1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
// forward Euler finite difference solution to the heat equation on a 2D grid
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <sstream>
#include "zfp/array2.hpp"
#include "zfp/constarray2.hpp"
#include "zfp/codec/gencodec.hpp"
#include "array2d.hpp"
// add half precision if compiler supports it
#define __STDC_WANT_IEC_60559_TYPES_EXT__
#include <cfloat>
#ifdef FLT16_MAX
#define WITH_HALF 1
#else
#undef WITH_HALF
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
// uncompressed tiled arrays based on zfp generic codec
namespace tiled {
#if WITH_HALF
typedef zfp::array2< double, zfp::codec::generic2<double, _Float16> > array2h;
#endif
typedef zfp::array2< double, zfp::codec::generic2<double, float> > array2f;
typedef zfp::array2< double, zfp::codec::generic2<double, double> > array2d;
}
// enumeration of uncompressed storage types
enum storage_type {
type_none = 0,
type_half = 1,
type_float = 2,
type_double = 3
};
// constants used in the solution
class Constants {
public:
Constants(size_t nx, size_t ny, size_t nt) :
nx(nx),
ny(ny),
nt(nt),
x0((nx - 1) / 2),
y0((ny - 1) / 2),
k(0.04),
dx(2.0 / (std::max(nx, ny) - 1)),
dy(2.0 / (std::max(nx, ny) - 1)),
dt(0.5 * (dx * dx + dy * dy) / (8 * k)),
tfinal(nt ? nt * dt : 1.0),
pi(3.14159265358979323846)
{}
size_t nx; // grid points in x
size_t ny; // grid points in y
size_t nt; // number of time steps (0 for default)
size_t x0; // x location of heat source
size_t y0; // y location of heat source
double k; // diffusion constant
double dx; // grid spacing in x
double dy; // grid spacing in y
double dt; // time step
double tfinal; // minimum time to run solution to
double pi; // 3.141...
};
// compute Laplacian uxx + uyy at (x, y)
template <class array2d>
inline double
laplacian(const array2d& u, size_t x, size_t y, const Constants& c)
{
double uxx = (u(x - 1, y) - 2 * u(x, y) + u(x + 1, y)) / (c.dx * c.dx);
double uyy = (u(x, y - 1) - 2 * u(x, y) + u(x, y + 1)) / (c.dy * c.dy);
return uxx + uyy;
}
template <class state, class scratch>
inline void
time_step_parallel(state& u, scratch& v, const Constants& c);
#ifdef _OPENMP
// advance solution in parallel via thread-safe views
template <>
inline void
time_step_parallel(zfp::array2d& u, zfp::array2d& du, const Constants& c)
{
// flush shared cache to ensure cache consistency across threads
u.flush_cache();
// zero-initialize du
du.set(0);
// compute du/dt in parallel
#pragma omp parallel
{
// create read-only private view of entire array u
zfp::array2d::private_const_view myu(&u);
// create read-write private view into rectangular subset of du
zfp::array2d::private_view mydu(&du);
mydu.partition(omp_get_thread_num(), omp_get_num_threads());
// process rectangular region owned by this thread
for (size_t j = 0; j < mydu.size_y(); j++) {
size_t y = mydu.global_y(j);
if (1 <= y && y <= c.ny - 2)
for (size_t i = 0; i < mydu.size_x(); i++) {
size_t x = mydu.global_x(i);
if (1 <= x && x <= c.nx - 2)
mydu(i, j) = c.dt * c.k * laplacian(myu, x, y, c);
}
}
// compress all private cached blocks to shared storage
mydu.flush_cache();
}
// take forward Euler step in serial
for (size_t i = 0; i < u.size(); i++)
u[i] += du[i];
}
#else
// dummy template instantiation when OpenMP support is not available
template <>
inline void time_step_parallel(zfp::array2d&, zfp::array2d&, const Constants&) {}
#endif
// dummy template instantiations; never executed
template <>
inline void time_step_parallel(zfp::const_array2d&, raw::array2d&, const Constants&) {}
template <>
inline void time_step_parallel(raw::array2d&, raw::array2d&, const Constants&) {}
template <>
inline void time_step_parallel(tiled::array2d&, tiled::array2d&, const Constants&) {}
template <>
inline void time_step_parallel(tiled::array2f&, tiled::array2f&, const Constants&) {}
#if WITH_HALF
template <>
inline void time_step_parallel(tiled::array2h&, tiled::array2h&, const Constants&) {}
#endif
// advance solution using integer array indices (generic implementation)
template <class state, class scratch>
inline void
time_step_indexed(state& u, scratch& du, const Constants& c)
{
// compute du/dt
for (size_t y = 1; y < c.ny - 1; y++)
for (size_t x = 1; x < c.nx - 1; x++)
du(x, y) = c.dt * c.k * laplacian(u, x, y, c);
// take forward Euler step
for (uint i = 0; i < u.size(); i++)
u[i] += du[i];
}
// advance solution using integer array indices (read-only arrays)
template <>
inline void
time_step_indexed(zfp::const_array2d& u, raw::array2d& v, const Constants& c)
{
// initialize v as uncompressed copy of u
u.get(&v[0]);
// take forward Euler step v += (du/dt) dt
for (size_t y = 1; y < c.ny - 1; y++)
for (size_t x = 1; x < c.nx - 1; x++)
v(x, y) += c.dt * c.k * laplacian(u, x, y, c);
// update u with uncompressed copy v
u.set(&v[0]);
}
// advance solution using array iterators (generic implementation)
template <class state, class scratch>
inline void
time_step_iterated(state& u, scratch& du, const Constants& c)
{
// compute du/dt
for (typename scratch::iterator q = du.begin(); q != du.end(); q++) {
size_t x = q.i();
size_t y = q.j();
if (1 <= x && x <= c.nx - 2 &&
1 <= y && y <= c.ny - 2)
*q = c.dt * c.k * laplacian(u, x, y, c);
}
// take forward Euler step
for (typename state::iterator p = u.begin(); p != u.end(); p++)
*p += du(p.i(), p.j());
}
// advance solution using array iterators (read-only arrays)
template <>
inline void
time_step_iterated(zfp::const_array2d& u, raw::array2d& v, const Constants& c)
{
// initialize v as uncompressed copy of u
u.get(&v[0]);
// take forward Euler step v += (du/dt) dt
for (raw::array2d::iterator q = v.begin(); q != v.end(); q++) {
size_t x = q.i();
size_t y = q.j();
if (1 <= x && x <= c.nx - 2 &&
1 <= y && y <= c.ny - 2)
*q += c.dt * c.k * laplacian(u, x, y, c);
}
// update u with uncompressed copy v
u.set(&v[0]);
}
// set initial conditions with a point heat source (u is assumed zero-initialized)
template <class state, class scratch>
inline void
initialize(state& u, scratch&, const Constants& c)
{
u(c.x0, c.y0) = 1;
}
// set initial conditions for const_array; requires updating the whole array
template <>
inline void
initialize(zfp::const_array2d& u, raw::array2d& v, const Constants& c)
{
v(c.x0, c.y0) = 1;
u.set(&v[0]);
}
// solve heat equation
template <class state, class scratch>
inline double
solve(state& u, scratch& v, const Constants& c, bool iterator, bool parallel)
{
// initialize u with point heat source
initialize(u, v, c);
// iterate until final time
double t;
for (t = 0; t < c.tfinal; t += c.dt) {
// print time and effective rate
double rate = double(u.size_bytes(ZFP_DATA_PAYLOAD)) * CHAR_BIT / u.size();
double rest = double(u.size_bytes(ZFP_DATA_ALL ^ ZFP_DATA_PAYLOAD) * CHAR_BIT / u.size());
std::cerr << "time=" << std::setprecision(6) << std::fixed << t << " ";
std::cerr << "rate=" << std::setprecision(3) << std::fixed << rate << " (+" << rest << ")" << std::endl;
// advance solution one time step
if (parallel)
time_step_parallel(u, v, c);
else if (iterator)
time_step_iterated(u, v, c);
else
time_step_indexed(u, v, c);
}
return t;
}
// compute sum of array values
template <class state>
inline double
total(const state& u)
{
double s = 0;
const size_t nx = u.size_x();
const size_t ny = u.size_y();
for (size_t y = 1; y < ny - 1; y++)
for (size_t x = 1; x < nx - 1; x++)
s += u(x, y);
return s;
}
// compute root mean square error with respect to exact solution
template <class state>
inline double
error(const state& u, const Constants& c, double t)
{
double e = 0;
for (size_t y = 1; y < c.ny - 1; y++) {
double py = c.dy * ((int)y - (int)c.y0);
for (size_t x = 1; x < c.nx - 1; x++) {
double px = c.dx * ((int)x - (int)c.x0);
double f = u(x, y);
double g = c.dx * c.dy * std::exp(-(px * px + py * py) / (4 * c.k * t)) / (4 * c.pi * c.k * t);
e += (f - g) * (f - g);
}
}
return std::sqrt(e / ((c.nx - 2) * (c.ny - 2)));
}
// execute solver and evaluate error
template <class state, class scratch>
inline void
execute(state& u, scratch& v, size_t nt, bool iterator, bool parallel)
{
Constants c(u.size_x(), u.size_y(), nt);
double t = solve(u, v, c, iterator, parallel);
double sum = total(u);
double err = error(u, c, t);
std::cerr.unsetf(std::ios::fixed);
std::cerr << "sum=" << std::setprecision(6) << std::fixed << sum << " error=" << std::setprecision(6) << std::scientific << err << std::endl;
}
// print usage information
inline int
usage()
{
std::cerr << "Usage: diffusion [options]" << std::endl;
std::cerr << "Options:" << std::endl;
std::cerr << "-a <tolerance> : use compressed arrays with given absolute error tolerance" << std::endl;
std::cerr << "-b <blocks> : use 'blocks' 4x4 blocks of cache" << std::endl;
std::cerr << "-c : use read-only compressed arrays" << std::endl;
std::cerr << "-d : use double-precision tiled arrays" << std::endl;
std::cerr << "-f : use single-precision tiled arrays" << std::endl;
#if WITH_HALF
std::cerr << "-h : use half-precision tiled arrays" << std::endl;
#endif
std::cerr << "-i : traverse arrays using iterators" << std::endl;
#ifdef _OPENMP
std::cerr << "-j : use multithreading (only with compressed arrays)" << std::endl;
#endif
std::cerr << "-n <nx> <ny> : number of grid points" << std::endl;
std::cerr << "-p <precision> : use compressed arrays with given precision" << std::endl;
std::cerr << "-r <rate> : use compressed arrays with given compressed bits/value" << std::endl;
std::cerr << "-R : use compressed arrays with lossless compression" << std::endl;
std::cerr << "-t <nt> : number of time steps" << std::endl;
return EXIT_FAILURE;
}
int main(int argc, char* argv[])
{
size_t nx = 128;
size_t ny = 128;
size_t nt = 0;
size_t cache_size = 0;
zfp_config config = zfp_config_none();
bool iterator = false;
bool parallel = false;
bool writable = true;
storage_type type = type_none;
// parse command-line options
for (int i = 1; i < argc; i++)
if (std::string(argv[i]) == "-a") {
double tolerance;
if (++i == argc || sscanf(argv[i], "%lf", &tolerance) != 1)
return usage();
config = zfp_config_accuracy(tolerance);
}
else if (std::string(argv[i]) == "-b") {
if (++i == argc || (std::istringstream(argv[i]) >> cache_size).fail())
return usage();
cache_size *= 4 * 4 * sizeof(double);
}
else if (std::string(argv[i]) == "-c")
writable = false;
else if (std::string(argv[i]) == "-d")
type = type_double;
else if (std::string(argv[i]) == "-f")
type = type_float;
#if WITH_HALF
else if (std::string(argv[i]) == "-h")
type = type_half;
#endif
else if (std::string(argv[i]) == "-i")
iterator = true;
#ifdef _OPENMP
else if (std::string(argv[i]) == "-j")
parallel = true;
#endif
else if (std::string(argv[i]) == "-n") {
if (++i == argc || (std::istringstream(argv[i]) >> nx).fail() ||
++i == argc || (std::istringstream(argv[i]) >> ny).fail())
return usage();
}
else if (std::string(argv[i]) == "-p") {
uint precision;
if (++i == argc || sscanf(argv[i], "%u", &precision) != 1)
return usage();
config = zfp_config_precision(precision);
}
else if (std::string(argv[i]) == "-r") {
double rate;
if (++i == argc || sscanf(argv[i], "%lf", &rate) != 1)
return usage();
config = zfp_config_rate(rate, false);
}
else if (std::string(argv[i]) == "-R")
config = zfp_config_reversible();
else if (std::string(argv[i]) == "-t") {
if (++i == argc || (std::istringstream(argv[i]) >> nt).fail())
return usage();
}
else
return usage();
bool compression = (config.mode != zfp_mode_null);
// sanity check command-line arguments
if (parallel && !compression) {
fprintf(stderr, "multithreading requires compressed arrays\n");
return EXIT_FAILURE;
}
if (parallel && !writable) {
fprintf(stderr, "multithreading requires read-write arrays\n");
return EXIT_FAILURE;
}
if (parallel && iterator) {
fprintf(stderr, "multithreading does not support iterators\n");
return EXIT_FAILURE;
}
if (compression && writable && config.mode != zfp_mode_fixed_rate) {
fprintf(stderr, "compression mode requires read-only arrays (-c)\n");
return EXIT_FAILURE;
}
if (!writable && !compression) {
fprintf(stderr, "read-only arrays require compression parameters\n");
return EXIT_FAILURE;
}
if (compression && type != type_none) {
fprintf(stderr, "tiled arrays do not support compression parameters\n");
return EXIT_FAILURE;
}
// if unspecified, set cache size to two layers of blocks
if (!cache_size)
cache_size = 2 * 4 * nx * sizeof(double);
// solve problem
if (compression) {
// use compressed arrays
if (writable) {
// use read-write fixed-rate arrays
zfp::array2d u(nx, ny, config.arg.rate, 0, cache_size);
zfp::array2d v(nx, ny, config.arg.rate, 0, cache_size);
execute(u, v, nt, iterator, parallel);
}
else {
// use read-only variable-rate arrays
zfp::const_array2d u(nx, ny, config, 0, cache_size);
raw::array2d v(nx, ny);
execute(u, v, nt, iterator, parallel);
}
}
else {
// use uncompressed arrays
switch (type) {
#if WITH_HALF
case type_half: {
// use zfp generic codec with tiled half-precision storage
tiled::array2h u(nx, ny, sizeof(__fp16) * CHAR_BIT, 0, cache_size);
tiled::array2h v(nx, ny, sizeof(__fp16) * CHAR_BIT, 0, cache_size);
execute(u, v, nt, iterator, parallel);
}
break;
#endif
case type_float: {
// use zfp generic codec with tiled single-precision storage
tiled::array2f u(nx, ny, sizeof(float) * CHAR_BIT, 0, cache_size);
tiled::array2f v(nx, ny, sizeof(float) * CHAR_BIT, 0, cache_size);
execute(u, v, nt, iterator, parallel);
}
break;
case type_double: {
// use zfp generic codec with tiled double-precision storage
tiled::array2d u(nx, ny, sizeof(double) * CHAR_BIT, 0, cache_size);
tiled::array2d v(nx, ny, sizeof(double) * CHAR_BIT, 0, cache_size);
execute(u, v, nt, iterator, parallel);
}
break;
default: {
// use uncompressed array with row-major double-precision storage
raw::array2d u(nx, ny, sizeof(double) * CHAR_BIT);
raw::array2d v(nx, ny, sizeof(double) * CHAR_BIT);
execute(u, v, nt, iterator, parallel);
}
break;
}
}
return 0;
}
|