1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
#!/usr/bin/env python
import unittest
import zfpy
import test_utils
import numpy as np
try:
from packaging.version import parse as version_parse
except ImportError:
version_parse = None
class TestNumpy(unittest.TestCase):
def lossless_round_trip(self, orig_array):
compressed_array = zfpy.compress_numpy(orig_array, write_header=True)
decompressed_array = zfpy.decompress_numpy(compressed_array)
self.assertIsNone(np.testing.assert_array_equal(decompressed_array, orig_array))
def test_different_dimensions(self):
for dimensions in range(1, 5):
shape = [5] * dimensions
c_array = np.random.rand(*shape)
self.lossless_round_trip(c_array)
shape = range(2, 2 + dimensions)
c_array = np.random.rand(*shape)
self.lossless_round_trip(c_array)
def test_different_dtypes(self):
shape = (5, 5)
num_elements = shape[0] * shape[1]
for dtype in [np.float32, np.float64]:
elements = np.random.random_sample(num_elements)
elements = elements.astype(dtype, casting="same_kind")
array = np.reshape(elements, newshape=shape)
self.lossless_round_trip(array)
if (version_parse is not None and
(version_parse(np.__version__) >= version_parse("1.11.0"))
):
for dtype in [np.int32, np.int64]:
array = np.random.randint(2**30, size=shape, dtype=dtype)
self.lossless_round_trip(array)
else:
array = np.random.randint(2**30, size=shape)
self.lossless_round_trip(array)
def test_advanced_decompression_checksum(self):
ndims = 2
ztype = zfpy.type_float
random_array = test_utils.getRandNumpyArray(ndims, ztype)
mode = zfpy.mode_fixed_accuracy
compress_param_num = 1
compression_kwargs = {
"tolerance": test_utils.computeParameterValue(
mode,
compress_param_num
),
}
compressed_array = zfpy.compress_numpy(
random_array,
write_header=False,
**compression_kwargs
)
# Decompression using the "advanced" interface which enforces no header,
# and the user must provide all the metadata
decompressed_array = np.empty_like(random_array)
zfpy._decompress(
compressed_array,
ztype,
random_array.shape,
out=decompressed_array,
**compression_kwargs
)
decompressed_array_dims = decompressed_array.shape + tuple(0 for i in range(4 - decompressed_array.ndim))
decompressed_checksum = test_utils.getChecksumDecompArray(
decompressed_array_dims,
ztype,
mode,
compress_param_num
)
actual_checksum = test_utils.hashNumpyArray(
decompressed_array
)
self.assertEqual(decompressed_checksum, actual_checksum)
def test_memview_advanced_decompression_checksum(self):
ndims = 2
ztype = zfpy.type_float
random_array = test_utils.getRandNumpyArray(ndims, ztype)
mode = zfpy.mode_fixed_accuracy
compress_param_num = 1
compression_kwargs = {
"tolerance": test_utils.computeParameterValue(
mode,
compress_param_num
),
}
compressed_array_tmp = zfpy.compress_numpy(
random_array,
write_header=False,
**compression_kwargs
)
mem = memoryview(compressed_array_tmp)
compressed_array = np.array(mem, copy=False)
# Decompression using the "advanced" interface which enforces no header,
# and the user must provide all the metadata
decompressed_array = np.empty_like(random_array)
zfpy._decompress(
compressed_array,
ztype,
random_array.shape,
out=decompressed_array,
**compression_kwargs
)
decompressed_array_dims = decompressed_array.shape + tuple(0 for i in range(4 - decompressed_array.ndim))
decompressed_checksum = test_utils.getChecksumDecompArray(
decompressed_array_dims,
ztype,
mode,
compress_param_num
)
actual_checksum = test_utils.hashNumpyArray(
decompressed_array
)
self.assertEqual(decompressed_checksum, actual_checksum)
def test_advanced_decompression_nonsquare(self):
for dimensions in range(1, 5):
shape = range(2, 2 + dimensions)
random_array = np.random.rand(*shape)
decompressed_array = np.empty_like(random_array)
compressed_array = zfpy.compress_numpy(
random_array,
write_header=False,
)
zfpy._decompress(
compressed_array,
zfpy.dtype_to_ztype(random_array.dtype),
random_array.shape,
out= decompressed_array,
)
self.assertIsNone(np.testing.assert_array_equal(decompressed_array, random_array))
def test_utils(self):
for ndims in range(1, 5):
for ztype, ztype_str in [
(zfpy.type_float, "float"),
(zfpy.type_double, "double"),
(zfpy.type_int32, "int32"),
(zfpy.type_int64, "int64"),
]:
orig_random_array = test_utils.getRandNumpyArray(ndims, ztype)
orig_random_array_dims = orig_random_array.shape + tuple(0 for i in range(4 - orig_random_array.ndim))
orig_checksum = test_utils.getChecksumOrigArray(orig_random_array_dims, ztype)
actual_checksum = test_utils.hashNumpyArray(orig_random_array)
self.assertEqual(orig_checksum, actual_checksum)
for stride_str, stride_config in [
("as_is", test_utils.stride_as_is),
("permuted", test_utils.stride_permuted),
("interleaved", test_utils.stride_interleaved),
#("reversed", test_utils.stride_reversed),
]:
# permuting a 1D array is not supported
if stride_config == test_utils.stride_permuted and ndims == 1:
continue
random_array = test_utils.generateStridedRandomNumpyArray(
stride_config,
orig_random_array
)
random_array_dims = random_array.shape + tuple(0 for i in range(4 - random_array.ndim))
self.assertTrue(np.equal(orig_random_array, random_array).all())
for compress_param_num in range(3):
modes = [(zfpy.mode_fixed_accuracy, "tolerance"),
(zfpy.mode_fixed_precision, "precision"),
(zfpy.mode_fixed_rate, "rate")]
if ztype in [zfpy.type_int32, zfpy.type_int64]:
modes = [modes[-1]] # only fixed-rate is supported for integers
for mode, mode_str in modes:
# Compression
compression_kwargs = {
mode_str: test_utils.computeParameterValue(
mode,
compress_param_num
),
}
compressed_array = zfpy.compress_numpy(
random_array,
write_header=False,
**compression_kwargs
)
compressed_checksum = test_utils.getChecksumCompArray(
random_array_dims,
ztype,
mode,
compress_param_num
)
actual_checksum = test_utils.hashCompressedArray(
compressed_array
)
self.assertEqual(compressed_checksum, actual_checksum)
# Decompression
decompressed_checksum = test_utils.getChecksumDecompArray(
random_array_dims,
ztype,
mode,
compress_param_num
)
# Decompression using the "public" interface
# requires a header, so re-compress with the header
# included in the stream
compressed_array_tmp = zfpy.compress_numpy(
random_array,
write_header=True,
**compression_kwargs
)
mem = memoryview(compressed_array_tmp)
compressed_array = np.array(mem, copy=False)
decompressed_array = zfpy.decompress_numpy(
compressed_array,
)
actual_checksum = test_utils.hashNumpyArray(
decompressed_array
)
self.assertEqual(decompressed_checksum, actual_checksum)
if __name__ == "__main__":
unittest.main(verbosity=2)
|