File: views.inc

package info (click to toggle)
zfp 1.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,744 kB
  • sloc: cpp: 20,656; ansic: 18,871; pascal: 1,231; f90: 907; python: 255; makefile: 183; sh: 79; fortran: 70
file content (863 lines) | stat: -rw-r--r-- 36,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
.. index::
   single: Views
.. _views:

Views
-----

.. cpp:namespace:: zfp

|zfp| |viewsrelease| adds array views.
Much like how :ref:`references <references>` allow indirect access to
single array elements, *views* provide indirect access to whole arrays,
or more generally to rectangular subsets of arrays.  A view of an array
does not allocate any storage for the array elements.  Rather, the
view accesses shared storage managed by the underlying array.  This
allows for multiple entries into an array without the need for expensive
deep copies.  In a sense, views can be thought of as *shallow copies*
of arrays.

When a view exposes a whole array :code:`array<type>`, it provides
similar functionality to a C++ reference :code:`array<type>&` or
pointer :code:`array<type>*` to the array.  However, views are more
general in that they also allow restricting access to a user-specified
subset of the array, and unlike pointers also provide for the same
syntax when accessing the array, e.g., :code:`array_view(i, j)` instead
of :code:`(*array_ptr)(i, j)`.

|zfp|'s *nested views* further provide for multidimensional
array access analogous to the C/C++ nested array syntax :code:`array[i][j]`.
Finally, |zfp|'s *private views* can be used to ensure thread-safe access
to its compressed arrays.

Access to array elements through a view is via inspectors and mutators
that return a :code:`const_reference` or :code:`reference`, respectively
(see :ref:`references`).  As of |zfp| |crpirelease|, it is also possible
to obtain pointers to array elements through views and to iterate over them.
View pointers and iterators allow referencing only the elements visible
through the view, e.g., a rectangular subset of an array
(see :numref:`view-indexing`).  Those elements are indexed as if the
view were a contiguous array, and pointer arithmetic assumes that the
possibly smaller view and not the underlying array is flattened.
:ref:`Private views <private_immutable_view>` maintain their own cache
and therefore implement their own proxy references, pointers, and
iterators.

.. _view-indexing:
.. figure:: view-indexing.pdf
  :figwidth: 90 %
  :align: center
  :alt: "2D view indexing"

  An 11 |times| 9 element view of a 2D array of dimensions 16 |times| 12.
  The numbered elements indicate the order in which the view is
  traversed using pointers and iterators.  We have
  :code:`view(10, 7) == (&view(0, 0))[87] == view.begin()[97] == view.end()[-2]`.

With the |zfp| |carrrelease| release of
:ref:`read-only arrays <carray_classes>`, such arrays also support the two
kinds of immutable views (:code:`const_view` and :code:`private_const_view`).
The documentation below applies to views into read-only arrays as well.

.. note::
  Like iterators and proxy references and pointers, a view is valid only
  during the lifetime of the array that it references.  **No reference
  counting** is done to keep the array alive.  It is up to the user to
  ensure that the referenced array object is valid when accessed through
  a view.

There are several types of views distinguished by these attributes:

* Read-only vs. read-write access.
* Shared vs. private access.
* Flat vs. nested indexing.

Each of these attributes is discussed in detail below in these
sections:

* :ref:`immutable_view`
* :ref:`mutable_view`
* :ref:`flat_view`
* :ref:`nested_view`
* :ref:`slicing`
* :ref:`private_immutable_view`
* :ref:`private_mutable_view`


.. _immutable_view:

Immutable view
^^^^^^^^^^^^^^

The most basic view is the immutable :code:`const_view`, which
supports read-only access to the array elements it references.
This view serves primarily as a base class for more specialized
views.  Its constructors allow establishing access to a whole
array or to a rectangular subset of an array.  Note that like
references, pointers, and iterators, views are types nested within
the arrays that they reference.

..
  .. cpp:class:: template<typename Scalar> array1::const_view
  .. cpp:class:: template<typename Scalar> array2::const_view
  .. cpp:class:: template<typename Scalar> array3::const_view
  .. cpp:class:: template<typename Scalar> array4::const_view

.. cpp:class:: array1::const_view
.. cpp:class:: array2::const_view
.. cpp:class:: array3::const_view
.. cpp:class:: array4::const_view

  Immutable view into 1D, 2D, 3D, and 4D array.

----

.. _view_ctor:
.. cpp:function:: array1::const_view::const_view(array1* array)
.. cpp:function:: array2::const_view::const_view(array2* array)
.. cpp:function:: array3::const_view::const_view(array3* array)
.. cpp:function:: array4::const_view::const_view(array4* array)

  Constructor for read-only access to a whole array.  As already
  mentioned, these views are valid only during the lifetime of the
  underlying array object.

----

.. cpp:function:: array1::const_view::const_view(array1* array, size_t x, size_t nx)
.. cpp:function:: array2::const_view::const_view(array2* array, size_t x, size_t y, size_t nx, size_t ny)
.. cpp:function:: array3::const_view::const_view(array3* array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)
.. cpp:function:: array4::const_view::const_view(array4* array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)

  Constructors for read-only access to a rectangular subset of an
  array.  The subset is specified by an offset, e.g.,
  (*x*, *y*, *z*) for a 3D array, and dimensions, e.g.,
  (*nx*, *ny*, *nz*) for a 3D array.  The rectangle must fit within
  the surrounding array.

----

.. cpp:function:: size_t array1::const_view::global_x(size_t i) const
.. cpp:function:: size_t array2::const_view::global_x(size_t i) const
.. cpp:function:: size_t array2::const_view::global_y(size_t j) const
.. cpp:function:: size_t array3::const_view::global_x(size_t i) const
.. cpp:function:: size_t array3::const_view::global_y(size_t j) const
.. cpp:function:: size_t array3::const_view::global_z(size_t k) const
.. cpp:function:: size_t array4::const_view::global_x(size_t i) const
.. cpp:function:: size_t array4::const_view::global_y(size_t j) const
.. cpp:function:: size_t array4::const_view::global_z(size_t k) const
.. cpp:function:: size_t array4::const_view::global_w(size_t l) const

  Return global array index associated with local view index.  For
  instance, if a 1D view has been constructed with offset *x*, then
  :code:`global_x(i)` returns *x* + *i*.

----

.. cpp:function:: size_t array1::const_view::size_x() const
.. cpp:function:: size_t array2::const_view::size_x() const
.. cpp:function:: size_t array2::const_view::size_y() const
.. cpp:function:: size_t array3::const_view::size_x() const
.. cpp:function:: size_t array3::const_view::size_y() const
.. cpp:function:: size_t array3::const_view::size_z() const
.. cpp:function:: size_t array4::const_view::size_x() const
.. cpp:function:: size_t array4::const_view::size_y() const
.. cpp:function:: size_t array4::const_view::size_z() const
.. cpp:function:: size_t array4::const_view::size_w() const

  Return dimensions of view.

----

.. _view_accessor:
.. cpp:function:: const_reference array1::const_view::operator()(size_t i) const
.. cpp:function:: const_reference array2::const_view::operator()(size_t i, size_t j) const
.. cpp:function:: const_reference array3::const_view::operator()(size_t i, size_t j, size_t k) const
.. cpp:function:: const_reference array4::const_view::operator()(size_t i, size_t j, size_t k, size_t l) const

  Return reference to scalar stored at multi-dimensional index given by
  *x* + *i*, *y* + *j*, *z* + *k*, and *w* + *l*, where *x*, *y*, *z*, and *w*
  specify the offset into the array.

----

.. cpp:function:: const_reference array1::const_view::operator[](size_t index) const

  Alternative inspector for 1D arrays identical to
  :cpp:func:`array1::const_view::operator()`.

----

.. cpp:function:: array1::const_view::const_iterator array1::const_view::begin() const
.. cpp:function:: array2::const_view::const_iterator array2::const_view::begin() const
.. cpp:function:: array3::const_view::const_iterator array3::const_view::begin() const
.. cpp:function:: array4::const_view::const_iterator array4::const_view::begin() const
.. cpp:function:: array1::const_view::const_iterator array1::const_view::cbegin() const
.. cpp:function:: array2::const_view::const_iterator array2::const_view::cbegin() const
.. cpp:function:: array3::const_view::const_iterator array3::const_view::cbegin() const
.. cpp:function:: array4::const_view::const_iterator array4::const_view::cbegin() const

  Random-access const iterator to first element of view.

----

.. cpp:function:: array1::const_view::const_iterator array1::const_view::end() const
.. cpp:function:: array2::const_view::const_iterator array2::const_view::end() const
.. cpp:function:: array3::const_view::const_iterator array3::const_view::end() const
.. cpp:function:: array4::const_view::const_iterator array4::const_view::end() const
.. cpp:function:: array1::const_view::const_iterator array1::const_view::cend() const
.. cpp:function:: array2::const_view::const_iterator array2::const_view::cend() const
.. cpp:function:: array3::const_view::const_iterator array3::const_view::cend() const
.. cpp:function:: array4::const_view::const_iterator array4::const_view::cend() const

  Random-access const iterator to end of view.

There are a number of common methods inherited from a base class,
:code:`preview`, further up the class hierarchy.

.. cpp:function:: double arrayANY::const_view::rate() const

  Return rate in bits per value.  Same as :cpp:func:`array::rate`.
  
----

.. cpp:function:: size_t arrayANY::const_view::size() const

  Total number of elements in view, e.g., *nx* |times| *ny* |times| *nz* for
  3D views.

With the above definitions, the following example shows how a 2D view is
constructed and accessed::

  zfp::array2d a(200, 100, rate); // define 200x100 array of doubles
  zfp::array2d::const_view v(&a, 10, 5, 20, 20); // v is a 20x20 view into array a
  assert(v(2, 1) == a(12, 6)); // v(2, 1) == a(10 + 2, 5 + 1) == a(12, 6)
  assert(v.size() == 400); // 20x20 == 400


.. _mutable_view:

Mutable view
^^^^^^^^^^^^

The basic mutable :code:`view` derives from the :code:`const_view` but
adds operators for write-access.  Its constructors are similar to those
for the :code:`const_view`.

..
  .. cpp:class:: template<typename Scalar> array1::view
  .. cpp:class:: template<typename Scalar> array2::view
  .. cpp:class:: template<typename Scalar> array3::view
  .. cpp:class:: template<typename Scalar> array4::view

.. cpp:class:: array1::view : public array1::const_view
.. cpp:class:: array2::view : public array2::const_view
.. cpp:class:: array3::view : public array3::const_view
.. cpp:class:: array4::view : public array4::const_view

  Mutable view into 1D, 2D, 3D, and 4D array.

----

.. cpp:function:: array1::view::view(array1* array)
.. cpp:function:: array2::view::view(array2* array)
.. cpp:function:: array3::view::view(array3* array)
.. cpp:function:: array4::view::view(array4* array)
.. cpp:function:: array1::view::view(array1* array, size_t x, size_t nx)
.. cpp:function:: array2::view::view(array2* array, size_t x, size_t y, size_t nx, size_t ny)
.. cpp:function:: array3::view::view(array3* array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)
.. cpp:function:: array4::view::view(array4* array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)

  Whole-array and sub-array mutable view constructors.  See
  :ref:`const_view constructors <view_ctor>` for details.

----

.. cpp:function:: reference array1::view::operator()(size_t i)
.. cpp:function:: reference array2::view::operator()(size_t i, size_t j)
.. cpp:function:: reference array3::view::operator()(size_t i, size_t j, size_t k)
.. cpp:function:: reference array4::view::operator()(size_t i, size_t j, size_t k, size_t l)

  These operators, whose arguments have the same meaning as in the
  :ref:`array accessors <array_accessor>`, return
  :ref:`proxy references <references>` to individual array elements for
  write access.


.. _flat_view:

Flat view
^^^^^^^^^

The views discussed so far require multidimensional indexing, e.g.,
(*i*, *j*, *k*) for 3D views.  Some applications prefer one-dimensional
linear indexing, which is provided by the specialized flat view.  For
example, in a 3D view with dimensions (*nx*, *ny*, *nz*), a multidimensional
index (*i*, *j*, *k*) corresponds to the flat view index
::

  index = i + nx * (j + ny * k)

This is true regardless of the view offset (*x*, *y*, *z*).

The flat view derives from the mutable view and adds :code:`operator[]`
for flat indexing.  This operator is essentially equivalent to
:cpp:func:`array::operator[]` defined for 2D, 3D, and 4D arrays.  Flat
views also provide functions for converting between multidimensional and
flat indices.  

Flat views are available only for 2D, 3D, and 4D arrays.  The basic mutable
view, :cpp:class:`array1::view`, for 1D arrays can be thought of as
either a flat or a nested view.

..
  .. cpp:class:: template<typename Scalar> array2::flat_view
  .. cpp:class:: template<typename Scalar> array3::flat_view
  .. cpp:class:: template<typename Scalar> array4::flat_view

.. cpp:class:: array2::flat_view : public array2::view
.. cpp:class:: array3::flat_view : public array3::view
.. cpp:class:: array4::flat_view : public array4::view

  Flat, mutable views for 2D, 3D, and 4D arrays.

----

.. cpp:function:: array2::flat_view::flat_view(array2* array)
.. cpp:function:: array3::flat_view::flat_view(array3* array)
.. cpp:function:: array4::flat_view::flat_view(array4* array)
.. cpp:function:: array2::flat_view::flat_view(array2* array, size_t x, size_t y, size_t nx, size_t ny)
.. cpp:function:: array3::flat_view::flat_view(array3* array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)
.. cpp:function:: array4::flat_view::flat_view(array4* array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)

  Whole-array and sub-array flat view constructors.  See
  :ref:`const_view constructors <view_ctor>` for details.

----

.. cpp:function:: size_t array2::flat_view::index(size_t i, size_t j) const
.. cpp:function:: size_t array3::flat_view::index(size_t i, size_t j, size_t k) const
.. cpp:function:: size_t array4::flat_view::index(size_t i, size_t j, size_t k, size_t l) const

  Return flat index associated with multidimensional index.

----

.. cpp:function:: void array2::flat_view::ij(size_t& i, size_t& j, size_t index) const
.. cpp:function:: void array3::flat_view::ijk(size_t& i, size_t& j, size_t& k, size_t index) const
.. cpp:function:: void array4::flat_view::ijkl(size_t& i, size_t& j, size_t& k, size_t& l, size_t index) const

  Convert flat index to multidimensional index.

----

.. cpp:function:: const_reference array2::flat_view::operator[](size_t index) const
.. cpp:function:: const_reference array3::flat_view::operator[](size_t index) const
.. cpp:function:: const_reference array4::flat_view::operator[](size_t index) const

  Return array element associated with given flat index.

----

.. cpp:function:: reference array2::flat_view::operator[](size_t index)
.. cpp:function:: reference array3::flat_view::operator[](size_t index)
.. cpp:function:: reference array4::flat_view::operator[](size_t index)

  Return reference to array element associated with given flat index.


.. _nested_view:

Nested view
^^^^^^^^^^^

C and C++ support nested arrays (arrays of arrays), e.g.,
:code:`double a[10][20][30]`, which are usually accessed via nested indexing
:code:`a[i][j][k]`.  Here :code:`a` is a 3D array, :code:`a[i]` is a 2D array,
and :code:`a[i][j]` is a 1D array.  This 3D array can also be accessed
via flat indexing, e.g.,
::

  a[i][j][k] == (&a[0][0][0])[600 * i + 30 * j + k]

Nested views provide a mechanism to access array elements through
nested indexing and to extract lower-dimensional "slices" of
multidimensional arrays.  Nested views are mutable.

Nested views are associated with a dimensionality.  For instance,
if :code:`v` is a 3D nested view of a 3D array, then :code:`v[i]`
is a 2D nested view (of a 3D array), :code:`v[i][j]` is a 1D nested
view (of a 3D array), and :code:`v[i][j][k]` is a (reference to a) scalar
array element.  Note that the order of indices is reversed when using
nested indexing compared to multidimensional indexing, e.g.,
:code:`v(i, j, k) == v[k][j][i]`.

Whereas :code:`operator[]` on an array object accesses an element
through flat indexing, the same array can be accessed through a
nested view to in effect provide nested array indexing::

  zfp::array3d a(30, 20, 10, rate); // define 30x20x10 3D array
  assert(a[32] == a(2, 1, 0)); // OK: flat and multidimensional indexing
  assert(a[32] == a[0][1][2]); // ERROR: a does not support nested indexing
  zfp::array3d::nested_view v(&a); // define a nested view of a
  assert(a[32] == v[0][1][2]); // OK: v supports nested indexing
  zfp::array2d b(v[5]); // define and deep copy 30x20 2D slice of a
  assert(a(2, 1, 5) == b(2, 1)); // OK: multidimensional indexing

..
  .. cpp:class:: template<typename Scalar> array2::nested_view1

.. cpp:class:: array2::nested_view1

  View of a 1D slice of a 2D array.

----

..
  .. cpp:class:: template<typename Scalar> array2::nested_view2

.. cpp:class:: array2::nested_view2

  2D view of a 2D (sub)array.

----

..
  .. cpp:class:: template<typename Scalar> array3::nested_view1

.. cpp:class:: array3::nested_view1

  View of a 1D slice of a 3D array.

----

..
  .. cpp:class:: template<typename Scalar> array3::nested_view2

.. cpp:class:: array3::nested_view2

  View of a 2D slice of a 3D array.

----

..
  .. cpp:class:: template<typename Scalar> array3::nested_view3

.. cpp:class:: array3::nested_view3

  3D view of a 3D (sub)array.

----

..
  .. cpp:class:: template<typename Scalar> array4::nested_view1

.. cpp:class:: array4::nested_view1

  View of a 1D slice of a 4D array.

----

..
  .. cpp:class:: template<typename Scalar> array4::nested_view2

.. cpp:class:: array4::nested_view2

  View of a 2D slice of a 4D array.

----

..
  .. cpp:class:: template<typename Scalar> array4::nested_view3

.. cpp:class:: array4::nested_view3

  View of a 3D slice of a 4D array.

----

..
  .. cpp:class:: template<typename Scalar> array4::nested_view4

.. cpp:class:: array4::nested_view4

  4D view of a 4D (sub)array.

----

.. cpp:function:: array2::nested_view2::nested_view2(array2* array)
.. cpp:function:: array3::nested_view3::nested_view3(array3* array)
.. cpp:function:: array4::nested_view4::nested_view4(array4* array)
.. cpp:function:: array2::nested_view2::nested_view2(array2* array, size_t x, size_t y, size_t nx, size_t ny)
.. cpp:function:: array3::nested_view3::nested_view3(array3* array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)
.. cpp:function:: array4::nested_view4::nested_view4(array4* array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)

  Whole-array and sub-array nested view constructors.  See
  :ref:`const_view <immutable_view>` constructors for details.
  Lower-dimensional view constructors are not accessible to the
  user but are invoked when accessing views via nested indexing.

----

.. cpp:function:: size_t array2::nested_view1::size_x() const
.. cpp:function:: size_t array2::nested_view2::size_x() const
.. cpp:function:: size_t array2::nested_view2::size_y() const
.. cpp:function:: size_t array3::nested_view1::size_x() const
.. cpp:function:: size_t array3::nested_view2::size_x() const
.. cpp:function:: size_t array3::nested_view2::size_y() const
.. cpp:function:: size_t array3::nested_view3::size_x() const
.. cpp:function:: size_t array3::nested_view3::size_y() const
.. cpp:function:: size_t array3::nested_view3::size_z() const
.. cpp:function:: size_t array4::nested_view1::size_x() const
.. cpp:function:: size_t array4::nested_view2::size_x() const
.. cpp:function:: size_t array4::nested_view2::size_y() const
.. cpp:function:: size_t array4::nested_view3::size_x() const
.. cpp:function:: size_t array4::nested_view3::size_y() const
.. cpp:function:: size_t array4::nested_view3::size_z() const
.. cpp:function:: size_t array4::nested_view4::size_x() const
.. cpp:function:: size_t array4::nested_view4::size_y() const
.. cpp:function:: size_t array4::nested_view4::size_z() const
.. cpp:function:: size_t array4::nested_view4::size_w() const

  View dimensions.

----

.. cpp:function:: array4::nested_view3 array4::nested_view4::operator[](size_t index) const

  Return view to a 3D slice of 4D array.

----

.. cpp:function:: array3::nested_view2 array3::nested_view3::operator[](size_t index) const
.. cpp:function:: array4::nested_view2 array4::nested_view3::operator[](size_t index) const

  Return view to a 2D slice of a 3D or 4D array.

----

.. cpp:function:: array2::nested_view1 array2::nested_view2::operator[](size_t index) const
.. cpp:function:: array3::nested_view1 array3::nested_view2::operator[](size_t index) const
.. cpp:function:: array4::nested_view1 array4::nested_view2::operator[](size_t index) const

  Return view to a 1D slice of a 2D, 3D, or 4D array.

----

.. cpp:function:: const_reference array2::nested_view1::operator[](size_t index) const
.. cpp:function:: const_reference array3::nested_view1::operator[](size_t index) const
.. cpp:function:: const_reference array4::nested_view1::operator[](size_t index) const

  Return scalar element of a 2D, 3D, or 4D array.

----

.. cpp:function:: reference array2::nested_view1::operator[](size_t index)
.. cpp:function:: reference array3::nested_view1::operator[](size_t index)
.. cpp:function:: reference array4::nested_view1::operator[](size_t index)

  Return reference to a scalar element of a 2D, 3D, or 4D array.

----

.. cpp:function:: const_reference array2::nested_view1::operator()(size_t i) const
.. cpp:function:: const_reference array2::nested_view2::operator()(size_t i, size_t j) const
.. cpp:function:: const_reference array3::nested_view1::operator()(size_t i) const
.. cpp:function:: const_reference array3::nested_view2::operator()(size_t i, size_t j) const
.. cpp:function:: const_reference array3::nested_view3::operator()(size_t i, size_t j, size_t k) const
.. cpp:function:: const_reference array4::nested_view1::operator()(size_t i) const
.. cpp:function:: const_reference array4::nested_view2::operator()(size_t i, size_t j) const
.. cpp:function:: const_reference array4::nested_view3::operator()(size_t i, size_t j, size_t k) const
.. cpp:function:: const_reference array4::nested_view4::operator()(size_t i, size_t j, size_t k, size_t l) const

  Return const reference to a scalar element of a 2D, 3D, or 4D array.

----

.. cpp:function:: reference array2::nested_view1::operator()(size_t i)
.. cpp:function:: reference array2::nested_view2::operator()(size_t i, size_t j)
.. cpp:function:: reference array3::nested_view1::operator()(size_t i)
.. cpp:function:: reference array3::nested_view2::operator()(size_t i, size_t j)
.. cpp:function:: reference array3::nested_view3::operator()(size_t i, size_t j, size_t k)
.. cpp:function:: reference array4::nested_view1::operator()(size_t i)
.. cpp:function:: reference array4::nested_view2::operator()(size_t i, size_t j)
.. cpp:function:: reference array4::nested_view3::operator()(size_t i, size_t j, size_t k)
.. cpp:function:: reference array4::nested_view4::operator()(size_t i, size_t j, size_t k, size_t l)

  Return reference to a scalar element of a 2D, 3D, or 4D array.


.. _slicing:

Slicing
^^^^^^^

Arrays can be constructed as deep copies of slices of higher-dimensional
arrays, as the code example above shows (i.e.,
:code:`zfp::array2d b(v[5]);`).  Unlike views, which have reference
semantics, such array *slicing* has value semantics.  In this example,
2D array *b* is initialized as a (deep) copy of a slice of 3D array *a*
via nested view *v*.  Subsequent modifications of *b* have no effect on
*a*.

Slicing is implemented as array constructors templated on views.
Upon initialization, elements are copied one at a time from the view
via multidimensional indexing, e.g., :code:`v(i, j, k)`.  Note that
view and array dimensionalities must match, but aside from this an
array may be constructed from any view.

Slicing needs not change the dimensionality, but can be used to copy
an equidimensional subset of one array to another array, as in this
example::

  zfp::array3d a(30, 20, 10, rate);
  zfp::array3d::const_view v(&a, 1, 2, 3, 4, 5, 6);
  zfp::array3d b(v);
  assert(b(0, 0, 0) == a(1, 2, 3));
  assert(b.size_x() == 4);
  assert(b.size_y() == 5);
  assert(b.size_z() == 6);

Slicing adds the following templated array constructors.

.. cpp:function:: template<class View> array1::array1(const View& v)
.. cpp:function:: template<class View> array2::array2(const View& v)
.. cpp:function:: template<class View> array3::array3(const View& v)
.. cpp:function:: template<class View> array4::array4(const View& v)

  Construct array from a view via a deep copy.  The view, *v*, must support
  :ref:`multidimensional indexing <view_accessor>`.
  The rate for the constructed array is initialized to the rate of the array
  associated with the view.  Note that the actual rate may differ if the
  constructed array is a lower-dimensional slice of a higher-dimensional
  array due to lower rate granularity (see FAQ :ref:`#12 <q-granularity>`).
  The cache size of the constructed array is set to the default size.


.. _private_immutable_view:

Private immutable view
^^^^^^^^^^^^^^^^^^^^^^

|zfp|'s compressed arrays are in general not thread-safe.  The main
reason for this is that each array maintains its own cache of
uncompressed blocks.  Race conditions on the cache would occur unless
it were locked upon each and every array access, which would have a
prohibitive performance cost.

To ensure thread-safe access, |zfp| provides private mutable and
immutable views of arrays that maintain their own private caches.
The :code:`private_const_view` immutable view
provides read-only access to the underlying array.  It is similar
to a :ref:`const_view <immutable_view>` in this sense, but differs in
that it maintains its own private cache rather than sharing the
cache owned by the array.  Multiple threads may thus access the
same array in parallel through their own private views.

.. note::
  Thread safety is ensured only for OpenMP threads, and the |zfp|
  views must be compiled by an OpenMP compliant compiler.  As the
  |zfp| compressed-array class implementation is defined in headers,
  the application code using |zfp| must also be compiled with OpenMP
  enabled if multithreaded access to |zfp| arrays is desired.

.. note::
  Private views **do not guarantee cache coherence**.  If, for example,
  the array is modified, then already cached data in a private view is
  not automatically updated.  It is up to the user to ensure cache
  coherence by flushing (compressing modified blocks) or clearing
  (emptying) caches when appropriate.

The cache associated with a private view can be manipulated in the
same way an array's cache can.  For instance, the user may set the
cache size on a per-view basis.

Unlike with :ref:`private mutable views <private_mutable_view>`,
private immutable views may freely access any element in the
array visible through the view, i.e., multiple threads may
read the same array element simultaneously.  For an example of how
to use private views for both read and write multithreaded access,
see the :ref:`diffusion <ex-diffusion>` code example.

Private views support only multidimensional indexing, i.e., they
are neither flat nor nested.

..
  .. cpp:class:: template<typename Scalar> array1::private_const_view
  .. cpp:class:: template<typename Scalar> array2::private_const_view
  .. cpp:class:: template<typename Scalar> array3::private_const_view
  .. cpp:class:: template<typename Scalar> array4::private_const_view

.. _private_const_view:
.. cpp:class:: array1::private_const_view
.. cpp:class:: array2::private_const_view
.. cpp:class:: array3::private_const_view
.. cpp:class:: array4::private_const_view

  Immutable views of 1D, 2D, 3D, and 4D arrays with private caches.

----

.. cpp:function:: array1::private_const_view::private_const_view(array1* array)
.. cpp:function:: array2::private_const_view::private_const_view(array2* array)
.. cpp:function:: array3::private_const_view::private_const_view(array3* array)
.. cpp:function:: array4::private_const_view::private_const_view(array4* array)
.. cpp:function:: array1::private_const_view::private_const_view(array1* array, size_t x, size_t nx)
.. cpp:function:: array2::private_const_view::private_const_view(array2* array, size_t x, size_t y, size_t nx, size_t ny)
.. cpp:function:: array3::private_const_view::private_const_view(array3* array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)
.. cpp:function:: array4::private_const_view::private_const_view(array4* array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)

  Whole-array and sub-array private immutable view constructors.  See
  :ref:`const_view constructors <view_ctor>` for details.

----

.. cpp:function:: size_t array1::private_const_view::size_x() const
.. cpp:function:: size_t array2::private_const_view::size_x() const
.. cpp:function:: size_t array2::private_const_view::size_y() const
.. cpp:function:: size_t array3::private_const_view::size_x() const
.. cpp:function:: size_t array3::private_const_view::size_y() const
.. cpp:function:: size_t array3::private_const_view::size_z() const
.. cpp:function:: size_t array4::private_const_view::size_x() const
.. cpp:function:: size_t array4::private_const_view::size_y() const
.. cpp:function:: size_t array4::private_const_view::size_z() const
.. cpp:function:: size_t array4::private_const_view::size_w() const

  View dimensions.

----

.. cpp:function:: const_reference array1::private_const_view::operator()(size_t i) const
.. cpp:function:: const_reference array2::private_const_view::operator()(size_t i, size_t j) const
.. cpp:function:: const_reference array3::private_const_view::operator()(size_t i, size_t j, size_t k) const
.. cpp:function:: const_reference array4::private_const_view::operator()(size_t i, size_t j, size_t k, size_t l) const

  Return const reference to scalar element of a 1D, 2D, 3D, or 4D array.

The following functions are common among all dimensionalities:

.. cpp:function:: size_t arrayANY::private_const_view::cache_size() const
.. cpp:function:: void arrayANY::private_const_view::set_cache_size(size_t csize)
.. cpp:function:: void arrayANY::private_const_view::clear_cache() const

  Cache manipulation.  See :ref:`caching` for details.


.. _private_mutable_view:

Private mutable view
^^^^^^^^^^^^^^^^^^^^

The mutable :code:`private_view` supports both read and write access
and is backed by a private cache.  Because block compression, as needed
to support write access, is not an atomic operation, mutable views
and multithreading imply potential race conditions on the compressed
blocks stored by an array.  Although locking the array or individual
blocks upon compression would be a potential solution, this would either
serialize compression, thus hurting performance, or add a possibly large
memory overhead by maintaining a lock with each block.

.. note::
  To avoid multiple threads simultaneously compressing the same block,
  **private mutable views of an array must reference disjoint,
  block-aligned subarrays** for thread-safe access.  Each block of |4powd|
  array elements must be associated with at most one private mutable view,
  and therefore these views must reference non-overlapping rectangular
  subsets that are aligned on block boundaries, except possibly for partial
  blocks on the array boundary.  (Expert users may alternatively ensure
  serialization of block compression calls and cache coherence in other
  ways, in which case overlapping private views may be permitted.)

Aside from this requirement, the user may partition the array into
disjoint views in whatever manner is suitable for the application.
The :code:`private_view` API supplies a very basic partitioner to
facilitate this task, but may not result in optimal partitions or
good load balance.

When multithreaded write access is desired, any direct accesses to the
array itself (i.e., not through a view) could invoke compression.  Even
a read access may trigger compression if a modified block is evicted
from the cache.  Hence, such direct array accesses should be confined
to serial code sections when private views are used.

As with private immutable views, **cache coherence is not enforced**.
Although this is less of an issue for private mutable views due to
the requirement that views may not overlap, each private mutable view
overlaps an index space with the underlying array whose cache is not
automatically synchronized with the view's private cache.  See
the :ref:`diffusion <ex-diffusion>` for an example of how to enforce
cache coherence with mutable and immutable private views.

The :code:`private_view` class inherits all public functions from
:code:`private_const_view`.

..
  .. cpp:class:: template<typename Scalar> array1::private_view
  .. cpp:class:: template<typename Scalar> array2::private_view
  .. cpp:class:: template<typename Scalar> array3::private_view
  .. cpp:class:: template<typename Scalar> array4::private_view

.. cpp:class:: array1::private_view : public array1::private_const_view
.. cpp:class:: array2::private_view : public array2::private_const_view
.. cpp:class:: array3::private_view : public array3::private_const_view
.. cpp:class:: array4::private_view : public array4::private_const_view

  Mutable views of 1D, 2D, 3D, and 4D arrays with private caches.

----

..
  .. cpp:class:: template<typename Scalar> array1::private_view::view_reference
  .. cpp:class:: template<typename Scalar> array2::private_view::view_reference
  .. cpp:class:: template<typename Scalar> array3::private_view::view_reference
  .. cpp:class:: template<typename Scalar> array4::private_view::view_reference

.. cpp:class:: array1::private_view::view_reference
.. cpp:class:: array2::private_view::view_reference
.. cpp:class:: array3::private_view::view_reference
.. cpp:class:: array4::private_view::view_reference

  Proxy references to array elements specialized for mutable
  private views.

----

.. cpp:function:: array1::private_view::private_view(array1* array)
.. cpp:function:: array2::private_view::private_view(array2* array)
.. cpp:function:: array3::private_view::private_view(array3* array)
.. cpp:function:: array4::private_view::private_view(array4* array)
.. cpp:function:: array1::private_view::private_view(array1* array, size_t x, size_t nx)
.. cpp:function:: array2::private_view::private_view(array2* array, size_t x, size_t y, size_t nx, size_t ny)
.. cpp:function:: array3::private_view::private_view(array3* array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)
.. cpp:function:: array4::private_view::private_view(array4* array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)

  Whole-array and sub-array private mutable view constructors.  See
  :ref:`const_view constructors <view_ctor>` for details.

----

.. cpp:function:: array1::private_view::view_reference array1::private_view::operator()(size_t i) const
.. cpp:function:: array2::private_view::view_reference array2::private_view::operator()(size_t i, size_t j) const
.. cpp:function:: array3::private_view::view_reference array3::private_view::operator()(size_t i, size_t j, size_t k) const
.. cpp:function:: array4::private_view::view_reference array4::private_view::operator()(size_t i, size_t j, size_t k, size_t l) const

  Return reference to a scalar element of a 1D, 2D, 3D, or 4D array.

The following functions are common among all dimensionalities:

.. cpp:function:: void arrayANY::private_view::partition(size_t index, size_t count)

  Partition the current view into *count* roughly equal-size pieces along the
  view's longest dimension and modify the view's extents to match the piece
  indexed by *index*, with 0 |leq| *index* < *count*.
  These functions may be called multiple times, e.g., to recursively
  partition along different dimensions.  The partitioner does not generate
  new views; it merely modifies the current values of the view's offsets
  and dimensions.  Note that this may result in empty views whose dimensions
  are zero, e.g., if there are more pieces than blocks along a dimension.

----

.. cpp:function:: void arrayANY::private_view::flush_cache() const

  Flush cache by compressing any modified blocks and emptying the cache.