1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
|
import dataclasses
import inspect
import json
import math
import multiprocessing as mp
import pickle
import re
import sys
from itertools import accumulate
from typing import TYPE_CHECKING, Any, Literal
from unittest import mock
import numcodecs
import numpy as np
import numpy.typing as npt
import pytest
from packaging.version import Version
import zarr.api.asynchronous
import zarr.api.synchronous as sync_api
from tests.conftest import skip_object_dtype
from zarr import Array, Group
from zarr.abc.store import Store
from zarr.codecs import (
BytesCodec,
GzipCodec,
TransposeCodec,
ZstdCodec,
)
from zarr.core._info import ArrayInfo
from zarr.core.array import (
AsyncArray,
CompressorsLike,
FiltersLike,
_iter_chunk_coords,
_iter_chunk_regions,
_iter_shard_coords,
_iter_shard_keys,
_iter_shard_regions,
_parse_chunk_encoding_v2,
_parse_chunk_encoding_v3,
_shards_initialized,
create_array,
default_filters_v2,
default_serializer_v3,
)
from zarr.core.buffer import NDArrayLike, NDArrayLikeOrScalar, default_buffer_prototype
from zarr.core.chunk_grids import _auto_partition
from zarr.core.chunk_key_encodings import ChunkKeyEncodingParams
from zarr.core.common import JSON, ZarrFormat, ceildiv
from zarr.core.dtype import (
DateTime64,
Float32,
Float64,
Int16,
Structured,
TimeDelta64,
UInt8,
VariableLengthBytes,
VariableLengthUTF8,
ZDType,
parse_dtype,
)
from zarr.core.dtype.common import ENDIANNESS_STR, EndiannessStr
from zarr.core.dtype.npy.common import NUMPY_ENDIANNESS_STR, endianness_from_numpy_str
from zarr.core.dtype.npy.string import UTF8Base
from zarr.core.group import AsyncGroup
from zarr.core.indexing import BasicIndexer, _iter_grid, _iter_regions
from zarr.core.metadata.v2 import ArrayV2Metadata
from zarr.core.sync import sync
from zarr.errors import (
ContainsArrayError,
ContainsGroupError,
ZarrUserWarning,
)
from zarr.storage import LocalStore, MemoryStore, StorePath
from zarr.storage._logging import LoggingStore
from zarr.types import AnyArray, AnyAsyncArray
from .test_dtype.conftest import zdtype_examples
if TYPE_CHECKING:
from zarr.abc.codec import CodecJSON_V3
@pytest.mark.parametrize("store", ["local", "memory", "zip"], indirect=["store"])
@pytest.mark.parametrize("zarr_format", [2, 3])
@pytest.mark.parametrize("overwrite", [True, False])
@pytest.mark.parametrize("extant_node", ["array", "group"])
def test_array_creation_existing_node(
store: LocalStore | MemoryStore,
zarr_format: ZarrFormat,
overwrite: bool,
extant_node: Literal["array", "group"],
) -> None:
"""
Check that an existing array or group is handled as expected during array creation.
"""
spath = StorePath(store)
group = Group.from_store(spath, zarr_format=zarr_format)
expected_exception: type[ContainsArrayError | ContainsGroupError]
if extant_node == "array":
expected_exception = ContainsArrayError
_ = group.create_array("extant", shape=(10,), dtype="uint8")
elif extant_node == "group":
expected_exception = ContainsGroupError
_ = group.create_group("extant")
else:
raise AssertionError
new_shape = (2, 2)
new_dtype = "float32"
if overwrite:
if not store.supports_deletes:
pytest.skip("store does not support deletes")
arr_new = zarr.create_array(
spath / "extant",
shape=new_shape,
dtype=new_dtype,
overwrite=overwrite,
zarr_format=zarr_format,
)
assert arr_new.shape == new_shape
assert arr_new.dtype == new_dtype
else:
with pytest.raises(expected_exception):
arr_new = zarr.create_array(
spath / "extant",
shape=new_shape,
dtype=new_dtype,
overwrite=overwrite,
zarr_format=zarr_format,
)
@pytest.mark.parametrize("store", ["local", "memory", "zip"], indirect=["store"])
@pytest.mark.parametrize("zarr_format", [2, 3])
async def test_create_creates_parents(
store: LocalStore | MemoryStore, zarr_format: ZarrFormat
) -> None:
# prepare a root node, with some data set
await zarr.api.asynchronous.open_group(
store=store, path="a", zarr_format=zarr_format, attributes={"key": "value"}
)
# create a child node with a couple intermediates
await zarr.api.asynchronous.create(
shape=(2, 2), store=store, path="a/b/c/d", zarr_format=zarr_format
)
parts = ["a", "a/b", "a/b/c"]
if zarr_format == 2:
files = [".zattrs", ".zgroup"]
else:
files = ["zarr.json"]
expected = [f"{part}/{file}" for file in files for part in parts]
if zarr_format == 2:
expected.extend([".zattrs", ".zgroup", "a/b/c/d/.zarray", "a/b/c/d/.zattrs"])
else:
expected.extend(["zarr.json", "a/b/c/d/zarr.json"])
expected = sorted(expected)
result = sorted([x async for x in store.list_prefix("")])
assert result == expected
paths = ["a", "a/b", "a/b/c"]
for path in paths:
g = await zarr.api.asynchronous.open_group(store=store, path=path)
assert isinstance(g, AsyncGroup)
@pytest.mark.parametrize("store", ["local", "memory", "zip"], indirect=["store"])
@pytest.mark.parametrize("zarr_format", [2, 3])
def test_array_name_properties_no_group(
store: LocalStore | MemoryStore, zarr_format: ZarrFormat
) -> None:
arr = zarr.create_array(
store=store, shape=(100,), chunks=(10,), zarr_format=zarr_format, dtype=">i4"
)
assert arr.path == ""
assert arr.name == "/"
assert arr.basename == ""
@pytest.mark.parametrize("store", ["local", "memory", "zip"], indirect=["store"])
@pytest.mark.parametrize("zarr_format", [2, 3])
def test_array_name_properties_with_group(
store: LocalStore | MemoryStore, zarr_format: ZarrFormat
) -> None:
root = Group.from_store(store=store, zarr_format=zarr_format)
foo = root.create_array("foo", shape=(100,), chunks=(10,), dtype="i4")
assert foo.path == "foo"
assert foo.name == "/foo"
assert foo.basename == "foo"
bar = root.create_group("bar")
spam = bar.create_array("spam", shape=(100,), chunks=(10,), dtype="i4")
assert spam.path == "bar/spam"
assert spam.name == "/bar/spam"
assert spam.basename == "spam"
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
@pytest.mark.parametrize("store", ["memory"], indirect=True)
@pytest.mark.parametrize("specifiy_fill_value", [True, False])
@pytest.mark.parametrize(
"zdtype", zdtype_examples, ids=tuple(str(type(v)) for v in zdtype_examples)
)
def test_array_fill_value_default(
store: MemoryStore, specifiy_fill_value: bool, zdtype: ZDType[Any, Any]
) -> None:
"""
Test that creating an array with the fill_value parameter set to None, or unspecified,
results in the expected fill_value attribute of the array, i.e. the default value of the dtype
"""
shape = (10,)
if specifiy_fill_value:
arr = zarr.create_array(
store=store,
shape=shape,
dtype=zdtype,
zarr_format=3,
chunks=shape,
fill_value=None,
)
else:
arr = zarr.create_array(store=store, shape=shape, dtype=zdtype, zarr_format=3, chunks=shape)
expected_fill_value = zdtype.default_scalar()
if isinstance(expected_fill_value, np.datetime64 | np.timedelta64):
if np.isnat(expected_fill_value):
assert np.isnat(arr.fill_value)
elif isinstance(expected_fill_value, np.floating | np.complexfloating):
if np.isnan(expected_fill_value):
assert np.isnan(arr.fill_value)
else:
assert arr.fill_value == expected_fill_value
# A simpler check would be to ensure that arr.fill_value.dtype == arr.dtype
# But for some numpy data types (namely, U), scalars might not have length. An empty string
# scalar from a `>U4` array would have dtype `>U`, and arr.fill_value.dtype == arr.dtype will fail.
assert type(arr.fill_value) is type(np.array([arr.fill_value], dtype=arr.dtype)[0])
@pytest.mark.parametrize("store", ["memory"], indirect=True)
@pytest.mark.parametrize(
("dtype_str", "fill_value"),
[("bool", True), ("uint8", 99), ("float32", -99.9), ("complex64", 3 + 4j)],
)
def test_array_v3_fill_value(store: MemoryStore, fill_value: int, dtype_str: str) -> None:
shape = (10,)
arr = zarr.create_array(
store=store,
shape=shape,
dtype=dtype_str,
zarr_format=3,
chunks=shape,
fill_value=fill_value,
)
assert arr.fill_value == np.dtype(dtype_str).type(fill_value)
assert arr.fill_value.dtype == arr.dtype
@pytest.mark.parametrize("store", ["memory"], indirect=True)
async def test_array_v3_nan_fill_value(store: MemoryStore) -> None:
shape = (10,)
arr = zarr.create_array(
store=store,
shape=shape,
dtype=np.float64,
zarr_format=3,
chunks=shape,
fill_value=np.nan,
)
arr[:] = np.nan
assert np.isnan(arr.fill_value)
assert arr.fill_value.dtype == arr.dtype
# all fill value chunk is an empty chunk, and should not be written
assert len([a async for a in store.list_prefix("/")]) == 0
@pytest.mark.parametrize("store", ["local"], indirect=["store"])
@pytest.mark.parametrize("zarr_format", [2, 3])
async def test_serializable_async_array(
store: LocalStore | MemoryStore, zarr_format: ZarrFormat
) -> None:
expected = await zarr.api.asynchronous.create_array(
store=store, shape=(100,), chunks=(10,), zarr_format=zarr_format, dtype="i4"
)
# await expected.setitems(list(range(100)))
p = pickle.dumps(expected)
actual = pickle.loads(p)
assert actual == expected
# np.testing.assert_array_equal(await actual.getitem(slice(None)), await expected.getitem(slice(None)))
# TODO: uncomment the parts of this test that will be impacted by the config/prototype changes in flight
@pytest.mark.parametrize("store", ["local"], indirect=["store"])
@pytest.mark.parametrize("zarr_format", [2, 3])
def test_serializable_sync_array(store: LocalStore, zarr_format: ZarrFormat) -> None:
expected = zarr.create_array(
store=store, shape=(100,), chunks=(10,), zarr_format=zarr_format, dtype="i4"
)
expected[:] = list(range(100))
p = pickle.dumps(expected)
actual = pickle.loads(p)
assert actual == expected
np.testing.assert_array_equal(actual[:], expected[:])
@pytest.mark.parametrize("store", ["memory"], indirect=True)
@pytest.mark.parametrize("zarr_format", [2, 3, "invalid"])
def test_storage_transformers(store: MemoryStore, zarr_format: ZarrFormat | str) -> None:
"""
Test that providing an actual storage transformer produces a warning and otherwise passes through
"""
metadata_dict: dict[str, JSON]
if zarr_format == 3:
metadata_dict = {
"zarr_format": 3,
"node_type": "array",
"shape": (10,),
"chunk_grid": {"name": "regular", "configuration": {"chunk_shape": (1,)}},
"data_type": "uint8",
"chunk_key_encoding": {"name": "v2", "configuration": {"separator": "/"}},
"codecs": (BytesCodec().to_dict(),),
"fill_value": 0,
"storage_transformers": ({"test": "should_raise"}),
}
else:
metadata_dict = {
"zarr_format": zarr_format,
"shape": (10,),
"chunks": (1,),
"dtype": "|u1",
"dimension_separator": ".",
"codecs": (BytesCodec().to_dict(),),
"fill_value": 0,
"order": "C",
"storage_transformers": ({"test": "should_raise"}),
}
if zarr_format == 3:
match = "Arrays with storage transformers are not supported in zarr-python at this time."
with pytest.raises(ValueError, match=match):
Array.from_dict(StorePath(store), data=metadata_dict)
elif zarr_format == 2:
# no warning
Array.from_dict(StorePath(store), data=metadata_dict)
else:
match = f"Invalid zarr_format: {zarr_format}. Expected 2 or 3"
with pytest.raises(ValueError, match=match):
Array.from_dict(StorePath(store), data=metadata_dict)
@pytest.mark.parametrize("test_cls", [AnyArray, AnyAsyncArray])
@pytest.mark.parametrize("nchunks", [2, 5, 10])
def test_nchunks(test_cls: type[AnyArray] | type[AnyAsyncArray], nchunks: int) -> None:
"""
Test that nchunks returns the number of chunks defined for the array.
"""
store = MemoryStore()
shape = 100
arr = zarr.create_array(store, shape=(shape,), chunks=(ceildiv(shape, nchunks),), dtype="i4")
expected = nchunks
if test_cls == Array:
observed = arr.nchunks
else:
observed = arr.async_array.nchunks
assert observed == expected
@pytest.mark.parametrize("test_cls", [Array, AsyncArray])
@pytest.mark.parametrize(
("shape", "shard_shape", "chunk_shape"),
[((10,), None, (1,)), ((10,), (1,), (1,)), ((40,), (20,), (5,))],
)
async def test_nchunks_initialized(
test_cls: type[AnyArray] | type[AnyAsyncArray],
shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
) -> None:
"""
Test that nchunks_initialized accurately returns the number of stored partitions.
"""
store = MemoryStore()
if shard_shape is None:
chunks_per_shard = 1
else:
chunks_per_shard = np.prod(np.array(shard_shape) // np.array(chunk_shape))
arr = zarr.create_array(store, shape=shape, shards=shard_shape, chunks=chunk_shape, dtype="i1")
# write chunks one at a time
for idx, region in enumerate(arr._iter_shard_regions()):
arr[region] = 1
expected = idx + 1
if test_cls == Array:
observed = arr._nshards_initialized
assert observed == arr.nchunks_initialized // chunks_per_shard
else:
observed = await arr.async_array._nshards_initialized()
assert observed == await arr.async_array.nchunks_initialized() // chunks_per_shard
assert observed == expected
# delete chunks
for idx, key in enumerate(arr._iter_shard_keys()):
sync(arr.store_path.store.delete(key))
if test_cls == Array:
observed = arr._nshards_initialized
assert observed == arr.nchunks_initialized // chunks_per_shard
else:
observed = await arr.async_array._nshards_initialized()
assert observed == await arr.async_array.nchunks_initialized() // chunks_per_shard
expected = arr._nshards - idx - 1
assert observed == expected
@pytest.mark.parametrize("path", ["", "foo"])
@pytest.mark.parametrize(
("shape", "shard_shape", "chunk_shape"),
[((10,), None, (1,)), ((10,), (1,), (1,)), ((40,), (20,), (5,))],
)
async def test_chunks_initialized(
path: str, shape: tuple[int, ...], shard_shape: tuple[int, ...], chunk_shape: tuple[int, ...]
) -> None:
"""
Test that chunks_initialized accurately returns the keys of stored chunks.
"""
store = MemoryStore()
arr = zarr.create_array(
store, name=path, shape=shape, shards=shard_shape, chunks=chunk_shape, dtype="i1"
)
chunks_accumulated = tuple(
accumulate(tuple(tuple(v.split(" ")) for v in arr._iter_shard_keys()))
)
for keys, region in zip(chunks_accumulated, arr._iter_shard_regions(), strict=False):
arr[region] = 1
observed = sorted(await _shards_initialized(arr.async_array))
expected = sorted(keys)
assert observed == expected
def test_nbytes_stored() -> None:
arr = zarr.create(shape=(100,), chunks=(10,), dtype="i4", codecs=[BytesCodec()])
result = arr.nbytes_stored()
assert result == 502 # the size of the metadata document. This is a fragile test.
arr[:50] = 1
result = arr.nbytes_stored()
assert result == 702 # the size with 5 chunks filled.
arr[50:] = 2
result = arr.nbytes_stored()
assert result == 902 # the size with all chunks filled.
async def test_nbytes_stored_async() -> None:
arr = await zarr.api.asynchronous.create(
shape=(100,), chunks=(10,), dtype="i4", codecs=[BytesCodec()]
)
result = await arr.nbytes_stored()
assert result == 502 # the size of the metadata document. This is a fragile test.
await arr.setitem(slice(50), 1)
result = await arr.nbytes_stored()
assert result == 702 # the size with 5 chunks filled.
await arr.setitem(slice(50, 100), 2)
result = await arr.nbytes_stored()
assert result == 902 # the size with all chunks filled.
@pytest.mark.parametrize("zarr_format", [2, 3])
def test_update_attrs(zarr_format: ZarrFormat) -> None:
# regression test for https://github.com/zarr-developers/zarr-python/issues/2328
store = MemoryStore()
arr = zarr.create_array(
store=store, shape=(5,), chunks=(5,), dtype="f8", zarr_format=zarr_format
)
arr.attrs["foo"] = "bar"
assert arr.attrs["foo"] == "bar"
arr2 = zarr.open_array(store=store, zarr_format=zarr_format)
assert arr2.attrs["foo"] == "bar"
@pytest.mark.parametrize(("chunks", "shards"), [((2, 2), None), ((2, 2), (4, 4))])
class TestInfo:
def test_info_v2(self, chunks: tuple[int, int], shards: tuple[int, int] | None) -> None:
arr = zarr.create_array(store={}, shape=(8, 8), dtype="f8", chunks=chunks, zarr_format=2)
result = arr.info
expected = ArrayInfo(
_zarr_format=2,
_data_type=arr.async_array._zdtype,
_fill_value=arr.fill_value,
_shape=(8, 8),
_chunk_shape=chunks,
_shard_shape=None,
_order="C",
_read_only=False,
_store_type="MemoryStore",
_count_bytes=512,
_compressors=(numcodecs.Zstd(),),
)
assert result == expected
def test_info_v3(self, chunks: tuple[int, int], shards: tuple[int, int] | None) -> None:
arr = zarr.create_array(store={}, shape=(8, 8), dtype="f8", chunks=chunks, shards=shards)
result = arr.info
expected = ArrayInfo(
_zarr_format=3,
_data_type=arr.async_array._zdtype,
_fill_value=arr.fill_value,
_shape=(8, 8),
_chunk_shape=chunks,
_shard_shape=shards,
_order="C",
_read_only=False,
_store_type="MemoryStore",
_compressors=(ZstdCodec(),),
_serializer=BytesCodec(),
_count_bytes=512,
)
assert result == expected
def test_info_complete(self, chunks: tuple[int, int], shards: tuple[int, int] | None) -> None:
arr = zarr.create_array(
store={},
shape=(8, 8),
dtype="f8",
chunks=chunks,
shards=shards,
compressors=(),
)
result = arr.info_complete()
expected = ArrayInfo(
_zarr_format=3,
_data_type=arr.async_array._zdtype,
_fill_value=arr.fill_value,
_shape=(8, 8),
_chunk_shape=chunks,
_shard_shape=shards,
_order="C",
_read_only=False,
_store_type="MemoryStore",
_serializer=BytesCodec(),
_count_bytes=512,
_count_chunks_initialized=0,
_count_bytes_stored=521 if shards is None else 982, # the metadata?
)
assert result == expected
arr[:4, :4] = 10
result = arr.info_complete()
if shards is None:
expected = dataclasses.replace(
expected, _count_chunks_initialized=4, _count_bytes_stored=649
)
else:
expected = dataclasses.replace(
expected, _count_chunks_initialized=1, _count_bytes_stored=1178
)
assert result == expected
async def test_info_v2_async(
self, chunks: tuple[int, int], shards: tuple[int, int] | None
) -> None:
arr = await zarr.api.asynchronous.create_array(
store={}, shape=(8, 8), dtype="f8", chunks=chunks, zarr_format=2
)
result = arr.info
expected = ArrayInfo(
_zarr_format=2,
_data_type=Float64(),
_fill_value=arr.metadata.fill_value,
_shape=(8, 8),
_chunk_shape=(2, 2),
_shard_shape=None,
_order="C",
_read_only=False,
_store_type="MemoryStore",
_count_bytes=512,
_compressors=(numcodecs.Zstd(),),
)
assert result == expected
async def test_info_v3_async(
self, chunks: tuple[int, int], shards: tuple[int, int] | None
) -> None:
arr = await zarr.api.asynchronous.create_array(
store={},
shape=(8, 8),
dtype="f8",
chunks=chunks,
shards=shards,
)
result = arr.info
expected = ArrayInfo(
_zarr_format=3,
_data_type=arr._zdtype,
_fill_value=arr.metadata.fill_value,
_shape=(8, 8),
_chunk_shape=chunks,
_shard_shape=shards,
_order="C",
_read_only=False,
_store_type="MemoryStore",
_compressors=(ZstdCodec(),),
_serializer=BytesCodec(),
_count_bytes=512,
)
assert result == expected
async def test_info_complete_async(
self, chunks: tuple[int, int], shards: tuple[int, int] | None
) -> None:
arr = await zarr.api.asynchronous.create_array(
store={},
dtype="f8",
shape=(8, 8),
chunks=chunks,
shards=shards,
compressors=None,
)
result = await arr.info_complete()
expected = ArrayInfo(
_zarr_format=3,
_data_type=arr._zdtype,
_fill_value=arr.metadata.fill_value,
_shape=(8, 8),
_chunk_shape=chunks,
_shard_shape=shards,
_order="C",
_read_only=False,
_store_type="MemoryStore",
_serializer=BytesCodec(),
_count_bytes=512,
_count_chunks_initialized=0,
_count_bytes_stored=521 if shards is None else 982, # the metadata?
)
assert result == expected
await arr.setitem((slice(4), slice(4)), 10)
result = await arr.info_complete()
if shards is None:
expected = dataclasses.replace(
expected, _count_chunks_initialized=4, _count_bytes_stored=553
)
else:
expected = dataclasses.replace(
expected, _count_chunks_initialized=1, _count_bytes_stored=1178
)
@pytest.mark.parametrize("store", ["memory"], indirect=True)
def test_resize_1d(store: MemoryStore, zarr_format: ZarrFormat) -> None:
z = zarr.create(
shape=105, chunks=10, dtype="i4", fill_value=0, store=store, zarr_format=zarr_format
)
a = np.arange(105, dtype="i4")
z[:] = a
result = z[:]
assert isinstance(result, NDArrayLike)
assert (105,) == z.shape
assert (105,) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10,) == z.chunks
np.testing.assert_array_equal(a, result)
z.resize(205)
result = z[:]
assert isinstance(result, NDArrayLike)
assert (205,) == z.shape
assert (205,) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10,) == z.chunks
np.testing.assert_array_equal(a, z[:105])
np.testing.assert_array_equal(np.zeros(100, dtype="i4"), z[105:])
z.resize(55)
result = z[:]
assert isinstance(result, NDArrayLike)
assert (55,) == z.shape
assert (55,) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10,) == z.chunks
np.testing.assert_array_equal(a[:55], result)
# via shape setter
new_shape = (105,)
z.shape = new_shape
result = z[:]
assert isinstance(result, NDArrayLike)
assert new_shape == z.shape
assert new_shape == result.shape
@pytest.mark.parametrize("store", ["memory"], indirect=True)
def test_resize_2d(store: MemoryStore, zarr_format: ZarrFormat) -> None:
z = zarr.create(
shape=(105, 105),
chunks=(10, 10),
dtype="i4",
fill_value=0,
store=store,
zarr_format=zarr_format,
)
a = np.arange(105 * 105, dtype="i4").reshape((105, 105))
z[:] = a
result = z[:]
assert isinstance(result, NDArrayLike)
assert (105, 105) == z.shape
assert (105, 105) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(a, result)
z.resize((205, 205))
result = z[:]
assert isinstance(result, NDArrayLike)
assert (205, 205) == z.shape
assert (205, 205) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(a, z[:105, :105])
np.testing.assert_array_equal(np.zeros((100, 205), dtype="i4"), z[105:, :])
np.testing.assert_array_equal(np.zeros((205, 100), dtype="i4"), z[:, 105:])
z.resize((55, 55))
result = z[:]
assert isinstance(result, NDArrayLike)
assert (55, 55) == z.shape
assert (55, 55) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(a[:55, :55], result)
z.resize((55, 1))
result = z[:]
assert isinstance(result, NDArrayLike)
assert (55, 1) == z.shape
assert (55, 1) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(a[:55, :1], result)
z.resize((1, 55))
result = z[:]
assert isinstance(result, NDArrayLike)
assert (1, 55) == z.shape
assert (1, 55) == result.shape
assert np.dtype("i4") == z.dtype
assert np.dtype("i4") == result.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(a[:1, :10], z[:, :10])
np.testing.assert_array_equal(np.zeros((1, 55 - 10), dtype="i4"), z[:, 10:55])
# via shape setter
new_shape = (105, 105)
z.shape = new_shape
result = z[:]
assert isinstance(result, NDArrayLike)
assert new_shape == z.shape
assert new_shape == result.shape
@pytest.mark.parametrize("store", ["memory"], indirect=True)
def test_append_1d(store: MemoryStore, zarr_format: ZarrFormat) -> None:
a = np.arange(105)
z = zarr.create(shape=a.shape, chunks=10, dtype=a.dtype, store=store, zarr_format=zarr_format)
z[:] = a
assert a.shape == z.shape
assert a.dtype == z.dtype
assert (10,) == z.chunks
np.testing.assert_array_equal(a, z[:])
b = np.arange(105, 205)
e = np.append(a, b)
assert z.shape == (105,)
z.append(b)
assert e.shape == z.shape
assert e.dtype == z.dtype
assert (10,) == z.chunks
np.testing.assert_array_equal(e, z[:])
# check append handles array-like
c = [1, 2, 3]
f = np.append(e, c)
z.append(c)
assert f.shape == z.shape
assert f.dtype == z.dtype
assert (10,) == z.chunks
np.testing.assert_array_equal(f, z[:])
@pytest.mark.parametrize("store", ["memory"], indirect=True)
def test_append_2d(store: MemoryStore, zarr_format: ZarrFormat) -> None:
a = np.arange(105 * 105, dtype="i4").reshape((105, 105))
z = zarr.create(
shape=a.shape, chunks=(10, 10), dtype=a.dtype, store=store, zarr_format=zarr_format
)
z[:] = a
assert a.shape == z.shape
assert a.dtype == z.dtype
assert (10, 10) == z.chunks
actual = z[:]
np.testing.assert_array_equal(a, actual)
b = np.arange(105 * 105, 2 * 105 * 105, dtype="i4").reshape((105, 105))
e = np.append(a, b, axis=0)
z.append(b)
assert e.shape == z.shape
assert e.dtype == z.dtype
assert (10, 10) == z.chunks
actual = z[:]
np.testing.assert_array_equal(e, actual)
@pytest.mark.parametrize("store", ["memory"], indirect=True)
def test_append_2d_axis(store: MemoryStore, zarr_format: ZarrFormat) -> None:
a = np.arange(105 * 105, dtype="i4").reshape((105, 105))
z = zarr.create(
shape=a.shape, chunks=(10, 10), dtype=a.dtype, store=store, zarr_format=zarr_format
)
z[:] = a
assert a.shape == z.shape
assert a.dtype == z.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(a, z[:])
b = np.arange(105 * 105, 2 * 105 * 105, dtype="i4").reshape((105, 105))
e = np.append(a, b, axis=1)
z.append(b, axis=1)
assert e.shape == z.shape
assert e.dtype == z.dtype
assert (10, 10) == z.chunks
np.testing.assert_array_equal(e, z[:])
@pytest.mark.parametrize("store", ["memory"], indirect=True)
def test_append_bad_shape(store: MemoryStore, zarr_format: ZarrFormat) -> None:
a = np.arange(100)
z = zarr.create(shape=a.shape, chunks=10, dtype=a.dtype, store=store, zarr_format=zarr_format)
z[:] = a
b = a.reshape(10, 10)
with pytest.raises(ValueError):
z.append(b)
@pytest.mark.parametrize("store", ["memory"], indirect=True)
@pytest.mark.parametrize("write_empty_chunks", [True, False])
@pytest.mark.parametrize("fill_value", [0, 5])
def test_write_empty_chunks_behavior(
zarr_format: ZarrFormat, store: MemoryStore, write_empty_chunks: bool, fill_value: int
) -> None:
"""
Check that the write_empty_chunks value of the config is applied correctly. We expect that
when write_empty_chunks is True, writing chunks equal to the fill value will result in
those chunks appearing in the store.
When write_empty_chunks is False, writing chunks that are equal to the fill value will result in
those chunks not being present in the store. In particular, they should be deleted if they were
already present.
"""
arr = zarr.create_array(
store=store,
shape=(2,),
zarr_format=zarr_format,
dtype="i4",
fill_value=fill_value,
chunks=(1,),
config={"write_empty_chunks": write_empty_chunks},
)
assert arr.async_array._config.write_empty_chunks == write_empty_chunks
# initialize the store with some non-fill value chunks
arr[:] = fill_value + 1
assert arr._nshards_initialized == arr._nshards
arr[:] = fill_value
if not write_empty_chunks:
assert arr._nshards_initialized == 0
else:
assert arr._nshards_initialized == arr._nshards
@pytest.mark.parametrize("store", ["memory"], indirect=True)
@pytest.mark.parametrize("fill_value", [0.0, -0.0])
@pytest.mark.parametrize("dtype", ["f4", "f2"])
def test_write_empty_chunks_negative_zero(
zarr_format: ZarrFormat, store: MemoryStore, fill_value: float, dtype: str
) -> None:
# regression test for https://github.com/zarr-developers/zarr-python/issues/3144
arr = zarr.create_array(
store=store,
shape=(2,),
zarr_format=zarr_format,
dtype=dtype,
fill_value=fill_value,
chunks=(1,),
config={"write_empty_chunks": False},
)
assert arr.nchunks_initialized == 0
# initialize the with the negated fill value (-0.0 for +0.0, +0.0 for -0.0)
arr[:] = -fill_value
assert arr.nchunks_initialized == arr.nchunks
@pytest.mark.parametrize(
("fill_value", "expected"),
[
(np.nan * 1j, ["NaN", "NaN"]),
(np.nan, ["NaN", 0.0]),
(np.inf, ["Infinity", 0.0]),
(np.inf * 1j, ["NaN", "Infinity"]),
(-np.inf, ["-Infinity", 0.0]),
(math.inf, ["Infinity", 0.0]),
],
)
async def test_special_complex_fill_values_roundtrip(fill_value: Any, expected: list[Any]) -> None:
store = MemoryStore()
zarr.create_array(store=store, shape=(1,), dtype=np.complex64, fill_value=fill_value)
content = await store.get("zarr.json", prototype=default_buffer_prototype())
assert content is not None
actual = json.loads(content.to_bytes())
assert actual["fill_value"] == expected
@pytest.mark.parametrize("shape", [(1,), (2, 3), (4, 5, 6)])
@pytest.mark.parametrize("dtype", ["uint8", "float32"])
@pytest.mark.parametrize("array_type", ["async", "sync"])
async def test_nbytes(
shape: tuple[int, ...], dtype: str, array_type: Literal["async", "sync"]
) -> None:
"""
Test that the ``nbytes`` attribute of an Array or AsyncArray correctly reports the capacity of
the chunks of that array.
"""
store = MemoryStore()
arr = zarr.create_array(store=store, shape=shape, dtype=dtype, fill_value=0)
if array_type == "async":
assert arr.async_array.nbytes == np.prod(arr.shape) * arr.dtype.itemsize
else:
assert arr.nbytes == np.prod(arr.shape) * arr.dtype.itemsize
@pytest.mark.parametrize(
("array_shape", "chunk_shape", "target_shard_size_bytes", "expected_shards"),
[
pytest.param(
(256, 256),
(32, 32),
129 * 129,
(128, 128),
id="2d_chunking_max_byes_does_not_evenly_divide",
),
pytest.param(
(256, 256), (32, 32), 64 * 64, (64, 64), id="2d_chunking_max_byes_evenly_divides"
),
pytest.param(
(256, 256),
(64, 32),
128 * 128,
(128, 64),
id="2d_non_square_chunking_max_byes_evenly_divides",
),
pytest.param((256,), (2,), 255, (254,), id="max_bytes_just_below_array_shape"),
pytest.param((256,), (2,), 256, (256,), id="max_bytes_equal_to_array_shape"),
pytest.param((256,), (2,), 16, (16,), id="max_bytes_normal_val"),
pytest.param((256,), (2,), 2, (2,), id="max_bytes_same_as_chunk"),
pytest.param((256,), (2,), 1, (2,), id="max_bytes_less_than_chunk"),
pytest.param((256,), (2,), None, (4,), id="use_default_auto_setting"),
pytest.param((4,), (2,), None, (2,), id="small_array_shape_does_not_shard"),
],
)
def test_auto_partition_auto_shards(
array_shape: tuple[int, ...],
chunk_shape: tuple[int, ...],
target_shard_size_bytes: int | None,
expected_shards: tuple[int, ...],
) -> None:
"""
Test that automatically picking a shard size returns a tuple of 2 * the chunk shape for any axis
where there are 8 or more chunks.
"""
dtype = np.dtype("uint8")
with pytest.warns(
ZarrUserWarning,
match="Automatic shard shape inference is experimental and may change without notice.",
):
with zarr.config.set({"array.target_shard_size_bytes": target_shard_size_bytes}):
auto_shards, _ = _auto_partition(
array_shape=array_shape,
chunk_shape=chunk_shape,
shard_shape="auto",
item_size=dtype.itemsize,
)
assert auto_shards == expected_shards
def test_chunks_and_shards() -> None:
store = StorePath(MemoryStore())
shape = (100, 100)
chunks = (5, 5)
shards = (10, 10)
arr_v3 = zarr.create_array(store=store / "v3", shape=shape, chunks=chunks, dtype="i4")
assert arr_v3.chunks == chunks
assert arr_v3.shards is None
arr_v3_sharding = zarr.create_array(
store=store / "v3_sharding",
shape=shape,
chunks=chunks,
shards=shards,
dtype="i4",
)
assert arr_v3_sharding.chunks == chunks
assert arr_v3_sharding.shards == shards
arr_v2 = zarr.create_array(
store=store / "v2", shape=shape, chunks=chunks, zarr_format=2, dtype="i4"
)
assert arr_v2.chunks == chunks
assert arr_v2.shards is None
@pytest.mark.parametrize("store", ["memory"], indirect=True)
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
@pytest.mark.parametrize(
("dtype", "fill_value_expected"), [("<U4", ""), ("<S4", b""), ("i", 0), ("f", 0.0)]
)
def test_default_fill_value(dtype: str, fill_value_expected: object, store: Store) -> None:
a = zarr.create_array(store, shape=(5,), chunks=(5,), dtype=dtype)
assert a.fill_value == fill_value_expected
@pytest.mark.parametrize("store", ["memory"], indirect=True)
class TestCreateArray:
@staticmethod
def test_chunks_and_shards(store: Store) -> None:
spath = StorePath(store)
shape = (100, 100)
chunks = (5, 5)
shards = (10, 10)
arr_v3 = zarr.create_array(store=spath / "v3", shape=shape, chunks=chunks, dtype="i4")
assert arr_v3.chunks == chunks
assert arr_v3.shards is None
arr_v3_sharding = zarr.create_array(
store=spath / "v3_sharding",
shape=shape,
chunks=chunks,
shards=shards,
dtype="i4",
)
assert arr_v3_sharding.chunks == chunks
assert arr_v3_sharding.shards == shards
arr_v2 = zarr.create_array(
store=spath / "v2", shape=shape, chunks=chunks, zarr_format=2, dtype="i4"
)
assert arr_v2.chunks == chunks
assert arr_v2.shards is None
@staticmethod
@pytest.mark.parametrize("dtype", zdtype_examples)
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
def test_default_fill_value(dtype: ZDType[Any, Any], store: Store) -> None:
"""
Test that the fill value of an array is set to the default value for the dtype object
"""
a = zarr.create_array(store, shape=(5,), chunks=(5,), dtype=dtype)
if isinstance(dtype, DateTime64 | TimeDelta64) and np.isnat(a.fill_value):
assert np.isnat(dtype.default_scalar())
else:
assert a.fill_value == dtype.default_scalar()
@staticmethod
# @pytest.mark.parametrize("zarr_format", [2, 3])
@pytest.mark.parametrize("dtype", zdtype_examples)
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
def test_default_fill_value_None(
dtype: ZDType[Any, Any], store: Store, zarr_format: ZarrFormat
) -> None:
"""
Test that the fill value of an array is set to the default value for an explicit None argument for
Zarr Format 3, and to null for Zarr Format 2
"""
a = zarr.create_array(
store, shape=(5,), chunks=(5,), dtype=dtype, fill_value=None, zarr_format=zarr_format
)
if zarr_format == 3:
if isinstance(dtype, DateTime64 | TimeDelta64) and np.isnat(a.fill_value):
assert np.isnat(dtype.default_scalar())
else:
assert a.fill_value == dtype.default_scalar()
elif zarr_format == 2:
assert a.fill_value is None
@staticmethod
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
@pytest.mark.parametrize("dtype", zdtype_examples)
def test_dtype_forms(dtype: ZDType[Any, Any], store: Store, zarr_format: ZarrFormat) -> None:
"""
Test that the same array is produced from a ZDType instance, a numpy dtype, or a numpy string
"""
skip_object_dtype(dtype)
a = zarr.create_array(
store, name="a", shape=(5,), chunks=(5,), dtype=dtype, zarr_format=zarr_format
)
b = zarr.create_array(
store,
name="b",
shape=(5,),
chunks=(5,),
dtype=dtype.to_native_dtype(),
zarr_format=zarr_format,
)
assert a.dtype == b.dtype
# Structured dtypes do not have a numpy string representation that uniquely identifies them
if not isinstance(dtype, Structured):
if isinstance(dtype, VariableLengthUTF8):
# in numpy 2.3, StringDType().str becomes the string 'StringDType()' which numpy
# does not accept as a string representation of the dtype.
c = zarr.create_array(
store,
name="c",
shape=(5,),
chunks=(5,),
dtype=dtype.to_native_dtype().char,
zarr_format=zarr_format,
)
else:
c = zarr.create_array(
store,
name="c",
shape=(5,),
chunks=(5,),
dtype=dtype.to_native_dtype().str,
zarr_format=zarr_format,
)
assert a.dtype == c.dtype
@staticmethod
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
@pytest.mark.parametrize("dtype", zdtype_examples)
def test_dtype_roundtrip(
dtype: ZDType[Any, Any], store: Store, zarr_format: ZarrFormat
) -> None:
"""
Test that creating an array, then opening it, gets the same array.
"""
skip_object_dtype(dtype)
a = zarr.create_array(store, shape=(5,), chunks=(5,), dtype=dtype, zarr_format=zarr_format)
b = zarr.open_array(store)
assert a.dtype == b.dtype
@staticmethod
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
@pytest.mark.parametrize("dtype", ["uint8", "float32", "U3", "S4", "V1"])
@pytest.mark.parametrize(
"compressors",
[
"auto",
None,
(),
(ZstdCodec(level=3),),
(ZstdCodec(level=3), GzipCodec(level=0)),
ZstdCodec(level=3),
{"name": "zstd", "configuration": {"level": 3}},
({"name": "zstd", "configuration": {"level": 3}},),
],
)
@pytest.mark.parametrize(
"filters",
[
"auto",
None,
(),
(
TransposeCodec(
order=[
0,
]
),
),
(
TransposeCodec(
order=[
0,
]
),
TransposeCodec(
order=[
0,
]
),
),
TransposeCodec(
order=[
0,
]
),
{"name": "transpose", "configuration": {"order": [0]}},
({"name": "transpose", "configuration": {"order": [0]}},),
],
)
@pytest.mark.parametrize(("chunks", "shards"), [((6,), None), ((3,), (6,))])
async def test_v3_chunk_encoding(
store: MemoryStore,
compressors: CompressorsLike,
filters: FiltersLike,
dtype: str,
chunks: tuple[int, ...],
shards: tuple[int, ...] | None,
) -> None:
"""
Test various possibilities for the compressors and filters parameter to create_array
"""
arr = await create_array(
store=store,
dtype=dtype,
shape=(12,),
chunks=chunks,
shards=shards,
zarr_format=3,
filters=filters,
compressors=compressors,
)
filters_expected, _, compressors_expected = _parse_chunk_encoding_v3(
filters=filters,
compressors=compressors,
serializer="auto",
dtype=arr._zdtype,
)
assert arr.filters == filters_expected
assert arr.compressors == compressors_expected
@staticmethod
@pytest.mark.parametrize("name", ["v2", "default", "invalid"])
@pytest.mark.parametrize("separator", [".", "/"])
async def test_chunk_key_encoding(
name: str, separator: Literal[".", "/"], zarr_format: ZarrFormat, store: MemoryStore
) -> None:
chunk_key_encoding = ChunkKeyEncodingParams(name=name, separator=separator) # type: ignore[typeddict-item]
error_msg = ""
if name == "invalid":
error_msg = r'Unknown chunk key encoding: "Chunk key encoding \'invalid\' not found in registered chunk key encodings: \[.*\]."'
if zarr_format == 2 and name == "default":
error_msg = "Invalid chunk key encoding. For Zarr format 2 arrays, the `name` field of the chunk key encoding must be 'v2'."
if error_msg:
with pytest.raises(ValueError, match=error_msg):
arr = await create_array(
store=store,
dtype="uint8",
shape=(10,),
chunks=(1,),
zarr_format=zarr_format,
chunk_key_encoding=chunk_key_encoding,
)
else:
arr = await create_array(
store=store,
dtype="uint8",
shape=(10,),
chunks=(1,),
zarr_format=zarr_format,
chunk_key_encoding=chunk_key_encoding,
)
if isinstance(arr.metadata, ArrayV2Metadata):
assert arr.metadata.dimension_separator == separator
@staticmethod
@pytest.mark.parametrize(
("kwargs", "error_msg"),
[
({"serializer": "bytes"}, "Zarr format 2 arrays do not support `serializer`."),
({"dimension_names": ["test"]}, "Zarr format 2 arrays do not support dimension names."),
],
)
async def test_create_array_invalid_v2_arguments(
kwargs: dict[str, Any], error_msg: str, store: MemoryStore
) -> None:
with pytest.raises(ValueError, match=re.escape(error_msg)):
await zarr.api.asynchronous.create_array(
store=store, dtype="uint8", shape=(10,), chunks=(1,), zarr_format=2, **kwargs
)
@staticmethod
@pytest.mark.parametrize(
("kwargs", "error_msg"),
[
(
{"dimension_names": ["test"]},
"dimension_names cannot be used for arrays with zarr_format 2.",
),
(
{"chunk_key_encoding": {"name": "default", "separator": "/"}},
"chunk_key_encoding cannot be used for arrays with zarr_format 2. Use dimension_separator instead.",
),
(
{"codecs": "bytes"},
"codecs cannot be used for arrays with zarr_format 2. Use filters and compressor instead.",
),
],
)
async def test_create_invalid_v2_arguments(
kwargs: dict[str, Any], error_msg: str, store: MemoryStore
) -> None:
with pytest.raises(ValueError, match=re.escape(error_msg)):
await zarr.api.asynchronous.create(
store=store, dtype="uint8", shape=(10,), chunks=(1,), zarr_format=2, **kwargs
)
@staticmethod
@pytest.mark.parametrize(
("kwargs", "error_msg"),
[
(
{"chunk_shape": (1,), "chunks": (2,)},
"Only one of chunk_shape or chunks can be provided.",
),
(
{"dimension_separator": "/"},
"dimension_separator cannot be used for arrays with zarr_format 3. Use chunk_key_encoding instead.",
),
(
{"filters": []},
"filters cannot be used for arrays with zarr_format 3. Use array-to-array codecs instead",
),
(
{"compressor": "blosc"},
"compressor cannot be used for arrays with zarr_format 3. Use bytes-to-bytes codecs instead",
),
],
)
async def test_invalid_v3_arguments(
kwargs: dict[str, Any], error_msg: str, store: MemoryStore
) -> None:
kwargs.setdefault("chunks", (1,))
with pytest.raises(ValueError, match=re.escape(error_msg)):
zarr.create(store=store, dtype="uint8", shape=(10,), zarr_format=3, **kwargs)
@staticmethod
@pytest.mark.parametrize("dtype", ["uint8", "float32", "str", "U10", "S10", ">M8[10s]"])
@pytest.mark.parametrize(
"compressors",
[
"auto",
None,
numcodecs.Zstd(level=3),
(),
(numcodecs.Zstd(level=3),),
],
)
@pytest.mark.parametrize(
"filters", ["auto", None, numcodecs.GZip(level=1), (numcodecs.GZip(level=1),)]
)
async def test_v2_chunk_encoding(
store: MemoryStore, compressors: CompressorsLike, filters: FiltersLike, dtype: str
) -> None:
if dtype == "str" and filters != "auto":
pytest.skip("Only the auto filters are compatible with str dtype in this test.")
arr: AsyncArray[ArrayV2Metadata] = await create_array(
store=store,
dtype=dtype,
shape=(10,),
zarr_format=2,
compressors=compressors,
filters=filters,
)
filters_expected, compressor_expected = _parse_chunk_encoding_v2(
filters=filters, compressor=compressors, dtype=parse_dtype(dtype, zarr_format=2)
)
assert arr.metadata.zarr_format == 2 # guard for mypy
assert arr.metadata.compressor == compressor_expected
assert arr.metadata.filters == filters_expected
# Normalize for property getters
arr_compressors_expected = () if compressor_expected is None else (compressor_expected,)
arr_filters_expected = () if filters_expected is None else filters_expected
assert arr.compressors == arr_compressors_expected
assert arr.filters == arr_filters_expected
@staticmethod
@pytest.mark.parametrize("dtype", [UInt8(), Float32(), VariableLengthUTF8()])
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
async def test_default_filters_compressors(
store: MemoryStore, dtype: UInt8 | Float32 | VariableLengthUTF8, zarr_format: ZarrFormat
) -> None:
"""
Test that the default ``filters`` and ``compressors`` are used when ``create_array`` is invoked with ``filters`` and ``compressors`` unspecified.
"""
arr = await create_array(
store=store,
dtype=dtype, # type: ignore[arg-type]
shape=(10,),
zarr_format=zarr_format,
)
sig = inspect.signature(create_array)
if zarr_format == 3:
expected_filters, expected_serializer, expected_compressors = _parse_chunk_encoding_v3(
compressors=sig.parameters["compressors"].default,
filters=sig.parameters["filters"].default,
serializer=sig.parameters["serializer"].default,
dtype=dtype, # type: ignore[arg-type]
)
elif zarr_format == 2:
default_filters, default_compressors = _parse_chunk_encoding_v2(
compressor=sig.parameters["compressors"].default,
filters=sig.parameters["filters"].default,
dtype=dtype, # type: ignore[arg-type]
)
if default_filters is None:
expected_filters = ()
else:
expected_filters = default_filters # type: ignore[assignment]
if default_compressors is None:
expected_compressors = ()
else:
expected_compressors = (default_compressors,) # type: ignore[assignment]
expected_serializer = None
else:
raise ValueError(f"Invalid zarr_format: {zarr_format}")
assert arr.filters == expected_filters
assert arr.serializer == expected_serializer
assert arr.compressors == expected_compressors
@staticmethod
async def test_v2_no_shards(store: Store) -> None:
"""
Test that creating a Zarr v2 array with ``shard_shape`` set to a non-None value raises an error.
"""
msg = re.escape(
"Zarr format 2 arrays can only be created with `shard_shape` set to `None`. Got `shard_shape=(5,)` instead."
)
with pytest.raises(ValueError, match=msg):
_ = await create_array(
store=store,
dtype="uint8",
shape=(10,),
shards=(5,),
zarr_format=2,
)
@staticmethod
@pytest.mark.parametrize("impl", ["sync", "async"])
async def test_with_data(impl: Literal["sync", "async"], store: Store) -> None:
"""
Test that we can invoke ``create_array`` with a ``data`` parameter.
"""
data = np.arange(10)
name = "foo"
arr: AnyAsyncArray | AnyArray
if impl == "sync":
arr = sync_api.create_array(store, name=name, data=data)
stored = arr[:]
elif impl == "async":
arr = await create_array(store, name=name, data=data, zarr_format=3)
stored = await arr._get_selection(
BasicIndexer(..., shape=arr.shape, chunk_grid=arr.metadata.chunk_grid),
prototype=default_buffer_prototype(),
)
else:
raise ValueError(f"Invalid impl: {impl}")
assert np.array_equal(stored, data)
@staticmethod
async def test_with_data_invalid_params(store: Store) -> None:
"""
Test that failing to specify data AND shape / dtype results in a ValueError
"""
with pytest.raises(ValueError, match="shape was not specified"):
await create_array(store, data=None, shape=None, dtype=None)
# we catch shape=None first, so specifying a dtype should raise the same exception as before
with pytest.raises(ValueError, match="shape was not specified"):
await create_array(store, data=None, shape=None, dtype="uint8")
with pytest.raises(ValueError, match="dtype was not specified"):
await create_array(store, data=None, shape=(10, 10))
@staticmethod
async def test_data_ignored_params(store: Store) -> None:
"""
Test that specifying data AND shape AND dtype results in a ValueError
"""
data = np.arange(10)
with pytest.raises(
ValueError, match="The data parameter was used, but the shape parameter was also used."
):
await create_array(store, data=data, shape=data.shape, dtype=None, overwrite=True)
# we catch shape first, so specifying a dtype should raise the same warning as before
with pytest.raises(
ValueError, match="The data parameter was used, but the shape parameter was also used."
):
await create_array(store, data=data, shape=data.shape, dtype=data.dtype, overwrite=True)
with pytest.raises(
ValueError, match="The data parameter was used, but the dtype parameter was also used."
):
await create_array(store, data=data, shape=None, dtype=data.dtype, overwrite=True)
@staticmethod
@pytest.mark.parametrize("write_empty_chunks", [True, False])
async def test_write_empty_chunks_config(write_empty_chunks: bool, store: Store) -> None:
"""
Test that the value of write_empty_chunks is sensitive to the global config when not set
explicitly
"""
with zarr.config.set({"array.write_empty_chunks": write_empty_chunks}):
arr = await create_array(store, shape=(2, 2), dtype="i4")
assert arr._config.write_empty_chunks == write_empty_chunks
@staticmethod
@pytest.mark.parametrize("path", [None, "", "/", "/foo", "foo", "foo/bar"])
async def test_name(store: Store, zarr_format: ZarrFormat, path: str | None) -> None:
arr = await create_array(
store, shape=(2, 2), dtype="i4", name=path, zarr_format=zarr_format
)
if path is None:
expected_path = ""
elif path.startswith("/"):
expected_path = path.lstrip("/")
else:
expected_path = path
assert arr.path == expected_path
assert arr.name == "/" + expected_path
# test that implicit groups were created
path_parts = expected_path.split("/")
if len(path_parts) > 1:
*parents, _ = ["", *accumulate(path_parts, lambda x, y: "/".join([x, y]))] # noqa: FLY002
for parent_path in parents:
# this will raise if these groups were not created
_ = await zarr.api.asynchronous.open_group(
store=store, path=parent_path, zarr_format=zarr_format
)
@staticmethod
@pytest.mark.parametrize("endianness", ENDIANNESS_STR)
def test_default_endianness(
store: Store, zarr_format: ZarrFormat, endianness: EndiannessStr
) -> None:
"""
Test that that endianness is correctly set when creating an array when not specifying a serializer
"""
dtype = Int16(endianness=endianness)
arr = zarr.create_array(store=store, shape=(1,), dtype=dtype, zarr_format=zarr_format)
byte_order: str = arr[:].dtype.byteorder # type: ignore[union-attr]
assert byte_order in NUMPY_ENDIANNESS_STR
assert endianness_from_numpy_str(byte_order) == endianness # type: ignore[arg-type]
@pytest.mark.parametrize("value", [1, 1.4, "a", b"a", np.array(1)])
@pytest.mark.parametrize("zarr_format", [2, 3])
@pytest.mark.filterwarnings("ignore::zarr.core.dtype.common.UnstableSpecificationWarning")
def test_scalar_array(value: Any, zarr_format: ZarrFormat) -> None:
arr = zarr.array(value, zarr_format=zarr_format)
assert arr[...] == value
assert arr.shape == ()
assert arr.ndim == 0
assert isinstance(arr[()], NDArrayLikeOrScalar)
@pytest.mark.parametrize("store", ["local"], indirect=True)
@pytest.mark.parametrize("store2", ["local"], indirect=["store2"])
@pytest.mark.parametrize("src_format", [2, 3])
@pytest.mark.parametrize("new_format", [2, 3, None])
async def test_creation_from_other_zarr_format(
store: Store,
store2: Store,
src_format: ZarrFormat,
new_format: ZarrFormat | None,
) -> None:
if src_format == 2:
src = zarr.create(
(50, 50), chunks=(10, 10), store=store, zarr_format=src_format, dimension_separator="/"
)
else:
src = zarr.create(
(50, 50),
chunks=(10, 10),
store=store,
zarr_format=src_format,
chunk_key_encoding=("default", "."),
)
src[:] = np.arange(50 * 50).reshape((50, 50))
result = zarr.from_array(
store=store2,
data=src,
zarr_format=new_format,
)
np.testing.assert_array_equal(result[:], src[:])
assert result.fill_value == src.fill_value
assert result.dtype == src.dtype
assert result.chunks == src.chunks
expected_format = src_format if new_format is None else new_format
assert result.metadata.zarr_format == expected_format
if src_format == new_format:
assert result.metadata == src.metadata
result2 = zarr.array(
data=src,
store=store2,
overwrite=True,
zarr_format=new_format,
)
np.testing.assert_array_equal(result2[:], src[:])
@pytest.mark.parametrize("store", ["local", "memory", "zip"], indirect=True)
@pytest.mark.parametrize("store2", ["local", "memory", "zip"], indirect=["store2"])
@pytest.mark.parametrize("src_chunks", [(40, 10), (11, 50)])
@pytest.mark.parametrize("new_chunks", [(40, 10), (11, 50)])
async def test_from_array(
store: Store,
store2: Store,
src_chunks: tuple[int, int],
new_chunks: tuple[int, int],
zarr_format: ZarrFormat,
) -> None:
src_fill_value = 2
src_dtype = np.dtype("uint8")
src_attributes = None
src = zarr.create(
(100, 10),
chunks=src_chunks,
dtype=src_dtype,
store=store,
fill_value=src_fill_value,
attributes=src_attributes,
)
src[:] = np.arange(1000).reshape((100, 10))
new_fill_value = 3
new_attributes: dict[str, JSON] = {"foo": "bar"}
result = zarr.from_array(
data=src,
store=store2,
chunks=new_chunks,
fill_value=new_fill_value,
attributes=new_attributes,
)
np.testing.assert_array_equal(result[:], src[:])
assert result.fill_value == new_fill_value
assert result.dtype == src_dtype
assert result.attrs == new_attributes
assert result.chunks == new_chunks
@pytest.mark.parametrize("store", ["local"], indirect=True)
@pytest.mark.parametrize("chunks", ["keep", "auto"])
@pytest.mark.parametrize("write_data", [True, False])
@pytest.mark.parametrize(
"src",
[
np.arange(1000).reshape(10, 10, 10),
zarr.ones((10, 10, 10)),
5,
[1, 2, 3],
[[1, 2, 3], [4, 5, 6]],
],
) # add other npt.ArrayLike?
async def test_from_array_arraylike(
store: Store,
chunks: Literal["auto", "keep"] | tuple[int, int],
write_data: bool,
src: AnyArray | npt.ArrayLike,
) -> None:
fill_value = 42
result = zarr.from_array(
store, data=src, chunks=chunks, write_data=write_data, fill_value=fill_value
)
if write_data:
np.testing.assert_array_equal(result[...], np.array(src))
else:
np.testing.assert_array_equal(result[...], np.full_like(src, fill_value))
def test_from_array_F_order() -> None:
arr = zarr.create_array(store={}, data=np.array([1]), order="F", zarr_format=2)
with pytest.warns(
ZarrUserWarning,
match="The existing order='F' of the source Zarr format 2 array will be ignored.",
):
zarr.from_array(store={}, data=arr, zarr_format=3)
async def test_orthogonal_set_total_slice() -> None:
"""Ensure that a whole chunk overwrite does not read chunks"""
store = MemoryStore()
array = zarr.create_array(store, shape=(20, 20), chunks=(1, 2), dtype=int, fill_value=-1)
with mock.patch("zarr.storage.MemoryStore.get", side_effect=RuntimeError):
array[0, slice(4, 10)] = np.arange(6)
array = zarr.create_array(
store, shape=(20, 21), chunks=(1, 2), dtype=int, fill_value=-1, overwrite=True
)
with mock.patch("zarr.storage.MemoryStore.get", side_effect=RuntimeError):
array[0, :] = np.arange(21)
with mock.patch("zarr.storage.MemoryStore.get", side_effect=RuntimeError):
array[:] = 1
@pytest.mark.skipif(
Version(numcodecs.__version__) < Version("0.15.1"),
reason="codec configuration is overwritten on older versions. GH2800",
)
def test_roundtrip_numcodecs() -> None:
store = MemoryStore()
compressors = [
{"name": "numcodecs.shuffle", "configuration": {"elementsize": 2}},
{"name": "numcodecs.zlib", "configuration": {"level": 4}},
]
filters: list[CodecJSON_V3] = [
{
"name": "numcodecs.fixedscaleoffset",
"configuration": {
"scale": 100.0,
"offset": 0.0,
"dtype": "<f8",
"astype": "<i2",
},
},
]
# Create the array with the correct codecs
root = zarr.group(store)
warn_msg = "Numcodecs codecs are not in the Zarr version 3 specification and may not be supported by other zarr implementations."
with pytest.warns(ZarrUserWarning, match=warn_msg):
root.create_array(
"test",
shape=(720, 1440),
chunks=(720, 1440),
dtype="float64",
compressors=compressors, # type: ignore[arg-type]
filters=filters, # type: ignore[arg-type]
fill_value=-9.99,
dimension_names=["lat", "lon"],
)
BYTES_CODEC = {"name": "bytes", "configuration": {"endian": "little"}}
# Read in the array again and check compressor config
root = zarr.open_group(store)
with pytest.warns(ZarrUserWarning, match=warn_msg):
metadata = root["test"].metadata.to_dict()
expected = (*filters, BYTES_CODEC, *compressors)
assert metadata["codecs"] == expected
def _index_array(arr: AnyArray, index: Any) -> Any:
return arr[index]
@pytest.mark.parametrize(
"method",
[
pytest.param(
"fork",
marks=pytest.mark.skipif(
sys.platform in ("win32", "darwin"), reason="fork not supported on Windows or OSX"
),
),
"spawn",
pytest.param(
"forkserver",
marks=pytest.mark.skipif(
sys.platform == "win32", reason="forkserver not supported on Windows"
),
),
],
)
@pytest.mark.parametrize("store", ["local"], indirect=True)
@pytest.mark.parametrize("shards", [None, (20,)])
def test_multiprocessing(
store: Store, method: Literal["fork", "spawn", "forkserver"], shards: tuple[int, ...] | None
) -> None:
"""
Test that arrays can be pickled and indexed in child processes
"""
data = np.arange(100)
chunks: Literal["auto"] | tuple[int, ...]
if shards is None:
chunks = "auto"
else:
chunks = (1,)
arr = zarr.create_array(store=store, data=data, shards=shards, chunks=chunks)
ctx = mp.get_context(method)
with ctx.Pool() as pool:
results = pool.starmap(_index_array, [(arr, slice(len(data)))])
assert all(np.array_equal(r, data) for r in results)
def test_create_array_method_signature() -> None:
"""
Test that the signature of the ``AsyncGroup.create_array`` function has nearly the same signature
as the ``create_array`` function. ``AsyncGroup.create_array`` should take all of the same keyword
arguments as ``create_array`` except ``store``.
"""
base_sig = inspect.signature(create_array)
meth_sig = inspect.signature(AsyncGroup.create_array)
# ignore keyword arguments that are either missing or have different semantics when
# create_array is invoked as a group method
ignore_kwargs = {"zarr_format", "store", "name"}
# TODO: make this test stronger. right now, it only checks that all the parameters in the
# function signature are used in the method signature. we can be more strict and check that
# the method signature uses no extra parameters.
base_params = dict(filter(lambda kv: kv[0] not in ignore_kwargs, base_sig.parameters.items()))
assert (set(base_params.items()) - set(meth_sig.parameters.items())) == set()
async def test_sharding_coordinate_selection() -> None:
store = MemoryStore()
g = zarr.open_group(store, mode="w")
arr = g.create_array(
name="a",
shape=(2, 3, 4),
chunks=(1, 2, 2),
overwrite=True,
dtype=np.float32,
shards=(2, 4, 4),
)
arr[:] = np.arange(2 * 3 * 4).reshape((2, 3, 4))
result = arr[1, [0, 1]] # type: ignore[index]
assert isinstance(result, NDArrayLike)
assert (result == np.array([[12, 13, 14, 15], [16, 17, 18, 19]])).all()
@pytest.mark.parametrize("store", ["local", "memory", "zip"], indirect=["store"])
def test_array_repr(store: Store) -> None:
shape = (2, 3, 4)
dtype = "uint8"
arr = zarr.create_array(store, shape=shape, dtype=dtype)
assert str(arr) == f"<Array {store} shape={shape} dtype={dtype}>"
class UnknownObjectDtype(UTF8Base[np.dtypes.ObjectDType]):
object_codec_id = "unknown" # type: ignore[assignment]
def to_native_dtype(self) -> np.dtypes.ObjectDType:
"""
Create a NumPy object dtype from this VariableLengthUTF8 ZDType.
Returns
-------
np.dtypes.ObjectDType
The NumPy object dtype.
"""
return np.dtype("o") # type: ignore[return-value]
@pytest.mark.parametrize(
"dtype", [VariableLengthUTF8(), VariableLengthBytes(), UnknownObjectDtype()]
)
def test_chunk_encoding_no_object_codec_errors(dtype: ZDType[Any, Any]) -> None:
"""
Test that a valuerror is raised when checking the chunk encoding for a v2 array with a
data type that requires an object codec, but where no object codec is specified
"""
if isinstance(dtype, VariableLengthUTF8):
codec_name = "the numcodecs.VLenUTF8 codec"
elif isinstance(dtype, VariableLengthBytes):
codec_name = "the numcodecs.VLenBytes codec"
else:
codec_name = f"an unknown object codec with id {dtype.object_codec_id!r}" # type: ignore[attr-defined]
msg = (
f"Data type {dtype} requires {codec_name}, "
"but no such codec was specified in the filters or compressor parameters for "
"this array. "
)
with pytest.raises(ValueError, match=re.escape(msg)):
_parse_chunk_encoding_v2(filters=None, compressor=None, dtype=dtype)
def test_unknown_object_codec_default_serializer_v3() -> None:
"""
Test that we get a valueerrror when trying to create the default serializer for a data type
that requires an unknown object codec
"""
dtype = UnknownObjectDtype()
msg = f"Data type {dtype} requires an unknown object codec: {dtype.object_codec_id!r}."
with pytest.raises(ValueError, match=re.escape(msg)):
default_serializer_v3(dtype)
def test_unknown_object_codec_default_filters_v2() -> None:
"""
Test that we get a valueerrror when trying to create the default serializer for a data type
that requires an unknown object codec
"""
dtype = UnknownObjectDtype()
msg = f"Data type {dtype} requires an unknown object codec: {dtype.object_codec_id!r}."
with pytest.raises(ValueError, match=re.escape(msg)):
default_filters_v2(dtype)
@pytest.mark.parametrize(
("array_shape", "shard_shape", "chunk_shape"),
[
((10,), None, (1,)),
((10,), (1,), (1,)),
((30, 10), None, (2, 5)),
((30, 10), (4, 10), (2, 5)),
],
)
def test_chunk_grid_shape(
array_shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
zarr_format: ZarrFormat,
) -> None:
"""
Test that the shape of the chunk grid and the shard grid are correctly indicated
"""
if zarr_format == 2 and shard_shape is not None:
with pytest.raises(
ValueError,
match="Zarr format 2 arrays can only be created with `shard_shape` set to `None`.",
):
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
pytest.skip("Zarr format 2 arrays can only be created with `shard_shape` set to `None`.")
else:
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
chunk_grid_shape = tuple(ceildiv(a, b) for a, b in zip(array_shape, chunk_shape, strict=True))
if shard_shape is None:
_shard_shape = chunk_shape
else:
_shard_shape = shard_shape
shard_grid_shape = tuple(ceildiv(a, b) for a, b in zip(array_shape, _shard_shape, strict=True))
assert arr._chunk_grid_shape == chunk_grid_shape
assert arr.cdata_shape == chunk_grid_shape
assert arr.async_array.cdata_shape == chunk_grid_shape
assert arr._shard_grid_shape == shard_grid_shape
assert arr._nshards == np.prod(shard_grid_shape)
@pytest.mark.parametrize(
("array_shape", "shard_shape", "chunk_shape"), [((10,), None, (1,)), ((30, 10), None, (2, 5))]
)
def test_iter_chunk_coords(
array_shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
zarr_format: ZarrFormat,
) -> None:
"""
Test that we can use the various invocations of iter_chunk_coords to iterate over the coordinates
of the origin of each chunk.
"""
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
expected = tuple(_iter_grid(arr._shard_grid_shape))
observed = tuple(_iter_chunk_coords(arr))
assert observed == expected
assert observed == tuple(arr._iter_chunk_coords())
assert observed == tuple(arr.async_array._iter_chunk_coords())
@pytest.mark.parametrize(
("array_shape", "shard_shape", "chunk_shape"),
[((10,), (1,), (1,)), ((10,), None, (1,)), ((30, 10), (10, 5), (2, 5))],
)
def test_iter_shard_coords(
array_shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
zarr_format: ZarrFormat,
) -> None:
"""
Test that we can use the various invocations of iter_shard_coords to iterate over the coordinates
of the origin of each shard.
"""
if zarr_format == 2 and shard_shape is not None:
pytest.skip("Zarr format 2 does not support shard shape.")
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
expected = tuple(_iter_grid(arr._shard_grid_shape))
observed = tuple(_iter_shard_coords(arr))
assert observed == expected
assert observed == tuple(arr._iter_shard_coords())
assert observed == tuple(arr.async_array._iter_shard_coords())
@pytest.mark.parametrize(
("array_shape", "shard_shape", "chunk_shape"),
[((10,), (1,), (1,)), ((10,), None, (1,)), ((30, 10), (10, 5), (2, 5))],
)
def test_iter_shard_keys(
array_shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
zarr_format: ZarrFormat,
) -> None:
"""
Test that we can use the various invocations of iter_shard_keys to iterate over the stored
keys of the shards of an array.
"""
if zarr_format == 2 and shard_shape is not None:
pytest.skip("Zarr format 2 does not support shard shape.")
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
expected = tuple(
arr.metadata.encode_chunk_key(key) for key in _iter_grid(arr._shard_grid_shape)
)
observed = tuple(_iter_shard_keys(arr))
assert observed == expected
assert observed == tuple(arr._iter_shard_keys())
assert observed == tuple(arr.async_array._iter_shard_keys())
@pytest.mark.parametrize(
("array_shape", "shard_shape", "chunk_shape"),
[((10,), None, (1,)), ((10,), (1,), (1,)), ((30, 10), (10, 5), (2, 5))],
)
def test_iter_shard_regions(
array_shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
zarr_format: ZarrFormat,
) -> None:
"""
Test that we can use the various invocations of iter_shard_regions to iterate over the regions
spanned by the shards of an array.
"""
if zarr_format == 2 and shard_shape is not None:
pytest.skip("Zarr format 2 does not support shard shape.")
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
if shard_shape is None:
_shard_shape = chunk_shape
else:
_shard_shape = shard_shape
expected = tuple(_iter_regions(arr.shape, _shard_shape))
observed = tuple(_iter_shard_regions(arr))
assert observed == expected
assert observed == tuple(arr._iter_shard_regions())
assert observed == tuple(arr.async_array._iter_shard_regions())
@pytest.mark.parametrize(
("array_shape", "shard_shape", "chunk_shape"), [((10,), None, (1,)), ((30, 10), None, (2, 5))]
)
def test_iter_chunk_regions(
array_shape: tuple[int, ...],
shard_shape: tuple[int, ...] | None,
chunk_shape: tuple[int, ...],
zarr_format: ZarrFormat,
) -> None:
"""
Test that we can use the various invocations of iter_chunk_regions to iterate over the regions
spanned by the chunks of an array.
"""
arr = zarr.create_array(
{},
dtype="uint8",
shape=array_shape,
chunks=chunk_shape,
shards=shard_shape,
zarr_format=zarr_format,
)
expected = tuple(_iter_regions(arr.shape, chunk_shape))
observed = tuple(_iter_chunk_regions(arr))
assert observed == expected
assert observed == tuple(arr._iter_chunk_regions())
assert observed == tuple(arr.async_array._iter_chunk_regions())
@pytest.mark.parametrize("num_shards", [1, 3])
@pytest.mark.parametrize("array_type", ["numpy", "zarr"])
def test_create_array_with_data_num_gets(
num_shards: int, array_type: Literal["numpy", "zarr"]
) -> None:
"""
Test that creating an array with data only invokes a single get request per stored object
"""
store = LoggingStore(store=MemoryStore())
chunk_shape = (1,)
shard_shape = (100,)
shape = (shard_shape[0] * num_shards,)
data: AnyArray | npt.NDArray[np.int64]
if array_type == "numpy":
data = np.zeros(shape[0], dtype="int64")
else:
data = zarr.zeros(shape, dtype="int64")
zarr.create_array(store, data=data, chunks=chunk_shape, shards=shard_shape, fill_value=-1) # type: ignore[arg-type]
# one get for the metadata and one per shard.
# Note: we don't actually need one get per shard, but this is the current behavior
assert store.counter["get"] == 1 + num_shards
|