File: quickstart.rst

package info (click to toggle)
zarr 3.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,816 kB
  • sloc: python: 21,300; makefile: 215; javascript: 15
file content (209 lines) | stat: -rw-r--r-- 6,909 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
.. only:: doctest

   >>> import shutil
   >>> shutil.rmtree('data', ignore_errors=True)
   >>>
   >>> import numpy as np
   >>> np.random.seed(0)

Quickstart
==========

Welcome to the Zarr-Python Quickstart guide! This page will help you get up and running with
the Zarr library in Python to efficiently manage and analyze multi-dimensional arrays.

Zarr is a powerful library for storage of n-dimensional arrays, supporting chunking,
compression, and various backends, making it a versatile choice for scientific and
large-scale data.

Installation
------------

Zarr requires Python 3.11 or higher. You can install it via `pip`:

.. code-block:: bash

    pip install zarr

or `conda`:

.. code-block:: bash

    conda install --channel conda-forge zarr

Creating an Array
-----------------

To get started, you can create a simple Zarr array::

    >>> import zarr
    >>> import numpy as np
    >>>
    >>> # Create a 2D Zarr array
    >>> z = zarr.create_array(
    ...    store="data/example-1.zarr",
    ...    shape=(100, 100),
    ...    chunks=(10, 10),
    ...    dtype="f4"
    ... )
    >>>
    >>> # Assign data to the array
    >>> z[:, :] = np.random.random((100, 100))
    >>> z.info
    Type               : Array
    Zarr format        : 3
    Data type          : DataType.float32
    Shape              : (100, 100)
    Chunk shape        : (10, 10)
    Order              : C
    Read-only          : False
    Store type         : LocalStore
    Codecs             : [{'endian': <Endian.little: 'little'>}, {'level': 0, 'checksum': False}]
    No. bytes          : 40000 (39.1K)

Here, we created a 2D array of shape ``(100, 100)``, chunked into blocks of
``(10, 10)``, and filled it with random floating-point data. This array was
written to a ``LocalStore`` in the ``data/example-1.zarr`` directory.

Compression and Filters
~~~~~~~~~~~~~~~~~~~~~~~

Zarr supports data compression and filters. For example, to use Blosc compression::

    >>> z = zarr.create_array(
    ...    "data/example-3.zarr",
    ...    mode="w", shape=(100, 100),
    ...    chunks=(10, 10), dtype="f4",
    ...    compressors=zarr.codecs.BloscCodec(cname="zstd", clevel=3, shuffle=zarr.codecs.BloscShuffle.shuffle)
    ... )
    >>> z[:, :] = np.random.random((100, 100))
    >>>
    >>> z.info
    Type               : Array
    Zarr format        : 3
    Data type          : DataType.float32
    Shape              : (100, 100)
    Chunk shape        : (10, 10)
    Order              : C
    Read-only          : False
    Store type         : LocalStore
    Codecs             : [{'endian': <Endian.little: 'little'>}, {'level': 0, 'checksum': False}]
    No. bytes          : 40000 (39.1K)

This compresses the data using the Zstandard codec with shuffle enabled for better compression.

Hierarchical Groups
-------------------

Zarr allows you to create hierarchical groups, similar to directories::

    >>> # Create nested groups and add arrays
    >>> root = zarr.group("data/example-2.zarr")
    >>> foo = root.create_group(name="foo")
    >>> bar = root.create_array(
    ...     name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
    ... )
    >>> spam = foo.create_array(name="spam", shape=(10,), dtype="i4")
    >>>
    >>> # Assign values
    >>> bar[:, :] = np.random.random((100, 10))
    >>> spam[:] = np.arange(10)
    >>>
    >>> # print the hierarchy
    >>> root.tree()
    /
    ├── bar (100, 10) float32
    └── foo
        └── spam (10,) int32
    <BLANKLINE>

This creates a group with two datasets: ``foo`` and ``bar``.

Batch Hierarchy Creation
~~~~~~~~~~~~~~~~~~~~~~~~

Zarr provides tools for creating a collection of arrays and groups with a single function call.
Suppose we want to copy existing groups and arrays into a new storage backend:

    >>> # Create nested groups and add arrays
    >>> root = zarr.group("data/example-3.zarr", attributes={'name': 'root'})
    >>> foo = root.create_group(name="foo")
    >>> bar = root.create_array(
    ...     name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
    ... )
    >>> nodes = {'': root.metadata} | {k: v.metadata for k,v in root.members()}
    >>> print(nodes)
    >>> from zarr.storage import MemoryStore
    >>> new_nodes = dict(zarr.create_hierarchy(store=MemoryStore(), nodes=nodes))
    >>> new_root = new_nodes['']
    >>> assert new_root.attrs == root.attrs

Note that :func:`zarr.create_hierarchy` will only initialize arrays and groups -- copying array data must
be done in a separate step.

Persistent Storage
------------------

Zarr supports persistent storage to disk or cloud-compatible backends. While examples above
utilized a :class:`zarr.storage.LocalStore`, a number of other storage options are available.

Zarr integrates seamlessly with cloud object storage such as Amazon S3 and Google Cloud Storage
using external libraries like `s3fs <https://s3fs.readthedocs.io>`_ or
`gcsfs <https://gcsfs.readthedocs.io>`_::

    >>> import s3fs # doctest: +SKIP
    >>>
    >>> z = zarr.create_array("s3://example-bucket/foo", mode="w", shape=(100, 100), chunks=(10, 10), dtype="f4") # doctest: +SKIP
    >>> z[:, :] = np.random.random((100, 100)) # doctest: +SKIP

A single-file store can also be created using the the :class:`zarr.storage.ZipStore`::

    >>> # Store the array in a ZIP file
    >>> store = zarr.storage.ZipStore("data/example-3.zip", mode='w')
    >>>
    >>> z = zarr.create_array(
    ...     store=store,
    ...     mode="w",
    ...     shape=(100, 100),
    ...     chunks=(10, 10),
    ...     dtype="f4"
    ... )
    >>>
    >>> # write to the array
    >>> z[:, :] = np.random.random((100, 100))
    >>>
    >>> # the ZipStore must be explicitly closed
    >>> store.close()

To open an existing array from a ZIP file::

    >>> # Open the ZipStore in read-only mode
    >>> store = zarr.storage.ZipStore("data/example-3.zip", read_only=True)
    >>>
    >>> z = zarr.open_array(store, mode='r')
    >>>
    >>> # read the data as a NumPy Array
    >>> z[:]
    array([[0.66734236, 0.15667458, 0.98720884, ..., 0.36229587, 0.67443246,
            0.34315267],
        [0.65787303, 0.9544212 , 0.4830079 , ..., 0.33097172, 0.60423803,
            0.45621237],
        [0.27632037, 0.9947008 , 0.42434934, ..., 0.94860053, 0.6226942 ,
            0.6386924 ],
        ...,
        [0.12854576, 0.934397  , 0.19524333, ..., 0.11838563, 0.4967675 ,
            0.43074256],
        [0.82029045, 0.4671437 , 0.8090906 , ..., 0.7814118 , 0.42650765,
            0.95929915],
        [0.4335856 , 0.7565437 , 0.7828931 , ..., 0.48119593, 0.66220033,
            0.6652362 ]], shape=(100, 100), dtype=float32)

Read more about Zarr's storage options  in the :ref:`User Guide <user-guide-storage>`.

Next Steps
----------

Now that you're familiar with the basics, explore the following resources:

- `User Guide <user-guide>`_
- `API Reference <api>`_