1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
from __future__ import annotations
from typing import TYPE_CHECKING, Literal
import numpy as np
import pytest
import zarr
from zarr.abc.buffer import ArrayLike, BufferPrototype, NDArrayLike
from zarr.buffer import cpu, gpu
from zarr.codecs.blosc import BloscCodec
from zarr.codecs.crc32c_ import Crc32cCodec
from zarr.codecs.gzip import GzipCodec
from zarr.codecs.transpose import TransposeCodec
from zarr.codecs.zstd import ZstdCodec
from zarr.errors import ZarrUserWarning
from zarr.storage import MemoryStore, StorePath
from zarr.testing.buffer import (
NDBufferUsingTestNDArrayLike,
StoreExpectingTestBuffer,
TestBuffer,
TestNDArrayLike,
)
from zarr.testing.utils import gpu_mark, gpu_test, skip_if_no_gpu
if TYPE_CHECKING:
import types
try:
import cupy as cp
except ImportError:
cp = None
import zarr.api.asynchronous
if TYPE_CHECKING:
import types
def test_nd_array_like(xp: types.ModuleType) -> None:
ary = xp.arange(10)
assert isinstance(ary, ArrayLike)
assert isinstance(ary, NDArrayLike)
@pytest.mark.asyncio
async def test_async_array_prototype() -> None:
"""Test the use of a custom buffer prototype"""
expect = np.zeros((9, 9), dtype="uint16", order="F")
a = await zarr.api.asynchronous.create_array(
StorePath(StoreExpectingTestBuffer()) / "test_async_array_prototype",
shape=expect.shape,
chunks=(5, 5),
dtype=expect.dtype,
fill_value=0,
)
expect[1:4, 3:6] = np.ones((3, 3))
my_prototype = BufferPrototype(buffer=TestBuffer, nd_buffer=NDBufferUsingTestNDArrayLike)
await a.setitem(
selection=(slice(1, 4), slice(3, 6)),
value=np.ones((3, 3)),
prototype=my_prototype,
)
got = await a.getitem(selection=(slice(0, 9), slice(0, 9)), prototype=my_prototype)
# ignoring a mypy error here that TestNDArrayLike doesn't meet the NDArrayLike protocol
# The test passes, so it clearly does.
assert isinstance(got, TestNDArrayLike)
assert np.array_equal(expect, got) # type: ignore[unreachable]
@gpu_test
@pytest.mark.asyncio
async def test_async_array_gpu_prototype() -> None:
"""Test the use of the GPU buffer prototype"""
expect = cp.zeros((9, 9), dtype="uint16", order="F")
a = await zarr.api.asynchronous.create_array(
StorePath(MemoryStore()) / "test_async_array_gpu_prototype",
shape=expect.shape,
chunks=(5, 5),
dtype=expect.dtype,
fill_value=0,
)
expect[1:4, 3:6] = cp.ones((3, 3))
await a.setitem(
selection=(slice(1, 4), slice(3, 6)),
value=cp.ones((3, 3)),
prototype=gpu.buffer_prototype,
)
got = await a.getitem(selection=(slice(0, 9), slice(0, 9)), prototype=gpu.buffer_prototype)
assert isinstance(got, cp.ndarray)
assert cp.array_equal(expect, got)
@pytest.mark.asyncio
async def test_codecs_use_of_prototype() -> None:
expect = np.zeros((10, 10), dtype="uint16", order="F")
a = await zarr.api.asynchronous.create_array(
StorePath(StoreExpectingTestBuffer()) / "test_codecs_use_of_prototype",
shape=expect.shape,
chunks=(5, 5),
dtype=expect.dtype,
fill_value=0,
compressors=[BloscCodec(), Crc32cCodec(), GzipCodec(), ZstdCodec()],
filters=[TransposeCodec(order=(1, 0))],
)
expect[:] = np.arange(100).reshape(10, 10)
my_prototype = BufferPrototype(buffer=TestBuffer, nd_buffer=NDBufferUsingTestNDArrayLike)
await a.setitem(
selection=(slice(0, 10), slice(0, 10)),
value=expect[:],
prototype=my_prototype,
)
got = await a.getitem(selection=(slice(0, 10), slice(0, 10)), prototype=my_prototype)
# ignoring a mypy error here that TestNDArrayLike doesn't meet the NDArrayLike protocol
# The test passes, so it clearly does.
assert isinstance(got, TestNDArrayLike)
assert np.array_equal(expect, got) # type: ignore[unreachable]
@gpu_test
@pytest.mark.asyncio
async def test_codecs_use_of_gpu_prototype() -> None:
expect = cp.zeros((10, 10), dtype="uint16", order="F")
a = await zarr.api.asynchronous.create_array(
StorePath(MemoryStore()) / "test_codecs_use_of_gpu_prototype",
shape=expect.shape,
chunks=(5, 5),
dtype=expect.dtype,
fill_value=0,
compressors=[BloscCodec(), Crc32cCodec(), GzipCodec(), ZstdCodec()],
filters=[TransposeCodec(order=(1, 0))],
)
expect[:] = cp.arange(100).reshape(10, 10)
msg = "Creating a zarr.buffer.gpu.Buffer with an array that does not support the __cuda_array_interface__ for zero-copy transfers, falling back to slow copy based path"
with pytest.warns(ZarrUserWarning, match=msg):
await a.setitem(
selection=(slice(0, 10), slice(0, 10)),
value=expect[:],
prototype=gpu.buffer_prototype,
)
with pytest.warns(ZarrUserWarning, match=msg):
got = await a.getitem(
selection=(slice(0, 10), slice(0, 10)), prototype=gpu.buffer_prototype
)
assert isinstance(got, cp.ndarray)
assert cp.array_equal(expect, got)
@gpu_test
@pytest.mark.asyncio
async def test_sharding_use_of_gpu_prototype() -> None:
with zarr.config.enable_gpu():
expect = cp.zeros((10, 10), dtype="uint16", order="F")
a = await zarr.api.asynchronous.create_array(
StorePath(MemoryStore()) / "test_codecs_use_of_gpu_prototype",
shape=expect.shape,
chunks=(5, 5),
shards=(10, 10),
dtype=expect.dtype,
fill_value=0,
)
expect[:] = cp.arange(100).reshape(10, 10)
msg = "Creating a zarr.buffer.gpu.Buffer with an array that does not support the __cuda_array_interface__ for zero-copy transfers, falling back to slow copy based path"
with pytest.warns(ZarrUserWarning, match=msg):
await a.setitem(
selection=(slice(0, 10), slice(0, 10)),
value=expect[:],
prototype=gpu.buffer_prototype,
)
with pytest.warns(ZarrUserWarning, match=msg):
got = await a.getitem(
selection=(slice(0, 10), slice(0, 10)), prototype=gpu.buffer_prototype
)
assert isinstance(got, cp.ndarray)
assert cp.array_equal(expect, got)
def test_numpy_buffer_prototype() -> None:
buffer = cpu.buffer_prototype.buffer.create_zero_length()
ndbuffer = cpu.buffer_prototype.nd_buffer.create(shape=(1, 2), dtype=np.dtype("int64"))
assert isinstance(buffer.as_array_like(), np.ndarray)
assert isinstance(ndbuffer.as_ndarray_like(), np.ndarray)
with pytest.raises(ValueError, match="Buffer does not contain a single scalar value"):
ndbuffer.as_scalar()
@gpu_test
def test_gpu_buffer_prototype() -> None:
buffer = gpu.buffer_prototype.buffer.create_zero_length()
ndbuffer = gpu.buffer_prototype.nd_buffer.create(shape=(1, 2), dtype=cp.dtype("int64"))
assert isinstance(buffer.as_array_like(), cp.ndarray)
assert isinstance(ndbuffer.as_ndarray_like(), cp.ndarray)
with pytest.raises(ValueError, match="Buffer does not contain a single scalar value"):
ndbuffer.as_scalar()
# TODO: the same test for other buffer classes
def test_cpu_buffer_as_scalar() -> None:
buf = cpu.buffer_prototype.nd_buffer.create(shape=(), dtype="int64")
assert buf.as_scalar() == buf.as_ndarray_like()[()] # type: ignore[index]
@pytest.mark.parametrize(
"prototype",
[
cpu.buffer_prototype,
pytest.param(
gpu.buffer_prototype,
marks=[gpu_mark, skip_if_no_gpu],
),
BufferPrototype(
buffer=cpu.Buffer,
nd_buffer=NDBufferUsingTestNDArrayLike,
),
],
)
@pytest.mark.parametrize(
"shape",
[
(1, 2),
(1, 2, 3),
],
)
@pytest.mark.parametrize("dtype", ["int32", "float64"])
@pytest.mark.parametrize("order", ["C", "F"])
def test_empty(
prototype: BufferPrototype, shape: tuple[int, ...], dtype: str, order: Literal["C", "F"]
) -> None:
buf = prototype.nd_buffer.empty(shape=shape, dtype=dtype, order=order)
result = buf.as_ndarray_like()
assert result.shape == shape
assert result.dtype == dtype
if order == "C":
assert result.flags.c_contiguous # type: ignore[attr-defined]
else:
assert result.flags.f_contiguous # type: ignore[attr-defined]
|