1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#! /usr/bin/env python
# -.- coding: utf-8 -.-
# Zeitgeist
#
# Copyright © 2010 Markus Korn <thekorn@gmx.net>
# Copyright © 2011 Collabora Ltd.
# By Seif Lotfy <seif@lotfy.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 2.1 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import os
import random
import time
import json
import sys
import logging
import csv
import sqlite3
from optparse import OptionParser
from logging import handlers
from collections import defaultdict
from zeitgeist.datamodel import TimeRange, StorageState, ResultType
from zeitgeist.datamodel import Event, Subject, Interpretation, Manifestation
import benchmark as engine
from cairoplot import vertical_bar_plot
class QueryPlanHandler(handlers.MemoryHandler):
@staticmethod
def get_plan(msg):
if "SELECT id FROM event_view" not in msg:
return None
msg = msg.splitlines()
if not "PLAN:" in msg:
return None
for plan in msg[msg.index("PLAN:")+1:]:
if "INDEX" not in plan and "PRIMARY KEY" not in plan:
return False
return True
def __init__(self):
handlers.MemoryHandler.__init__(self, 200000, logging.DEBUG)
self.uses_index = None
def emit(self, record):
x = self.get_plan(record.msg)
if x is not None:
if not x or self.uses_index is None:
self.uses_index = x
return handlers.MemoryHandler.emit(self, record)
def get_reference_engine():
return engine
def get_query_set(source):
for line in open(source):
yield line.strip()
def get_cmdline():
parser = OptionParser()
parser.add_option("-o", dest="output", help="write output to FILE", metavar="FILE")
parser.add_option("--queries", dest="queryset", help="run all queries in FILE", metavar="FILE")
parser.add_option("--name", dest="name", help="name of the data series", metavar="NAME")
parser.add_option("-i", dest="isolated", action="store_true",
default=False, help="run each query isolated")
parser.add_option("-m", dest="merge", action="store_true",
default=False, help="if the datafile already contains data the new data gets merged")
parser.add_option("--plot", dest="plot_files", metavar="DATA_FILE",
action="append", type="str")
parser.add_option("--type", dest="type", help="type of plot")
parser.add_option("--count", dest="count", help="number of execution of each query", type="int")
parser.add_option("--csv", help="Output using CSV", default=False, action="store_true")
(options, args) = parser.parse_args()
assert not args
return options
def get_name(data, alternative_name):
try:
return data["__metadata__"]["name"]
except:
return alternative_name
def get_data(dataset, query, key):
try:
return float(dataset[query][key])
except:
return 0.0
def compare_queries(a, b):
result = cmp(a.strip().split()[-1], b.strip().split()[-1])
if result != 0:
return result
return cmp(a[0], b[0])
def plot(output_filename, plot_type, *data_files):
raw_data = map(lambda x: json.load(open(x)), data_files)
series_labels = map(lambda x: get_name(x[1], data_files[x[0]]), enumerate(raw_data))
queries = sorted(
filter(lambda x: x != "__metadata__", set(sum([d.keys() for d in raw_data], []))),
cmp=compare_queries
)
data = []
max_value = 0
no_index = list()
style = plot_type
for n, query in enumerate(queries):
x = [get_data(d, query, style) for d in raw_data]
print x
y = max(x)
idx_border = [not d.get(query, {}).get("uses_index", True) for d in raw_data]
for i, b in enumerate(idx_border):
if b:
no_index.append((n, i))
if y > max_value:
max_value = y
data.append(x)
y_parts = max_value / float(4)
y_labels = ["%.5fs" %(i*y_parts) for i in range(5)]
vertical_bar_plot(
output_filename, data, len(queries)*400, 600,
x_labels=queries, y_labels=y_labels,
grid=True, series_labels=series_labels, bar_borders=no_index)
if __name__ == "__main__":
options = get_cmdline()
if options.plot_files:
if options.type in ("marsh_time", "get_events_time", "find_ids_time", "find_events", "overall"):
assert options.output
plot(options.output, options.type, *options.plot_files)
else:
print "please specify plot type (marsh_time, get_events_time, find_ids_time, find_events, overall)"
else:
engine = get_reference_engine()
result = {}
if options.name:
result["__metadata__"] = {
"name": options.name,
}
if options.output and os.path.exists(options.output):
if options.csv:
existing_data = {}
datafile = csv.reader(open(options.output))
for row in datafile:
try:
existing_data[row[1]] = {
"name": row[0],
"query": row[1],
"total_events": int(row[2]),
"overall": float(row[3]),
}
except Exception, e:
pass
else:
existing_data = json.load(open(options.output))
else:
existing_data = {}
num_queries = 50 if not options.count else options.count
logging.basicConfig(level=logging.DEBUG)
db = sqlite3.connect(os.path.expanduser("~/.local/share/zeitgeist/activity.sqlite"))
allEvents = db.cursor().execute("SELECT COUNT(id) FROM event_view").fetchone()[0]
db.close()
for query in get_query_set(options.queryset):
args = eval(query)
start_time = time.time()
logging.getLogger("").removeHandler(logging.getLogger("").handlers[0])
handler = QueryPlanHandler()
logging.getLogger("").addHandler(handler)
results = {}
for i in xrange (num_queries):
t1 = time.time()
temp = engine.find_events(*args)
temp["overall"] = time.time() - t1
if len(results.keys()) == 0:
for key in results.keys():
temp[key] = temp[key]
results = temp
else:
for key in temp.keys():
if key != "events":
results[key] += temp[key]
print "%s = %s"%(key, results[key])
events = results["events"]
run_time = results["overall"]
find_ids_time = results["find_event_ids"]
find_events_time = results["find_events"]
get_events_time = results["get_events"]
marsh_time = results["marsh_events"]
print "===>", run_time
if query in existing_data and options.merge:
print "=================================="
counter = existing_data[query].get("counter", 1)
old_time = existing_data[query]["overall"]
run_time = (old_time * counter + run_time)/(counter + 1)
result[query] = {
"name": options.name,
"query": query,
"overall": run_time,
"counter": counter + 1,
"find_ids_time": find_ids_time,
"get_events_time": get_events_time,
"find_events": find_events_time,
"marsh_time": marsh_time,
"event_count": len(events),
"total_events": allEvents,
}
else:
result[query] = {
"name": options.name,
"query": query,
"overall": run_time,
"find_ids_time": find_ids_time,
"get_events_time": get_events_time,
"find_events": find_events_time,
"marsh_time": marsh_time,
"event_count": len(events),
"total_events": allEvents,
}
if options.output:
f = open(options.output, "w")
else:
f = sys.stdout
try:
if options.csv:
writer = csv.writer(f)
writer.writerow(('name', 'query', 'total events', 'time', 'time/event'))
for query in result:
if query.startswith("__"):
continue
d = result[query]
row = (
d['name'],
d['query'],
d['total_events'],
d['overall'],
d['overall']/d['total_events'],
)
writer.writerow(row)
else:
json.dump(result, f, indent=4)
finally:
f.close()
|