File: control

package info (click to toggle)
zarr 2.13.6%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,376 kB
  • sloc: python: 17,528; makefile: 223; sh: 8
file content (56 lines) | stat: -rw-r--r-- 2,168 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Source: zarr
Maintainer: Debian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
Uploaders: Antonio Valentino <antonio.valentino@tiscali.it>
Section: python
Testsuite: autopkgtest-pkg-python
Priority: optional
Build-Depends: debhelper-compat (= 12),
               dh-python,
               pybuild-plugin-pyproject,
               python3-all,
               python3-asciitree,
               python3-fasteners,
               python3-fsspec,
               python3-h5py,
               python3-msgpack,
               python3-numcodecs,
               python3-numpy,
               python3-numpydoc,
               python3-pytest,
               python3-pytest-doctestplus,
               python3-pytest-timeout,
               python3-setuptools,
               python3-setuptools-scm,
               python3-sphinx,
               python3-sphinx-copybutton,
               python3-sphinx-issues,
               python3-sphinx-rtd-theme
Standards-Version: 4.6.2
Vcs-Browser: https://salsa.debian.org/science-team/zarr
Vcs-Git: https://salsa.debian.org/science-team/zarr.git
Homepage: https://github.com/zarr-developers/zarr-python
Rules-Requires-Root: no

Package: python3-zarr
Architecture: all
Depends: ${misc:Depends},
         ${python3:Depends},
         ${sphinxdoc:Depends},
         python3-sphinx-copybutton
Recommends: python3-fsspec
Suggests: python3-h5py,
          jupyter-notebook
Description: chunked, compressed, N-dimensional arrays for Python
 Zarr is a Python package providing an implementation of compressed,
 chunked, N-dimensional arrays, designed for use in parallel
 computing. Some highlights:
 .
   - Create N-dimensional arrays with any NumPy dtype.
   - Chunk arrays along any dimension.
   - Compress chunks using the fast Blosc meta-compressor or
     alternatively using zlib, BZ2 or LZMA.
   - Store arrays in memory, on disk, inside a Zip file, on S3, ...
   - Read an array concurrently from multiple threads or processes.
   - Write to an array concurrently from multiple threads or processes.
   - Organize arrays into hierarchies via groups.
   - Use filters to preprocess data and improve compression.