cloud!'
The provision of the protocol specifier "s3://" will select the correct backend.
Notice the kwargs ``storage_options``, used to pass parameters to that backend.
As of version 2.6, write mode and complex URLs are also supported, such as::
>>> g = zarr.open_group("simplecache::s3://zarr-demo/store",
... storage_options={"s3": {'anon': True}}) # doctest: +SKIP
>>> g['foo/bar/baz'][:].tobytes() # downloads target file # doctest: +SKIP
b'Hello from the cloud!'
>>> g['foo/bar/baz'][:].tobytes() # uses cached file # doctest: +SKIP
b'Hello from the cloud!'
The second invocation here will be much faster. Note that the ``storage_options``
have become more complex here, to account for the two parts of the supplied
URL.
It is also possible to initialize the filesystem outside of Zarr and then pass
it through. This requires creating an :class:`zarr.storage.FSStore` object
explicitly. For example::
>>> import s3fs * doctest: +SKIP
>>> fs = s3fs.S3FileSystem(anon=True) # doctest: +SKIP
>>> store = zarr.storage.FSStore('/zarr-demo/store', fs=fs) # doctest: +SKIP
>>> g = zarr.open_group(store) # doctest: +SKIP
This is useful in cases where you want to also use the same fsspec filesystem object
separately from Zarr.
.. _fsspec: https://filesystem-spec.readthedocs.io/en/latest/
.. _supported by fsspec: https://filesystem-spec.readthedocs.io/en/latest/api.html#built-in-implementations
.. _tutorial_copy:
Consolidating metadata
~~~~~~~~~~~~~~~~~~~~~~
Since there is a significant overhead for every connection to a cloud object
store such as S3, the pattern described in the previous section may incur
significant latency while scanning the metadata of the array hierarchy, even
though each individual metadata object is small. For cases such as these, once
the data are static and can be regarded as read-only, at least for the
metadata/structure of the array hierarchy, the many metadata objects can be
consolidated into a single one via
:func:`zarr.convenience.consolidate_metadata`. Doing this can greatly increase
the speed of reading the array metadata, e.g.::
>>> zarr.consolidate_metadata(store) # doctest: +SKIP
This creates a special key with a copy of all of the metadata from all of the
metadata objects in the store.
Later, to open a Zarr store with consolidated metadata, use
:func:`zarr.convenience.open_consolidated`, e.g.::
>>> root = zarr.open_consolidated(store) # doctest: +SKIP
This uses the special key to read all of the metadata in a single call to the
backend storage.
Note that, the hierarchy could still be opened in the normal way and altered,
causing the consolidated metadata to become out of sync with the real state of
the array hierarchy. In this case,
:func:`zarr.convenience.consolidate_metadata` would need to be called again.
To protect against consolidated metadata accidentally getting out of sync, the
root group returned by :func:`zarr.convenience.open_consolidated` is read-only
for the metadata, meaning that no new groups or arrays can be created, and
arrays cannot be resized. However, data values with arrays can still be updated.
Copying/migrating data
----------------------
If you have some data in an HDF5 file and would like to copy some or all of it
into a Zarr group, or vice-versa, the :func:`zarr.convenience.copy` and
:func:`zarr.convenience.copy_all` functions can be used. Here's an example
copying a group named 'foo' from an HDF5 file to a Zarr group::
>>> import h5py
>>> import zarr
>>> import numpy as np
>>> source = h5py.File('data/example.h5', mode='w')
>>> foo = source.create_group('foo')
>>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,))
>>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> zarr.tree(source)
/
├── foo
│ └── bar
│ └── baz (100,) int64
└── spam (100,) int64
>>> dest = zarr.open_group('data/example.zarr', mode='w')
>>> from sys import stdout
>>> zarr.copy(source['foo'], dest, log=stdout)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
all done: 3 copied, 0 skipped, 800 bytes copied
(3, 0, 800)
>>> dest.tree() # N.B., no spam
/
└── foo
└── bar
└── baz (100,) int64
>>> source.close()
If rather than copying a single group or array you would like to copy all
groups and arrays, use :func:`zarr.convenience.copy_all`, e.g.::
>>> source = h5py.File('data/example.h5', mode='r')
>>> dest = zarr.open_group('data/example2.zarr', mode='w')
>>> zarr.copy_all(source, dest, log=stdout)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
copy /spam (100,) int64
all done: 4 copied, 0 skipped, 1,600 bytes copied
(4, 0, 1600)
>>> dest.tree()
/
├── foo
│ └── bar
│ └── baz (100,) int64
└── spam (100,) int64
If you need to copy data between two Zarr groups, the
:func:`zarr.convenience.copy` and :func:`zarr.convenience.copy_all` functions can
be used and provide the most flexibility. However, if you want to copy data
in the most efficient way possible, without changing any configuration options,
the :func:`zarr.convenience.copy_store` function can be used. This function
copies data directly between the underlying stores, without any decompression or
re-compression, and so should be faster. E.g.::
>>> import zarr
>>> import numpy as np
>>> store1 = zarr.DirectoryStore('data/example.zarr')
>>> root = zarr.group(store1, overwrite=True)
>>> baz = root.create_dataset('foo/bar/baz', data=np.arange(100), chunks=(50,))
>>> spam = root.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> root.tree()
/
├── foo
│ └── bar
│ └── baz (100,) int64
└── spam (100,) int64
>>> from sys import stdout
>>> store2 = zarr.ZipStore('data/example.zip', mode='w')
>>> zarr.copy_store(store1, store2, log=stdout)
copy .zgroup
copy foo/.zgroup
copy foo/bar/.zgroup
copy foo/bar/baz/.zarray
copy foo/bar/baz/0
copy foo/bar/baz/1
copy spam/.zarray
copy spam/0
copy spam/1
copy spam/2
copy spam/3
all done: 11 copied, 0 skipped, 1,138 bytes copied
(11, 0, 1138)
>>> new_root = zarr.group(store2)
>>> new_root.tree()
/
├── foo
│ └── bar
│ └── baz (100,) int64
└── spam (100,) int64
>>> new_root['foo/bar/baz'][:]
array([ 0, 1, 2, ..., 97, 98, 99])
>>> store2.close() # zip stores need to be closed
.. _tutorial_strings:
String arrays
-------------
There are several options for storing arrays of strings.
If your strings are all ASCII strings, and you know the maximum length of the string in
your array, then you can use an array with a fixed-length bytes dtype. E.g.::
>>> z = zarr.zeros(10, dtype='S6')
>>> z
<zarr.core.Array (10,) |S6>
>>> z[0] = b'Hello'
>>> z[1] = b'world!'
>>> z[:]
array([b'Hello', b'world!', b'', b'', b'', b'', b'', b'', b'', b''],
dtype='|S6')
A fixed-length unicode dtype is also available, e.g.::
>>> greetings = ['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', 'Hei maailma!',
... 'Xin chào thế giới', 'Njatjeta Botë!', 'Γεια σου κόσμε!',
... 'こんにちは世界', '世界,你好!', 'Helló, világ!', 'Zdravo svete!',
... 'เฮลโลเวิลด์']
>>> text_data = greetings * 10000
>>> z = zarr.array(text_data, dtype='U20')
>>> z
<zarr.core.Array (120000,) <U20>
>>> z[:]
array(['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...,
'Helló, világ!', 'Zdravo svete!', 'เฮลโลเวิลด์'],
dtype='<U20')
For variable-length strings, the ``object`` dtype can be used, but a codec must be
provided to encode the data (see also :ref:`tutorial_objects` below). At the time of
writing there are four codecs available that can encode variable length string
objects: :class:`numcodecs.VLenUTF8`, :class:`numcodecs.JSON`, :class:`numcodecs.MsgPack`.
and :class:`numcodecs.Pickle`. E.g. using ``VLenUTF8``::
>>> import numcodecs
>>> z = zarr.array(text_data, dtype=object, object_codec=numcodecs.VLenUTF8())
>>> z
<zarr.core.Array (120000,) object>
>>> z.filters
[VLenUTF8()]
>>> z[:]
array(['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...,
'Helló, világ!', 'Zdravo svete!', 'เฮลโลเวิลด์'], dtype=object)
As a convenience, ``dtype=str`` (or ``dtype=unicode`` on Python 2.7) can be used, which
is a short-hand for ``dtype=object, object_codec=numcodecs.VLenUTF8()``, e.g.::
>>> z = zarr.array(text_data, dtype=str)
>>> z
<zarr.core.Array (120000,) object>
>>> z.filters
[VLenUTF8()]
>>> z[:]
array(['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...,
'Helló, világ!', 'Zdravo svete!', 'เฮลโลเวิลด์'], dtype=object)
Variable-length byte strings are also supported via ``dtype=object``. Again an
``object_codec`` is required, which can be one of :class:`numcodecs.VLenBytes` or
:class:`numcodecs.Pickle`. For convenience, ``dtype=bytes`` (or ``dtype=str`` on Python
2.7) can be used as a short-hand for ``dtype=object, object_codec=numcodecs.VLenBytes()``,
e.g.::
>>> bytes_data = [g.encode('utf-8') for g in greetings] * 10000
>>> z = zarr.array(bytes_data, dtype=bytes)
>>> z
<zarr.core.Array (120000,) object>
>>> z.filters
[VLenBytes()]
>>> z[:]
array([b'\xc2\xa1Hola mundo!', b'Hej V\xc3\xa4rlden!', b'Servus Woid!',
..., b'Hell\xc3\xb3, vil\xc3\xa1g!', b'Zdravo svete!',
b'\xe0\xb9\x80\xe0\xb8\xae\xe0\xb8\xa5\xe0\xb9\x82\xe0\xb8\xa5\xe0\xb9\x80\xe0\xb8\xa7\xe0\xb8\xb4\xe0\xb8\xa5\xe0\xb8\x94\xe0\xb9\x8c'], dtype=object)
If you know ahead of time all the possible string values that can occur, you could
also use the :class:`numcodecs.Categorize` codec to encode each unique string value as an
integer. E.g.::
>>> categorize = numcodecs.Categorize(greetings, dtype=object)
>>> z = zarr.array(text_data, dtype=object, object_codec=categorize)
>>> z
<zarr.core.Array (120000,) object>
>>> z.filters
[Categorize(dtype='|O', astype='|u1', labels=['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...])]
>>> z[:]
array(['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...,
'Helló, világ!', 'Zdravo svete!', 'เฮลโลเวิลด์'], dtype=object)
.. _tutorial_objects:
Object arrays
-------------
Zarr supports arrays with an "object" dtype. This allows arrays to contain any type of
object, such as variable length unicode strings, or variable length arrays of numbers, or
other possibilities. When creating an object array, a codec must be provided via the
``object_codec`` argument. This codec handles encoding (serialization) of Python objects.
The best codec to use will depend on what type of objects are present in the array.
At the time of writing there are three codecs available that can serve as a general
purpose object codec and support encoding of a mixture of object types:
:class:`numcodecs.JSON`, :class:`numcodecs.MsgPack`. and :class:`numcodecs.Pickle`.
For example, using the JSON codec::
>>> z = zarr.empty(5, dtype=object, object_codec=numcodecs.JSON())
>>> z[0] = 42
>>> z[1] = 'foo'
>>> z[2] = ['bar', 'baz', 'qux']
>>> z[3] = {'a': 1, 'b': 2.2}
>>> z[:]
array([42, 'foo', list(['bar', 'baz', 'qux']), {'a': 1, 'b': 2.2}, None], dtype=object)
Not all codecs support encoding of all object types. The
:class:`numcodecs.Pickle` codec is the most flexible, supporting encoding any type
of Python object. However, if you are sharing data with anyone other than yourself, then
Pickle is not recommended as it is a potential security risk. This is because malicious
code can be embedded within pickled data. The JSON and MsgPack codecs do not have any
security issues and support encoding of unicode strings, lists and dictionaries.
MsgPack is usually faster for both encoding and decoding.
Ragged arrays
~~~~~~~~~~~~~
If you need to store an array of arrays, where each member array can be of any length
and stores the same primitive type (a.k.a. a ragged array), the
:class:`numcodecs.VLenArray` codec can be used, e.g.::
>>> z = zarr.empty(4, dtype=object, object_codec=numcodecs.VLenArray(int))
>>> z
<zarr.core.Array (4,) object>
>>> z.filters
[VLenArray(dtype='<i8')]
>>> z[0] = np.array([1, 3, 5])
>>> z[1] = np.array([4])
>>> z[2] = np.array([7, 9, 14])
>>> z[:]
array([array([1, 3, 5]), array([4]), array([ 7, 9, 14]),
array([], dtype=int64)], dtype=object)
As a convenience, ``dtype='array:T'`` can be used as a short-hand for
``dtype=object, object_codec=numcodecs.VLenArray('T')``, where 'T' can be any NumPy
primitive dtype such as 'i4' or 'f8'. E.g.::
>>> z = zarr.empty(4, dtype='array:i8')
>>> z
<zarr.core.Array (4,) object>
>>> z.filters
[VLenArray(dtype='<i8')]
>>> z[0] = np.array([1, 3, 5])
>>> z[1] = np.array([4])
>>> z[2] = np.array([7, 9, 14])
>>> z[:]
array([array([1, 3, 5]), array([4]), array([ 7, 9, 14]),
array([], dtype=int64)], dtype=object)
.. _tutorial_chunks:
Chunk optimizations
-------------------
.. _tutorial_chunks_shape:
Chunk size and shape
~~~~~~~~~~~~~~~~~~~~
In general, chunks of at least 1 megabyte (1M) uncompressed size seem to provide
better performance, at least when using the Blosc compression library.
The optimal chunk shape will depend on how you want to access the data. E.g.,
for a 2-dimensional array, if you only ever take slices along the first
dimension, then chunk across the second dimenson. If you know you want to chunk
across an entire dimension you can use ``None`` or ``-1`` within the ``chunks``
argument, e.g.::
>>> z1 = zarr.zeros((10000, 10000), chunks=(100, None), dtype='i4')
>>> z1.chunks
(100, 10000)
Alternatively, if you only ever take slices along the second dimension, then
chunk across the first dimension, e.g.::
>>> z2 = zarr.zeros((10000, 10000), chunks=(None, 100), dtype='i4')
>>> z2.chunks
(10000, 100)
If you require reasonable performance for both access patterns then you need to
find a compromise, e.g.::
>>> z3 = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z3.chunks
(1000, 1000)
If you are feeling lazy, you can let Zarr guess a chunk shape for your data by
providing ``chunks=True``, although please note that the algorithm for guessing
a chunk shape is based on simple heuristics and may be far from optimal. E.g.::
>>> z4 = zarr.zeros((10000, 10000), chunks=True, dtype='i4')
>>> z4.chunks
(625, 625)
If you know you are always going to be loading the entire array into memory, you
can turn off chunks by providing ``chunks=False``, in which case there will be
one single chunk for the array::
>>> z5 = zarr.zeros((10000, 10000), chunks=False, dtype='i4')
>>> z5.chunks
(10000, 10000)
.. _tutorial_chunks_order:
Chunk memory layout
~~~~~~~~~~~~~~~~~~~
The order of bytes **within each chunk** of an array can be changed via the
``order`` keyword argument, to use either C or Fortran layout. For
multi-dimensional arrays, these two layouts may provide different compression
ratios, depending on the correlation structure within the data. E.g.::
>>> a = np.arange(100000000, dtype='i4').reshape(10000, 10000).T
>>> c = zarr.array(a, chunks=(1000, 1000))
>>> c.info
Type : zarr.core.Array
Data type : int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : C
Read-only : False
Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 400000000 (381.5M)
No. bytes stored : 6696010 (6.4M)
Storage ratio : 59.7
Chunks initialized : 100/100
>>> f = zarr.array(a, chunks=(1000, 1000), order='F')
>>> f.info
Type : zarr.core.Array
Data type : int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : F
Read-only : False
Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 400000000 (381.5M)
No. bytes stored : 4684636 (4.5M)
Storage ratio : 85.4
Chunks initialized : 100/100
In the above example, Fortran order gives a better compression ratio. This is an
artificial example but illustrates the general point that changing the order of
bytes within chunks of an array may improve the compression ratio, depending on
the structure of the data, the compression algorithm used, and which compression
filters (e.g., byte-shuffle) have been applied.
.. _tutorial_chunks_empty_chunks:
Empty chunks
~~~~~~~~~~~~
As of version 2.11, it is possible to configure how Zarr handles the storage of
chunks that are "empty" (i.e., every element in the chunk is equal to the array's fill value).
When creating an array with ``write_empty_chunks=False``,
Zarr will check whether a chunk is empty before compression and storage. If a chunk is empty,
then Zarr does not store it, and instead deletes the chunk from storage
if the chunk had been previously stored.
This optimization prevents storing redundant objects and can speed up reads, but the cost is
added computation during array writes, since the contents of
each chunk must be compared to the fill value, and these advantages are contingent on the content of the array.
If you know that your data will form chunks that are almost always non-empty, then there is no advantage to the optimization described above.
In this case, creating an array with ``write_empty_chunks=True`` (the default) will instruct Zarr to write every chunk without checking for emptiness.
The following example illustrates the effect of the ``write_empty_chunks`` flag on
the time required to write an array with different values.::
>>> import zarr
>>> import numpy as np
>>> import time
>>> from tempfile import TemporaryDirectory
>>> def timed_write(write_empty_chunks):
... """
... Measure the time required and number of objects created when writing
... to a Zarr array with random ints or fill value.
... """
... chunks = (8192,)
... shape = (chunks[0] * 1024,)
... data = np.random.randint(0, 255, shape)
... dtype = 'uint8'
...
... with TemporaryDirectory() as store:
... arr = zarr.open(store,
... shape=shape,
... chunks=chunks,
... dtype=dtype,
... write_empty_chunks=write_empty_chunks,
... fill_value=0,
... mode='w')
... # initialize all chunks
... arr[:] = 100
... result = []
... for value in (data, arr.fill_value):
... start = time.time()
... arr[:] = value
... elapsed = time.time() - start
... result.append((elapsed, arr.nchunks_initialized))
...
... return result
>>> for write_empty_chunks in (True, False):
... full, empty = timed_write(write_empty_chunks)
... print(f'\nwrite_empty_chunks={write_empty_chunks}:\n\tRandom Data: {full[0]:.4f}s, {full[1]} objects stored\n\t Empty Data: {empty[0]:.4f}s, {empty[1]} objects stored\n')
write_empty_chunks=True:
Random Data: 0.1252s, 1024 objects stored
Empty Data: 0.1060s, 1024 objects stored
write_empty_chunks=False:
Random Data: 0.1359s, 1024 objects stored
Empty Data: 0.0301s, 0 objects stored
In this example, writing random data is slightly slower with ``write_empty_chunks=True``,
but writing empty data is substantially faster and generates far fewer objects in storage.
.. _tutorial_rechunking:
Changing chunk shapes (rechunking)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes you are not free to choose the initial chunking of your input data, or
you might have data saved with chunking which is not optimal for the analysis you
have planned. In such cases it can be advantageous to re-chunk the data. For small
datasets, or when the mismatch between input and output chunks is small
such that only a few chunks of the input dataset need to be read to create each
chunk in the output array, it is sufficient to simply copy the data to a new array
with the desired chunking, e.g. ::
>>> a = zarr.zeros((10000, 10000), chunks=(100,100), dtype='uint16', store='a.zarr')
>>> b = zarr.array(a, chunks=(100, 200), store='b.zarr')
If the chunk shapes mismatch, however, a simple copy can lead to non-optimal data
access patterns and incur a substantial performance hit when using
file based stores. One of the most pathological examples is
switching from column-based chunking to row-based chunking e.g. ::
>>> a = zarr.zeros((10000,10000), chunks=(10000, 1), dtype='uint16', store='a.zarr')
>>> b = zarr.array(a, chunks=(1,10000), store='b.zarr')
which will require every chunk in the input data set to be repeatedly read when creating
each output chunk. If the entire array will fit within memory, this is simply resolved
by forcing the entire input array into memory as a numpy array before converting
back to zarr with the desired chunking. ::
>>> a = zarr.zeros((10000,10000), chunks=(10000, 1), dtype='uint16', store='a.zarr')
>>> b = a[...]
>>> c = zarr.array(b, chunks=(1,10000), store='c.zarr')
For data sets which have mismatched chunks and which do not fit in memory, a
more sophisticated approach to rechunking, such as offered by the
`rechunker <https://github.com/pangeo-data/rechunker>`_ package and discussed
`here <https://medium.com/pangeo/rechunker-the-missing-link-for-chunked-array-analytics-5b2359e9dc11>`_
may offer a substantial improvement in performance.
.. _tutorial_sync:
Parallel computing and synchronization
--------------------------------------
Zarr arrays have been designed for use as the source or sink for data in
parallel computations. By data source we mean that multiple concurrent read
operations may occur. By data sink we mean that multiple concurrent write
operations may occur, with each writer updating a different region of the
array. Zarr arrays have **not** been designed for situations where multiple
readers and writers are concurrently operating on the same array.
Both multi-threaded and multi-process parallelism are possible. The bottleneck
for most storage and retrieval operations is compression/decompression, and the
Python global interpreter lock (GIL) is released wherever possible during these
operations, so Zarr will generally not block other Python threads from running.
When using a Zarr array as a data sink, some synchronization (locking) may be
required to avoid data loss, depending on how data are being updated. If each
worker in a parallel computation is writing to a separate region of the array,
and if region boundaries are perfectly aligned with chunk boundaries, then no
synchronization is required. However, if region and chunk boundaries are not
perfectly aligned, then synchronization is required to avoid two workers
attempting to modify the same chunk at the same time, which could result in data
loss.
To give a simple example, consider a 1-dimensional array of length 60, ``z``,
divided into three chunks of 20 elements each. If three workers are running and
each attempts to write to a 20 element region (i.e., ``z[0:20]``, ``z[20:40]``
and ``z[40:60]``) then each worker will be writing to a separate chunk and no
synchronization is required. However, if two workers are running and each
attempts to write to a 30 element region (i.e., ``z[0:30]`` and ``z[30:60]``)
then it is possible both workers will attempt to modify the middle chunk at the
same time, and synchronization is required to prevent data loss.
Zarr provides support for chunk-level synchronization. E.g., create an array
with thread synchronization::
>>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4',
... synchronizer=zarr.ThreadSynchronizer())
>>> z
<zarr.core.Array (10000, 10000) int32>
This array is safe to read or write within a multi-threaded program.
Zarr also provides support for process synchronization via file locking,
provided that all processes have access to a shared file system, and provided
that the underlying file system supports file locking (which is not the case for
some networked file systems). E.g.::
>>> synchronizer = zarr.ProcessSynchronizer('data/example.sync')
>>> z = zarr.open_array('data/example', mode='w', shape=(10000, 10000),
... chunks=(1000, 1000), dtype='i4',
... synchronizer=synchronizer)
>>> z
<zarr.core.Array (10000, 10000) int32>
This array is safe to read or write from multiple processes.
When using multiple processes to parallelize reads or writes on arrays using the Blosc
compression library, it may be necessary to set ``numcodecs.blosc.use_threads = False``,
as otherwise Blosc may share incorrect global state amongst processes causing programs
to hang. See also the section on :ref:`tutorial_tips_blosc` below.
Please note that support for parallel computing is an area of ongoing research
and development. If you are using Zarr for parallel computing, we welcome
feedback, experience, discussion, ideas and advice, particularly about issues
related to data integrity and performance.
.. _tutorial_pickle:
Pickle support
--------------
Zarr arrays and groups can be pickled, as long as the underlying store object can be
pickled. Instances of any of the storage classes provided in the :mod:`zarr.storage`
module can be pickled, as can the built-in ``dict`` class which can also be used for
storage.
Note that if an array or group is backed by an in-memory store like a ``dict`` or
:class:`zarr.storage.MemoryStore`, then when it is pickled all of the store data will be
included in the pickled data. However, if an array or group is backed by a persistent
store like a :class:`zarr.storage.DirectoryStore`, :class:`zarr.storage.ZipStore` or
:class:`zarr.storage.DBMStore` then the store data **are not** pickled. The only thing
that is pickled is the necessary parameters to allow the store to re-open any
underlying files or databases upon being unpickled.
E.g., pickle/unpickle an in-memory array::
>>> import pickle
>>> z1 = zarr.array(np.arange(100000))
>>> s = pickle.dumps(z1)
>>> len(s) > 5000 # relatively large because data have been pickled
True
>>> z2 = pickle.loads(s)
>>> z1 == z2
True
>>> np.all(z1[:] == z2[:])
True
E.g., pickle/unpickle an array stored on disk::
>>> z3 = zarr.open('data/walnuts.zarr', mode='w', shape=100000, dtype='i8')
>>> z3[:] = np.arange(100000)
>>> s = pickle.dumps(z3)
>>> len(s) < 200 # small because no data have been pickled
True
>>> z4 = pickle.loads(s)
>>> z3 == z4
True
>>> np.all(z3[:] == z4[:])
True
.. _tutorial_datetime:
Datetimes and timedeltas
------------------------
NumPy's ``datetime64`` ('M8') and ``timedelta64`` ('m8') dtypes are supported for Zarr
arrays, as long as the units are specified. E.g.::
>>> z = zarr.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='M8[D]')
>>> z
<zarr.core.Array (3,) datetime64[D]>
>>> z[:]
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')
>>> z[0]
numpy.datetime64('2007-07-13')
>>> z[0] = '1999-12-31'
>>> z[:]
array(['1999-12-31', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')
.. _tutorial_tips:
Usage tips
----------
.. _tutorial_tips_copy:
Copying large arrays
~~~~~~~~~~~~~~~~~~~~
Data can be copied between large arrays without needing much memory, e.g.::
>>> z1 = zarr.empty((10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z1[:] = 42
>>> z2 = zarr.empty_like(z1)
>>> z2[:] = z1
Internally the example above works chunk-by-chunk, extracting only the data from
``z1`` required to fill each chunk in ``z2``. The source of the data (``z1``)
could equally be an h5py Dataset.
.. _tutorial_tips_blosc:
Configuring Blosc
~~~~~~~~~~~~~~~~~
The Blosc compressor is able to use multiple threads internally to accelerate
compression and decompression. By default, Blosc uses up to 8
internal threads. The number of Blosc threads can be changed to increase or
decrease this number, e.g.::
>>> from numcodecs import blosc
>>> blosc.set_nthreads(2) # doctest: +SKIP
8
When a Zarr array is being used within a multi-threaded program, Zarr
automatically switches to using Blosc in a single-threaded
"contextual" mode. This is generally better as it allows multiple
program threads to use Blosc simultaneously and prevents CPU thrashing
from too many active threads. If you want to manually override this
behaviour, set the value of the ``blosc.use_threads`` variable to
``True`` (Blosc always uses multiple internal threads) or ``False``
(Blosc always runs in single-threaded contextual mode). To re-enable
automatic switching, set ``blosc.use_threads`` to ``None``.
Please note that if Zarr is being used within a multi-process program, Blosc may not
be safe to use in multi-threaded mode and may cause the program to hang. If using Blosc
in a multi-process program then it is recommended to set ``blosc.use_threads = False``.
|