1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
.. only:: doctest
>>> import shutil
>>> shutil.rmtree('data', ignore_errors=True)
.. _user-guide-arrays:
Working with arrays
===================
Creating an array
-----------------
Zarr has several functions for creating arrays. For example::
>>> import zarr
>>> store = zarr.storage.MemoryStore()
>>> z = zarr.create_array(store=store, shape=(10000, 10000), chunks=(1000, 1000), dtype='int32')
>>> z
<Array memory://... shape=(10000, 10000) dtype=int32>
The code above creates a 2-dimensional array of 32-bit integers with 10000 rows
and 10000 columns, divided into chunks where each chunk has 1000 rows and 1000
columns (and so there will be 100 chunks in total). The data is written to a
:class:`zarr.storage.MemoryStore` (e.g. an in-memory dict). See
:ref:`user-guide-persist` for details on storing arrays in other stores.
For a complete list of array creation routines see the :mod:`zarr`
module documentation.
.. _user-guide-array:
Reading and writing data
------------------------
Zarr arrays support a similar interface to `NumPy <https://numpy.org/doc/stable/>`_
arrays for reading and writing data. For example, the entire array can be filled
with a scalar value::
>>> z[:] = 42
Regions of the array can also be written to, e.g.::
>>> import numpy as np
>>>
>>> z[0, :] = np.arange(10000)
>>> z[:, 0] = np.arange(10000)
The contents of the array can be retrieved by slicing, which will load the
requested region into memory as a NumPy array, e.g.::
>>> z[0, 0]
array(0, dtype=int32)
>>> z[-1, -1]
array(42, dtype=int32)
>>> z[0, :]
array([ 0, 1, 2, ..., 9997, 9998, 9999],
shape=(10000,), dtype=int32)
>>> z[:, 0]
array([ 0, 1, 2, ..., 9997, 9998, 9999],
shape=(10000,), dtype=int32)
>>> z[:]
array([[ 0, 1, 2, ..., 9997, 9998, 9999],
[ 1, 42, 42, ..., 42, 42, 42],
[ 2, 42, 42, ..., 42, 42, 42],
...,
[9997, 42, 42, ..., 42, 42, 42],
[9998, 42, 42, ..., 42, 42, 42],
[9999, 42, 42, ..., 42, 42, 42]],
shape=(10000, 10000), dtype=int32)
Read more about NumPy-style indexing can be found in the
`NumPy documentation <https://numpy.org/doc/stable/user/basics.indexing.html>`_.
.. _user-guide-persist:
Persistent arrays
-----------------
In the examples above, compressed data for each chunk of the array was stored in
main memory. Zarr arrays can also be stored on a file system, enabling
persistence of data between sessions. To do this, we can change the store
argument to point to a filesystem path::
>>> z1 = zarr.create_array(store='data/example-1.zarr', shape=(10000, 10000), chunks=(1000, 1000), dtype='int32')
The array above will store its configuration metadata and all compressed chunk
data in a directory called ``'data/example-1.zarr'`` relative to the current working
directory. The :func:`zarr.create_array` function provides a convenient way
to create a new persistent array or continue working with an existing
array. Note, there is no need to close an array: data are automatically
flushed to disk, and files are automatically closed whenever an array is modified.
Persistent arrays support the same interface for reading and writing data,
e.g.::
>>> z1[:] = 42
>>> z1[0, :] = np.arange(10000)
>>> z1[:, 0] = np.arange(10000)
Check that the data have been written and can be read again::
>>> z2 = zarr.open_array('data/example-1.zarr', mode='r')
>>> np.all(z1[:] == z2[:])
np.True_
If you are just looking for a fast and convenient way to save NumPy arrays to
disk then load back into memory later, the functions
:func:`zarr.save` and :func:`zarr.load` may be
useful. E.g.::
>>> a = np.arange(10)
>>> zarr.save('data/example-2.zarr', a)
>>> zarr.load('data/example-2.zarr')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Please note that there are a number of other options for persistent array
storage, see the :ref:`Storage Guide <user-guide-storage>` guide for more details.
.. _user-guide-resize:
Resizing and appending
----------------------
A Zarr array can be resized, which means that any of its dimensions can be
increased or decreased in length. For example::
>>> z = zarr.create_array(store='data/example-3.zarr', shape=(10000, 10000), dtype='int32',chunks=(1000, 1000))
>>> z[:] = 42
>>> z.shape
(10000, 10000)
>>> z.resize((20000, 10000))
>>> z.shape
(20000, 10000)
Note that when an array is resized, the underlying data are not rearranged in
any way. If one or more dimensions are shrunk, any chunks falling outside the
new array shape will be deleted from the underlying store.
:func:`zarr.Array.append` is provided as a convenience function, which can be
used to append data to any axis. E.g.::
>>> a = np.arange(10000000, dtype='int32').reshape(10000, 1000)
>>> z = zarr.create_array(store='data/example-4.zarr', shape=a.shape, dtype=a.dtype, chunks=(1000, 100))
>>> z[:] = a
>>> z.shape
(10000, 1000)
>>> z.append(a)
(20000, 1000)
>>> z.append(np.vstack([a, a]), axis=1)
(20000, 2000)
>>> z.shape
(20000, 2000)
.. _user-guide-compress:
Compressors
-----------
A number of different compressors can be used with Zarr. Zarr includes Blosc,
Zstandard and Gzip compressors. Additional compressors are available through
a separate package called NumCodecs_ which provides various
compressor libraries including LZ4, Zlib, BZ2 and LZMA.
Different compressors can be provided via the ``compressors`` keyword
argument accepted by all array creation functions. For example::
>>> compressors = zarr.codecs.BloscCodec(cname='zstd', clevel=3, shuffle=zarr.codecs.BloscShuffle.bitshuffle)
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-5.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), compressors=compressors)
>>> z[:] = data
>>> z.compressors
(BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.bitshuffle: 'bitshuffle'>, blocksize=0),)
This array above will use Blosc as the primary compressor, using the Zstandard
algorithm (compression level 3) internally within Blosc, and with the
bit-shuffle filter applied.
When using a compressor, it can be useful to get some diagnostics on the
compression ratio. Zarr arrays provide the :attr:`zarr.Array.info` property
which can be used to print useful diagnostics, e.g.::
>>> z.info
Type : Array
Zarr format : 3
Data type : DataType.int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : C
Read-only : False
Store type : LocalStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.bitshuffle: 'bitshuffle'>, blocksize=0),)
No. bytes : 400000000 (381.5M)
The :func:`zarr.Array.info_complete` method inspects the underlying store and
prints additional diagnostics, e.g.::
>>> z.info_complete()
Type : Array
Zarr format : 3
Data type : DataType.int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : C
Read-only : False
Store type : LocalStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.bitshuffle: 'bitshuffle'>, blocksize=0),)
No. bytes : 400000000 (381.5M)
No. bytes stored : 9696520
Storage ratio : 41.3
Chunks Initialized : 100
.. note::
:func:`zarr.Array.info_complete` will inspect the underlying store and may
be slow for large arrays. Use :attr:`zarr.Array.info` if detailed storage
statistics are not needed.
If you don't specify a compressor, by default Zarr uses the Zstandard
compressor.
In addition to Blosc and Zstandard, other compression libraries can also be used. For example,
here is an array using Gzip compression, level 1::
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-6.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), compressors=zarr.codecs.GzipCodec(level=1))
>>> z[:] = data
>>> z.compressors
(GzipCodec(level=1),)
Here is an example using LZMA from NumCodecs_ with a custom filter pipeline including LZMA's
built-in delta filter::
>>> import lzma
>>> from numcodecs.zarr3 import LZMA
>>>
>>> lzma_filters = [dict(id=lzma.FILTER_DELTA, dist=4), dict(id=lzma.FILTER_LZMA2, preset=1)]
>>> compressors = LZMA(filters=lzma_filters)
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-7.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), compressors=compressors)
>>> z.compressors
(LZMA(codec_name='numcodecs.lzma', codec_config={'filters': [{'id': 3, 'dist': 4}, {'id': 33, 'preset': 1}]}),)
The default compressor can be changed by setting the value of the using Zarr's
:ref:`user-guide-config`, e.g.::
>>> with zarr.config.set({'array.v2_default_compressor.numeric': {'id': 'blosc'}}):
... z = zarr.create_array(store={}, shape=(100000000,), chunks=(1000000,), dtype='int32', zarr_format=2)
>>> z.filters
()
>>> z.compressors
(Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0),)
To disable compression, set ``compressors=None`` when creating an array, e.g.::
>>> z = zarr.create_array(store='data/example-8.zarr', shape=(100000000,), chunks=(1000000,), dtype='int32', compressors=None)
>>> z.compressors
()
.. _user-guide-filters:
Filters
-------
In some cases, compression can be improved by transforming the data in some
way. For example, if nearby values tend to be correlated, then shuffling the
bytes within each numerical value or storing the difference between adjacent
values may increase compression ratio. Some compressors provide built-in filters
that apply transformations to the data prior to compression. For example, the
Blosc compressor has built-in implementations of byte- and bit-shuffle filters,
and the LZMA compressor has a built-in implementation of a delta
filter. However, to provide additional flexibility for implementing and using
filters in combination with different compressors, Zarr also provides a
mechanism for configuring filters outside of the primary compressor.
Here is an example using a delta filter with the Blosc compressor::
>>> from numcodecs.zarr3 import Delta
>>>
>>> filters = [Delta(dtype='int32')]
>>> compressors = zarr.codecs.BloscCodec(cname='zstd', clevel=1, shuffle=zarr.codecs.BloscShuffle.shuffle)
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-9.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), filters=filters, compressors=compressors)
>>> z.info
Type : Array
Zarr format : 3
Data type : DataType.int32
Shape : (10000, 10000)
Chunk shape : (1000, 1000)
Order : C
Read-only : False
Store type : LocalStore
Filters : (Delta(codec_name='numcodecs.delta', codec_config={'dtype': 'int32'}),)
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=1, shuffle=<BloscShuffle.shuffle: 'shuffle'>, blocksize=0),)
No. bytes : 400000000 (381.5M)
For more information about available filter codecs, see the `Numcodecs
<https://numcodecs.readthedocs.io/>`_ documentation.
.. _user-guide-indexing:
Advanced indexing
-----------------
Zarr arrays support several methods for advanced or "fancy"
indexing, which enable a subset of data items to be extracted or updated in an
array without loading the entire array into memory.
Note that although this functionality is similar to some of the advanced
indexing capabilities available on NumPy arrays and on h5py datasets, **the Zarr
API for advanced indexing is different from both NumPy and h5py**, so please
read this section carefully. For a complete description of the indexing API,
see the documentation for the :class:`zarr.Array` class.
Indexing with coordinate arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Items from a Zarr array can be extracted by providing an integer array of
coordinates. E.g.::
>>> data = np.arange(10) ** 2
>>> z = zarr.create_array(store='data/example-10.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
>>> z.get_coordinate_selection([2, 5])
array([ 4, 25])
Coordinate arrays can also be used to update data, e.g.::
>>> z.set_coordinate_selection([2, 5], [-1, -2])
>>> z[:]
array([ 0, 1, -1, 9, 16, -2, 36, 49, 64, 81])
For multidimensional arrays, coordinates must be provided for each dimension,
e.g.::
>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-11.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> z.get_coordinate_selection(([0, 2], [1, 3]))
array([ 1, 13])
>>> z.set_coordinate_selection(([0, 2], [1, 3]), [-1, -2])
>>> z[:]
array([[ 0, -1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -2, 14]])
For convenience, coordinate indexing is also available via the ``vindex``
property, as well as the square bracket operator, e.g.::
>>> z.vindex[[0, 2], [1, 3]]
array([-1, -2])
>>> z.vindex[[0, 2], [1, 3]] = [-3, -4]
>>> z[:]
array([[ 0, -3, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -4, 14]])
>>> z[[0, 2], [1, 3]]
array([-3, -4])
When the indexing arrays have different shapes, they are broadcast together.
That is, the following two calls are equivalent::
>>> z[1, [1, 3]]
array([6, 8])
>>> z[[1, 1], [1, 3]]
array([6, 8])
Indexing with a mask array
~~~~~~~~~~~~~~~~~~~~~~~~~~
Items can also be extracted by providing a Boolean mask. E.g.::
>>> data = np.arange(10) ** 2
>>> z = zarr.create_array(store='data/example-12.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[2] = True
>>> sel[5] = True
>>> z.get_mask_selection(sel)
array([ 4, 25])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([ 0, 1, -1, 9, 16, -2, 36, 49, 64, 81])
Here's a multidimensional example::
>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-13.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[0, 1] = True
>>> sel[2, 3] = True
>>> z.get_mask_selection(sel)
array([ 1, 13])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([[ 0, -1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -2, 14]])
For convenience, mask indexing is also available via the ``vindex`` property,
e.g.::
>>> z.vindex[sel]
array([-1, -2])
>>> z.vindex[sel] = [-3, -4]
>>> z[:]
array([[ 0, -3, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, -4, 14]])
Mask indexing is conceptually the same as coordinate indexing, and is
implemented internally via the same machinery. Both styles of indexing allow
selecting arbitrary items from an array, also known as point selection.
Orthogonal indexing
~~~~~~~~~~~~~~~~~~~
Zarr arrays also support methods for orthogonal indexing, which allows
selections to be made along each dimension of an array independently. For
example, this allows selecting a subset of rows and/or columns from a
2-dimensional array. E.g.::
>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-14.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> z.get_orthogonal_selection(([0, 2], slice(None))) # select first and third rows
array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14]])
>>> z.get_orthogonal_selection((slice(None), [1, 3])) # select second and fourth columns
array([[ 1, 3],
[ 6, 8],
[11, 13]])
>>> z.get_orthogonal_selection(([0, 2], [1, 3])) # select rows [0, 2] and columns [1, 4]
array([[ 1, 3],
[11, 13]])
Data can also be modified, e.g.::
>>> z.set_orthogonal_selection(([0, 2], [1, 3]), [[-1, -2], [-3, -4]])
For convenience, the orthogonal indexing functionality is also available via the
``oindex`` property, e.g.::
>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-15.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z.oindex[[0, 2], :] # select first and third rows
array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14]])
>>> z.oindex[:, [1, 3]] # select second and fourth columns
array([[ 1, 3],
[ 6, 8],
[11, 13]])
>>> z.oindex[[0, 2], [1, 3]] # select rows [0, 2] and columns [1, 4]
array([[ 1, 3],
[11, 13]])
>>> z.oindex[[0, 2], [1, 3]] = [[-1, -2], [-3, -4]]
>>> z[:]
array([[ 0, -1, 2, -2, 4],
[ 5, 6, 7, 8, 9],
[10, -3, 12, -4, 14]])
Any combination of integer, slice, 1D integer array and/or 1D Boolean array can
be used for orthogonal indexing.
If the index contains at most one iterable, and otherwise contains only slices and integers,
orthogonal indexing is also available directly on the array::
>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-16.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> np.all(z.oindex[[0, 2], :] == z[[0, 2], :])
np.True_
Block Indexing
~~~~~~~~~~~~~~
Zarr also support block indexing, which allows selections of whole chunks based on their
logical indices along each dimension of an array. For example, this allows selecting
a subset of chunk aligned rows and/or columns from a 2-dimensional array. E.g.::
>>> data = np.arange(100).reshape(10, 10)
>>> z = zarr.create_array(store='data/example-17.zarr', shape=data.shape, dtype=data.dtype, chunks=(3, 3))
>>> z[:] = data
Retrieve items by specifying their block coordinates::
>>> z.get_block_selection(1)
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
Equivalent slicing::
>>> z[3:6]
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
For convenience, the block selection functionality is also available via the
`blocks` property, e.g.::
>>> z.blocks[1]
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
Block index arrays may be multidimensional to index multidimensional arrays.
For example::
>>> z.blocks[0, 1:3]
array([[ 3, 4, 5, 6, 7, 8],
[13, 14, 15, 16, 17, 18],
[23, 24, 25, 26, 27, 28]])
Data can also be modified. Let's start by a simple 2D array::
>>> z = zarr.create_array(store='data/example-18.zarr', shape=(6, 6), dtype=int, chunks=(2, 2))
Set data for a selection of items::
>>> z.set_block_selection((1, 0), 1)
>>> z[...]
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
For convenience, this functionality is also available via the ``blocks`` property.
E.g.::
>>> z.blocks[:, 2] = 7
>>> z[...]
array([[0, 0, 0, 0, 7, 7],
[0, 0, 0, 0, 7, 7],
[1, 1, 0, 0, 7, 7],
[1, 1, 0, 0, 7, 7],
[0, 0, 0, 0, 7, 7],
[0, 0, 0, 0, 7, 7]])
Any combination of integer and slice can be used for block indexing::
>>> z.blocks[2, 1:3]
array([[0, 0, 7, 7],
[0, 0, 7, 7]])
>>>
>>> root = zarr.create_group('data/example-19.zarr')
>>> foo = root.create_array(name='foo', shape=(1000, 100), chunks=(10, 10), dtype='float32')
>>> bar = root.create_array(name='foo/bar', shape=(100,), dtype='int32')
>>> foo[:, :] = np.random.random((1000, 100))
>>> bar[:] = np.arange(100)
>>> root.tree()
/
└── foo (1000, 100) float32
<BLANKLINE>
.. _user-guide-sharding:
Sharding
--------
Using small chunk shapes in very large arrays can lead to a very large number of chunks.
This can become a performance issue for file systems and object storage.
With Zarr format 3, a new sharding feature has been added to address this issue.
With sharding, multiple chunks can be stored in a single storage object (e.g. a file).
Within a shard, chunks are compressed and serialized separately.
This allows individual chunks to be read independently.
However, when writing data, a full shard must be written in one go for optimal
performance and to avoid concurrency issues.
That means that shards are the units of writing and chunks are the units of reading.
Users need to configure the chunk and shard shapes accordingly.
Sharded arrays can be created by providing the ``shards`` parameter to :func:`zarr.create_array`.
>>> a = zarr.create_array('data/example-20.zarr', shape=(10000, 10000), shards=(1000, 1000), chunks=(100, 100), dtype='uint8')
>>> a[:] = (np.arange(10000 * 10000) % 256).astype('uint8').reshape(10000, 10000)
>>> a.info_complete()
Type : Array
Zarr format : 3
Data type : DataType.uint8
Shape : (10000, 10000)
Shard shape : (1000, 1000)
Chunk shape : (100, 100)
Order : C
Read-only : False
Store type : LocalStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (ZstdCodec(level=0, checksum=False),)
No. bytes : 100000000 (95.4M)
No. bytes stored : 3981552
Storage ratio : 25.1
Shards Initialized : 100
In this example a shard shape of (1000, 1000) and a chunk shape of (100, 100) is used.
This means that 10*10 chunks are stored in each shard, and there are 10*10 shards in total.
Without the ``shards`` argument, there would be 10,000 chunks stored as individual files.
Missing features in 3.0
-----------------------
The following features have not been ported to 3.0 yet.
.. _user-guide-objects:
Object arrays
~~~~~~~~~~~~~
See the Zarr-Python 2 documentation on `Object arrays <https://zarr.readthedocs.io/en/support-v2/tutorial.html#object-arrays>`_ for more details.
.. _user-guide-strings:
Fixed-length string arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~
See the Zarr-Python 2 documentation on `Fixed-length string arrays <https://zarr.readthedocs.io/en/support-v2/tutorial.html#string-arrays>`_ for more details.
.. _user-guide-datetime:
Datetime and Timedelta arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See the Zarr-Python 2 documentation on `Datetime and Timedelta <https://zarr.readthedocs.io/en/support-v2/tutorial.html#datetimes-and-timedeltas>`_ for more details.
.. _user-guide-copy:
Copying and migrating data
~~~~~~~~~~~~~~~~~~~~~~~~~~
See the Zarr-Python 2 documentation on `Copying and migrating data <https://zarr.readthedocs.io/en/support-v2/tutorial.html#copying-migrating-data>`_ for more details.
|