File: encrypted_file.cc

package info (click to toggle)
zbackup 1.3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 500 kB
  • ctags: 568
  • sloc: cpp: 4,032; makefile: 2
file content (391 lines) | stat: -rw-r--r-- 9,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright (c) 2012-2014 Konstantin Isakov <ikm@zbackup.org>
// Part of ZBackup. Licensed under GNU GPLv2 or later + OpenSSL, see LICENSE

#include <string.h>
#include <algorithm>

#include "check.hh"
#include "encrypted_file.hh"
#include "endian.hh"
#include "page_size.hh"
#include "random.hh"

namespace EncryptedFile {

using Encryption::BlockSize;

InputStream::InputStream( char const * fileName, EncryptionKey const & key,
                          void const * iv_ ):
  file( fileName, UnbufferedFile::ReadOnly ), filePos( 0 ), key( key ),
  // Our buffer must be larger than BlockSize, as otherwise we won't be able
  // to handle PKCS#7 padding properly
  buffer( std::max( getPageSize(), ( unsigned ) BlockSize * 2 ) ),
  fill( 0 ), remainder( 0 ), backedUp( false )
{
  if ( key.hasKey() )
  {
    memcpy( iv, iv_, sizeof( iv ) );
    // Since we use padding, file size should be evenly dividable by the cipher
    // block size, and we should have at least one block
    UnbufferedFile::Offset size = file.size();
    if ( !size || size % BlockSize )
      throw exIncorrectFileSize();
  }
}

bool InputStream::Next( void const ** data, int * size )
{
  // If we backed up, return the unconsumed data
  if ( backedUp )
    backedUp = false;
  else
  {
    try
    {
      // Update adler32 for the previous block
      adler32.add( start, fill );

      // Read more data
      if ( filePos && !remainder )
      {
        // Once we're read a full block, we always have a remainder. If not,
        // this means we've hit the end of file already
        fill = 0;
        return false;
      }

      // If we have a remainder, move it to the beginning of buffer and make
      // it start the next block
      memmove( buffer.data(), start + fill, remainder );
      start = buffer.data();
      fill = file.read( start + remainder, buffer.size() - remainder ) +
             remainder;
      // remainder should techically be 0 now, but decrypt() will update it
      // anyway
      // remainder = 0;
      decrypt();
    }
    catch( UnbufferedFile::exReadError & )
    {
      fill = 0; // To make sure state is remaining consistent
      return false;
    }
  }
  *data = start;
  *size = fill;
  filePos += fill;
  return *size;
}

void InputStream::BackUp( int count )
{
  CHECK( count >= 0, "count is negative" );
  if ( !backedUp )
  {
    CHECK( (size_t) count <= fill, "Backing up too much" );
    size_t consumed = fill - count;
    adler32.add( start, consumed );
    start += consumed;
    fill = count;
    filePos -= count;
    backedUp = fill; // Don't make the next Next() return 0 bytes
  }
  else
  {
    CHECK( count == 0, "backing up after being backed up already" );
  }
}

bool InputStream::Skip( int count )
{
  CHECK( count >= 0, "count is negative" );

  // We always need to read and decrypt data, as otherwise both the state of
  // CBC and adler32 would be incorrect
  void const * data;
  int size;
  while( count )
  {
    if ( !Next( &data, &size ) )
      return false;
    else
    if ( size > count )
    {
      BackUp( size - count );
      break;
    }
    else
      count -= size;
  }
  return true;
}

int64_t InputStream::ByteCount() const
{
  return filePos;
}

Adler32::Value InputStream::getAdler32()
{
  // This makes all data consumed, if not already
  BackUp( 0 );
  return adler32.result();
}

void InputStream::read( void * buf, size_t size )
{
  void const * data;
  int avail;
  char * n = ( char * ) buf;
  while( size )
  {
    if ( !Next( &data, &avail ) )
      throw exReadFailed();
    else
    if ( avail > ( ssize_t ) size )
    {
      memcpy( n, data, size );
      BackUp( avail - size );
      break;
    }
    else
    {
      memcpy( n, data, avail );
      n += avail;
      size -= avail;
    }
  }
}

void InputStream::checkAdler32()
{
  Adler32::Value ours = getAdler32();
  Adler32::Value r;
  read( &r, sizeof( r ) );
  if ( ours != fromLittleEndian( r ) )
    throw exAdlerMismatch();
}

void InputStream::consumeRandomIv()
{
  if ( key.hasKey() )
  {
    char iv[ Encryption::IvSize ];
    read( iv, sizeof( iv ) ); // read() can throw exceptions, Skip() can't
  }
}

void InputStream::decrypt()
{
  if ( fill == buffer.size() )
  {
    // When we have the full buffer, we set the last block of it aside and
    // treat the rest as the normal CBC sequence. The last block in the buffer
    // may be the last block of file, in which case we would need to handle
    // padding. That may happen the next time the function is called
    remainder = BlockSize;
    fill -= BlockSize;
    doDecrypt();
  }
  else
  {
    // This is an end of file. Decrypt data treating the last block being
    // padded

    // Since we always have padding in the file and the last block is always
    // set apart when reading full buffers, we must have at least one block
    // to decrypt here
    doDecrypt();

    // Unpad the last block
    if ( key.hasKey() )
      fill -= BlockSize - Encryption::unpad( start + fill - BlockSize );

    // We have not left any remainder this time
    remainder = 0;
  }
}

void InputStream::doDecrypt()
{
  if ( !key.hasKey() )
    return;

  // Since we use padding, file size should be evenly dividable by the cipher's
  // block size, and we should always have at least one block. When we get here,
  // we would always get the proper fill value unless those characteristics are
  // not met. We check for the same condition on construction, but the file
  // size can change while we are reading it

  // We don't throw an exception here as the interface we implement doesn't
  // support them
  CHECK( fill > 0 && !( fill % BlockSize ), "incorrect size of the encrypted "
         "file - must be non-zero and in multiples of %u",
         ( unsigned ) BlockSize );

  // Copy the next iv prior to decrypting the data in place, as it will
  // not be available afterwards
  char newIv[ Encryption::IvSize ];
  memcpy( newIv, Encryption::getNextDecryptionIv( start, fill ),
          sizeof( newIv ) );
  // Decrypt the data
  Encryption::decrypt( iv, key.getKey(), start, start, fill );
  // Copy the new iv
  memcpy( iv, newIv, sizeof( iv ) );
}

OutputStream::OutputStream( char const * fileName, EncryptionKey const & key,
                            void const * iv_ ):
  file( fileName, UnbufferedFile::WriteOnly ), filePos( 0 ), key( key ),
  buffer( getPageSize() ), start( buffer.data() ), avail( 0 ), backedUp( false )
{
  if ( key.hasKey() )
    memcpy( iv, iv_, sizeof( iv ) );
}

bool OutputStream::Next( void ** data, int * size )
{
  // If we backed up, return the unconsumed data
  if ( backedUp )
    backedUp = false;
  else
  {
    try
    {
      // Update adler32 for the previous block
      adler32.add( start, avail );

      // Encrypt and write the buffer if it had data
      if ( filePos )
        encryptAndWrite( buffer.size() );

      start = buffer.data();
      avail = buffer.size();
    }
    catch( UnbufferedFile::exWriteError & )
    {
      avail = 0; // To make sure state is remaining consistent
      return false;
    }
  }
  *data = start;
  *size = avail;
  filePos += avail;
  return *size;
}

void OutputStream::BackUp( int count )
{
  CHECK( count >= 0, "count is negative" );
  if ( !backedUp )
  {
    CHECK( (size_t) count <= avail, "Backing up too much" );
    size_t consumed = avail - count;
    adler32.add( start, consumed );
    start += consumed;
    avail = count;
    filePos -= count;
    backedUp = avail; // Don't make the next Next() return 0 bytes
  }
  else
  {
    CHECK( count == 0, "backing up after being backed up already" );
  }
}

int64_t OutputStream::ByteCount() const
{
  return filePos;
}

Adler32::Value OutputStream::getAdler32()
{
  // This makes all data consumed, if not already
  BackUp( 0 );
  return adler32.result();
}

void OutputStream::write( void const * buf, size_t size )
{
  void * data;
  int avail;
  char const * n = ( char const * ) buf;
  while( size )
  {
    if ( !Next( &data, &avail ) )
      throw exReadFailed();
    else
    if ( avail > ( ssize_t ) size )
    {
      memcpy( data, n, size );
      BackUp( avail - size );
      break;
    }
    else
    {
      memcpy( data, n, avail );
      n += avail;
      size -= avail;
    }
  }
}

void OutputStream::writeAdler32()
{
  Adler32::Value v = toLittleEndian( getAdler32() );
  write( &v, sizeof( v ) );
}

void OutputStream::writeRandomIv()
{
  if ( key.hasKey() )
  {
    char iv[ Encryption::IvSize ];
    Random::genaratePseudo( iv, sizeof( iv ) );
    write( iv, sizeof( iv ) );
  }
}

void OutputStream::encryptAndWrite( size_t bytes )
{
  if ( key.hasKey() )
  {
    CHECK( bytes > 0 && !( bytes % BlockSize ), "incorrect number of bytes to "
           "encrypt and write - must be non-zero and in multiples of %u",
           ( unsigned ) BlockSize );

    void const * nextIv = Encryption::encrypt( iv, key.getKey(), buffer.data(),
                                               buffer.data(), bytes );
    memcpy( iv, nextIv, sizeof( iv ) );
  }

  file.write( buffer.data(), bytes );
}

OutputStream::~OutputStream()
{
  // This makes all data consumed, if not already
  BackUp( 0 );

  // If we have the full buffer, write it first
  if ( start == buffer.data() + buffer.size() )
  {
    encryptAndWrite( buffer.size() );
    start = buffer.data();
  }

  size_t bytesToWrite = start - buffer.data();

  if ( key.hasKey() )
  {
    // Perform padding
    size_t remainderSize = bytesToWrite % BlockSize;

    Encryption::pad( start - remainderSize, remainderSize );
    bytesToWrite += BlockSize - remainderSize;
  }

  encryptAndWrite( bytesToWrite );
}

}