File: diffusionC.c

package info (click to toggle)
zfp 1.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,744 kB
  • sloc: cpp: 20,656; ansic: 18,871; pascal: 1,231; f90: 907; python: 255; makefile: 183; sh: 79; fortran: 70
file content (303 lines) | stat: -rw-r--r-- 8,468 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*
forward Euler finite difference solution to the heat equation on a 2D grid
(ported to C, from diffusion.cpp)
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "zfp/array.h"

#define _ (CFP_NAMESPACE.array2d)

#define MAX(x, y) (((nx) > (ny)) ? (nx) : (ny))

/* constants used in the solution */
typedef struct {
  size_t nx;     /* grid points in x */
  size_t ny;     /* grid points in y */
  int nt;        /* number of time steps (0 for default) */
  int x0;        /* x location of heat source */
  int y0;        /* y location of heat source */
  double k;      /* diffusion constant */
  double dx;     /* grid spacing in x */
  double dy;     /* grid spacing in y */
  double dt;     /* time step */
  double tfinal; /* minimum time to run solution to */
  double pi;     /* 3.141... */
} constants;

void
init_constants(constants* c, int nx, int ny, int nt)
{
  c->nx = nx;
  c->ny = ny;
  c->nt = nt;
  c->x0 = (nx - 1) / 2;
  c->y0 = (ny - 1) / 2;
  c->k = 0.04;
  c->dx = 2.0 / (MAX(nx, ny) - 1);
  c->dy = 2.0 / (MAX(nx, ny) - 1);
  c->dt = 0.5 * (c->dx * c->dx + c->dy * c->dy) / (8 * c->k);
  c->tfinal = nt ? nt * c->dt : 1.0;
  c->pi = 3.14159265358979323846;
}

/* advance solution using integer array indices */
static void
time_step_indexed_compressed(cfp_array2d u, const constants* c)
{
  /* compute du/dt */
  cfp_array2d du = _.ctor(c->nx, c->ny, _.rate(u), 0, _.cache_size(u));
  size_t i, x, y;
  for (y = 1; y < c->ny - 1; y++) {
    for (x = 1; x < c->nx - 1; x++) {
      double uxx = (_.get(u, x - 1, y) - 2 * _.get(u, x, y) + _.get(u, x + 1, y)) / (c->dx * c->dx);
      double uyy = (_.get(u, x, y - 1) - 2 * _.get(u, x, y) + _.get(u, x, y + 1)) / (c->dy * c->dy);
      _.set(du, x, y, c->dt * c->k * (uxx + uyy));
    }
  }
  /* take forward Euler step */
  for (i = 0; i < _.size(u); i++) {
    /* u[i] += du[i] */
    double val = _.get_flat(u, i) + _.get_flat(du, i);
    _.set_flat(u, i, val);
  }

  _.dtor(du);
}

/* advance solution using array iterators */
static void
time_step_iterated_compressed(cfp_array2d u, const constants* c)
{
  /* compute du/dt */
  cfp_array2d du = _.ctor(c->nx, c->ny, _.rate(u), 0, _.cache_size(u));
  cfp_iter2d p, q;
  for (q = _.begin(du); _.iterator.neq(q, _.end(du)); q = _.iterator.inc(q)) {
    size_t x = _.iterator.i(q);
    size_t y = _.iterator.j(q);
    if (1 <= x && x <= c->nx - 2 &&
        1 <= y && y <= c->ny - 2) {
      double uxx = (_.get(u, x - 1, y) - 2 * _.get(u, x, y) + _.get(u, x + 1, y)) / (c->dx * c->dx);
      double uyy = (_.get(u, x, y - 1) - 2 * _.get(u, x, y) + _.get(u, x, y + 1)) / (c->dy * c->dy);
      _.iterator.set(q, c->dt * c->k * (uxx + uyy));
    }
  }
  /* take forward Euler step */
  for (p = _.begin(u), q = _.begin(du); _.iterator.neq(p, _.end(u)); p = _.iterator.inc(p), q = _.iterator.inc(q)) {
    /* u[i] += du[i] */
    double val = _.iterator.get(p) + _.iterator.get(q);
    _.iterator.set(p, val);
  }

  _.dtor(du);
}

/* advance solution using integer array indices */
static void
time_step_indexed(double* u, const constants* c)
{
  /* compute du/dt */
  double* du = calloc(c->nx * c->ny, sizeof(double));
  size_t i, x, y;
  for (y = 1; y < c->ny - 1; y++)
    for (x = 1; x < c->nx - 1; x++) {
      double uxx = (u[(x - 1) + c->nx * y] - 2 * u[x + c->nx * y] + u[(x + 1) + c->nx * y]) / (c->dx * c->dx);
      double uyy = (u[x + c->nx * (y - 1)] - 2 * u[x + c->nx * y] + u[x + c->nx * (y + 1)]) / (c->dy * c->dy);
      du[x + c->nx * y] = c->dt * c->k * (uxx + uyy);
    }
  /* take forward Euler step */
  for (i = 0; i < c->nx * c->ny; i++)
    u[i] += du[i];

  free(du);
}

/* solve heat equation using compressed arrays */
static double
solve_compressed(cfp_array2d u, const constants* c, zfp_bool iterator)
{
  double t;

  /* initialize u with point heat source (u is assumed to be zero initialized) */
  _.set(u, c->x0, c->y0, 1);

  /* iterate until final time */
  for (t = 0; t < c->tfinal; t += c->dt) {
    fprintf(stderr, "t=%lf\n", t);
    if (iterator)
      time_step_iterated_compressed(u, c);
    else
      time_step_indexed_compressed(u, c);
  }

  return t;
}

/* solve heat equation using uncompressed arrays */
static double
solve(double* u, const constants* c)
{
  double t;

  /* initialize u with point heat source (u is assumed to be zero initialized) */
  u[c->x0 + c->nx * c->y0] = 1;

  /* iterate until final time */
  for (t = 0; t < c->tfinal; t += c->dt) {
    fprintf(stderr, "t=%lf\n", t);
    time_step_indexed(u, c);
  }

  return t;
}

/* compute sum of array values */
static double
total_compressed(const cfp_array2d u)
{
  double s = 0;
  const size_t nx = _.size_x(u);
  const size_t ny = _.size_y(u);
  size_t x, y;
  for (y = 1; y < ny - 1; y++)
    for (x = 1; x < nx - 1; x++)
      s += _.get(u, x, y);
  return s;
}

/* compute sum of array values */
static double
total(const double* u, size_t nx, size_t ny)
{
  double s = 0;
  size_t x, y;
  for (y = 1; y < ny - 1; y++)
    for (x = 1; x < nx - 1; x++)
      s += u[x + nx * y];
  return s;
}

/* compute root mean square error with respect to exact solution */
static double
error_compressed(const cfp_array2d u, const constants* c, double t)
{
  double e = 0;
  size_t x, y;
  for (y = 1; y < c->ny - 1; y++) {
    double py = c->dy * ((int)y - (int)c->y0);
    for (x = 1; x < c->nx - 1; x++) {
      double px = c->dx * ((int)x - (int)c->x0);
      double f = _.get(u, x, y);
      double g = c->dx * c->dy * exp(-(px * px + py * py) / (4 * c->k * t)) / (4 * c->pi * c->k * t);
      e += (f - g) * (f - g);
    }
  }
  return sqrt(e / ((c->nx - 2) * (c->ny - 2)));
}

/* compute root mean square error with respect to exact solution */
static double
error(const double* u, const constants* c, double t)
{
  double e = 0;
  size_t x, y;
  for (y = 1; y < c->ny - 1; y++) {
    double py = c->dy * ((int)y - (int)c->y0);
    for (x = 1; x < c->nx - 1; x++) {
      double px = c->dx * ((int)x - (int)c->x0);
      double f = u[x + c->nx * y];
      double g = c->dx * c->dy * exp(-(px * px + py * py) / (4 * c->k * t)) / (4 * c->pi * c->k * t);
      e += (f - g) * (f - g);
    }
  }
  return sqrt(e / ((c->nx - 2) * (c->ny - 2)));
}

static int
usage(void)
{
  fprintf(stderr, "Usage: diffusionC [options]\n");
  fprintf(stderr, "Options:\n");
  fprintf(stderr, "-b <blocks> : use 'blocks' 4x4 blocks of cache\n");
  fprintf(stderr, "-i : traverse arrays using iterators\n");
  fprintf(stderr, "-n <nx> <ny> : number of grid points\n");
  fprintf(stderr, "-r <rate> : use compressed arrays with given compressed bits/value\n");
  fprintf(stderr, "-t <nt> : number of time steps\n");
  return EXIT_FAILURE;
}

int main(int argc, char* argv[])
{
  int nx = 128;
  int ny = 128;
  int nt = 0;
  int cache_size = 0;
  double rate = 64;
  zfp_bool iterator = zfp_false;
  zfp_bool compression = zfp_false;
  constants* c = 0;
  double sum;
  double err;

  /* parse command-line options */
  int i;
  for (i = 1; i < argc; i++) {
    if (argv[i][0] != '-' || argv[i][2])
      return usage();
    switch(argv[i][1]) {
      case 'b':
        if (++i == argc || sscanf(argv[i], "%d", &cache_size) != 1)
          return usage();
        cache_size *= (int)(4 * 4 * sizeof(double));
        break;
      case 'i':
        iterator = zfp_true;
        break;
      case 'n':
        if (++i == argc || sscanf(argv[i], "%d", &nx) != 1 ||
            ++i == argc || sscanf(argv[i], "%d", &ny) != 1)
          return usage();
        break;
      case 'r':
        if (++i == argc || sscanf(argv[i], "%lf", &rate) != 1)
          return usage();
        compression = zfp_true;
        break;
      case 't':
        if (++i == argc || sscanf(argv[i], "%d", &nt) != 1)
          return usage();
        break;
      default:
        return usage();
    }
  }

  c = malloc(sizeof(constants));
  init_constants(c, nx, ny, nt);

  if (compression) {
    /* solve problem using compressed arrays */
    cfp_array2d u = _.ctor(nx, ny, rate, 0, cache_size);
    double t = solve_compressed(u, c, iterator);
    sum = total_compressed(u);
    err = error_compressed(u, c, t);
    rate = _.rate(u);
    _.dtor(u);
  }
  else {
    /* solve problem using primitive arrays */
    double* u = calloc(nx * ny, sizeof(double));
    double t = solve(u, c);
    sum = total(u, nx, ny);
    err = error(u, c, t);
    free(u);
  }

  fprintf(stderr, "rate=%g sum=%g error=%.6e\n", rate, sum, err);

  free(c);

  return 0;
}