1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
# TODO: update zfpChecksums cython
import cython
from libc.stdlib cimport malloc, free
cimport libc.stdint as stdint
from libc.stddef cimport ptrdiff_t
from cython cimport view
from itertools import islice, repeat, chain
import zfpy
cimport zfpy
import numpy as np
cimport numpy as np
ctypedef stdint.int32_t int32_t
ctypedef stdint.int64_t int64_t
ctypedef stdint.uint32_t uint32_t
ctypedef stdint.uint64_t uint64_t
cdef extern from "genSmoothRandNums.h":
size_t intPow(size_t base, int exponent)
void generateSmoothRandInts64(size_t minTotalElements,
int numDims,
int amplitudeExp,
int64_t** outputArr,
size_t* outputSideLen,
size_t* outputTotalLen)
void generateSmoothRandInts32(size_t minTotalElements,
int numDims,
int amplitudeExp,
int32_t** outputArr32Ptr,
size_t* outputSideLen,
size_t* outputTotalLen)
void generateSmoothRandFloats(size_t minTotalElements,
int numDims,
float** outputArrPtr,
size_t* outputSideLen,
size_t* outputTotalLen)
void generateSmoothRandDoubles(size_t minTotalElements,
int numDims,
double** outputArrPtr,
size_t* outputSideLen,
size_t* outputTotalLen)
cdef extern from "stridedOperations.h":
ctypedef enum stride_config:
AS_IS = 0,
PERMUTED = 1,
INTERLEAVED = 2,
REVERSED = 3
void reverseArray(void* inputArr,
void* outputArr,
size_t inputArrLen,
zfpy.zfp_type zfpType)
void interleaveArray(void* inputArr,
void* outputArr,
size_t inputArrLen,
zfpy.zfp_type zfpType)
int permuteSquareArray(void* inputArr,
void* outputArr,
size_t sideLen,
int dims,
zfpy.zfp_type zfpType)
void getReversedStrides(int dims,
size_t n[4],
ptrdiff_t s[4])
void getInterleavedStrides(int dims,
size_t n[4],
ptrdiff_t s[4])
void getPermutedStrides(int dims,
size_t n[4],
ptrdiff_t s[4])
cdef extern from "zfpCompressionParams.h":
int computeFixedPrecisionParam(int param)
size_t computeFixedRateParam(int param)
double computeFixedAccuracyParam(int param)
cdef extern from "zfp.h":
ctypedef enum zfp_type:
zfp_type_none = 0,
zfp_type_int32 = 1,
zfp_type_int64 = 2,
zfp_type_float = 3,
zfp_type_double = 4
cdef extern from "zfpChecksums.h":
ctypedef enum test_type:
BLOCK_FULL_TEST = 0,
BLOCK_PARTIAL_TEST = 1,
ARRAY_TEST = 2
ctypedef enum subject:
ORIGINAL_INPUT = 0,
COMPRESSED_BITSTREAM = 1,
DECOMPRESSED_ARRAY = 2,
void computeKeyOriginalInput(test_type tt,
size_t n[4],
uint64_t* key1,
uint64_t* key2)
void computeKey(test_type tt,
subject sjt,
size_t n[4],
zfpy.zfp_mode mode,
int miscParam,
uint64_t* key1,
uint64_t* key2)
uint64_t getChecksumByKey(int dims,
zfp_type type,
uint64_t key1,
uint64_t key2)
cdef extern from "zfpHash.h":
uint64_t hashBitstream(uint64_t* ptrStart,
size_t bufsizeBytes)
uint32_t hashArray32(const uint32_t* arr,
size_t nx,
ptrdiff_t sx)
uint32_t hashStridedArray32(const uint32_t* arr,
size_t n[4],
ptrdiff_t s[4])
uint64_t hashArray64(const uint64_t* arr,
size_t nx,
ptrdiff_t sx)
uint64_t hashStridedArray64(const uint64_t* arr,
size_t n[4],
ptrdiff_t s[4])
# enums
stride_as_is = AS_IS
stride_permuted = PERMUTED
stride_interleaved = INTERLEAVED
stride_reversed = REVERSED
# functions
cdef validate_num_dimensions(int dims):
if dims > 4 or dims < 1:
raise ValueError("Unsupported number of dimensions: {}".format(dims))
cdef validate_ztype(zfpy.zfp_type ztype):
if ztype not in [
zfpy.type_float,
zfpy.type_double,
zfpy.type_int32,
zfpy.type_int64
]:
raise ValueError("Unsupported ztype: {}".format(ztype))
cdef validate_mode(zfpy.zfp_mode mode):
if mode not in [
zfpy.mode_fixed_rate,
zfpy.mode_fixed_precision,
zfpy.mode_fixed_accuracy,
]:
raise ValueError("Unsupported mode: {}".format(mode))
cdef validate_compress_param(int comp_param):
if comp_param not in range(3): # i.e., [0, 1, 2]
raise ValueError(
"Unsupported compression parameter number: {}".format(comp_param)
)
cpdef getRandNumpyArray(
int numDims,
zfpy.zfp_type ztype,
):
validate_num_dimensions(numDims)
validate_ztype(ztype)
cdef size_t minTotalElements = 0
cdef int amplitudeExp = 0
if ztype in [zfpy.type_float, zfpy.type_double]:
minTotalElements = 1000000
elif ztype in [zfpy.type_int32, zfpy.type_int64]:
minTotalElements = 4096
cdef int64_t* outputArrInt64 = NULL
cdef int32_t* outputArrInt32 = NULL
cdef float* outputArrFloat = NULL
cdef double* outputArrDouble = NULL
cdef size_t outputSideLen = 0
cdef size_t outputTotalLen = 0
cdef view.array viewArr = None
if ztype == zfpy.type_int64:
amplitudeExp = 64 - 2
generateSmoothRandInts64(minTotalElements,
numDims,
amplitudeExp,
&outputArrInt64,
&outputSideLen,
&outputTotalLen)
if numDims == 1:
viewArr = <int64_t[:outputSideLen]> outputArrInt64
elif numDims == 2:
viewArr = <int64_t[:outputSideLen, :outputSideLen]> outputArrInt64
elif numDims == 3:
viewArr = <int64_t[:outputSideLen, :outputSideLen, :outputSideLen]> outputArrInt64
elif numDims == 4:
viewArr = <int64_t[:outputSideLen, :outputSideLen, :outputSideLen, :outputSideLen]> outputArrInt64
elif ztype == zfpy.type_int32:
amplitudeExp = 32 - 2
generateSmoothRandInts32(minTotalElements,
numDims,
amplitudeExp,
&outputArrInt32,
&outputSideLen,
&outputTotalLen)
if numDims == 1:
viewArr = <int32_t[:outputSideLen]> outputArrInt32
elif numDims == 2:
viewArr = <int32_t[:outputSideLen, :outputSideLen]> outputArrInt32
elif numDims == 3:
viewArr = <int32_t[:outputSideLen, :outputSideLen, :outputSideLen]> outputArrInt32
elif numDims == 4:
viewArr = <int32_t[:outputSideLen, :outputSideLen, :outputSideLen, :outputSideLen]> outputArrInt32
elif ztype == zfpy.type_float:
generateSmoothRandFloats(minTotalElements,
numDims,
&outputArrFloat,
&outputSideLen,
&outputTotalLen)
if numDims == 1:
viewArr = <float[:outputSideLen]> outputArrFloat
elif numDims == 2:
viewArr = <float[:outputSideLen, :outputSideLen]> outputArrFloat
elif numDims == 3:
viewArr = <float[:outputSideLen, :outputSideLen, :outputSideLen]> outputArrFloat
elif numDims == 4:
viewArr = <float[:outputSideLen, :outputSideLen, :outputSideLen, :outputSideLen]> outputArrFloat
elif ztype == zfpy.type_double:
generateSmoothRandDoubles(minTotalElements,
numDims,
&outputArrDouble,
&outputSideLen,
&outputTotalLen)
if numDims == 1:
viewArr = <double[:outputSideLen]> outputArrDouble
elif numDims == 2:
viewArr = <double[:outputSideLen, :outputSideLen]> outputArrDouble
elif numDims == 3:
viewArr = <double[:outputSideLen, :outputSideLen, :outputSideLen]> outputArrDouble
elif numDims == 4:
viewArr = <double[:outputSideLen, :outputSideLen, :outputSideLen, :outputSideLen]> outputArrDouble
else:
raise ValueError("Unknown zfp_type: {}".format(ztype))
return np.asarray(viewArr)
# ======================================================
# TODO: examine best way to add python block level support
cdef uint64_t getChecksumOriginalDataBlock(
int dims,
zfpy.zfp_type ztype
):
return 0
cdef uint64_t getChecksumEncodedBlock(
int dims,
zfpy.zfp_type ztype
):
return 0
cdef uint64_t getChecksumEncodedPartialBlock(
int dims,
zfpy.zfp_type ztype
):
return 0
cdef uint64_t getChecksumDecodedBlock(
int dims,
zfpy.zfp_type ztype
):
return 0
cdef uint64_t getChecksumDecodedPartialBlock(
int dims,
zfpy.zfp_type ztype
):
return 0
# ======================================================
cdef uint64_t getChecksumOriginalDataArray(
int ndims,
size_t[4] dims,
zfpy.zfp_type ztype
):
cdef uint64_t[1] key1, key2
computeKeyOriginalInput(ARRAY_TEST, dims, key1, key2)
return getChecksumByKey(ndims, ztype, key1[0], key2[0])
cdef uint64_t getChecksumCompressedBitstream(
int ndims,
size_t[4] dims,
zfpy.zfp_type ztype,
zfpy.zfp_mode mode,
int compressParamNum
):
cdef uint64_t[1] key1, key2
computeKey(ARRAY_TEST, COMPRESSED_BITSTREAM, dims, mode, compressParamNum, key1, key2)
return getChecksumByKey(ndims, ztype, key1[0], key2[0])
cdef uint64_t getChecksumDecompressedArray(
int ndims,
size_t[4] dims,
zfpy.zfp_type ztype,
zfpy.zfp_mode mode,
int compressParamNum
):
cdef uint64_t[1] key1, key2
computeKey(ARRAY_TEST, DECOMPRESSED_ARRAY, dims, mode, compressParamNum, key1, key2)
return getChecksumByKey(ndims, ztype, key1[0], key2[0])
cpdef uint64_t getChecksumOrigArray(
dims,
zfpy.zfp_type ztype
):
cdef int ndims = 4-dims.count(0)
validate_num_dimensions(ndims)
validate_ztype(ztype)
cdef size_t[4] d
for i in range(len(dims)):
d[i] = dims[i]
return getChecksumOriginalDataArray(ndims, d, ztype)
cpdef uint64_t getChecksumCompArray(
dims,
zfpy.zfp_type ztype,
zfpy.zfp_mode mode,
int compressParamNum
):
cdef int ndims = 4-dims.count(0)
validate_num_dimensions(ndims)
validate_ztype(ztype)
validate_mode(mode)
validate_compress_param(compressParamNum)
cdef size_t[4] d
for i in range(len(dims)):
d[i] = dims[i]
return getChecksumCompressedBitstream(ndims, d, ztype, mode, compressParamNum)
cpdef uint64_t getChecksumDecompArray(
dims,
zfpy.zfp_type ztype,
zfpy.zfp_mode mode,
int compressParamNum
):
cdef int ndims = 4-dims.count(0)
validate_num_dimensions(ndims)
validate_ztype(ztype)
validate_mode(mode)
validate_compress_param(compressParamNum)
cdef size_t[4] d
for i in range(len(dims)):
d[i] = dims[i]
return getChecksumDecompressedArray(ndims, d, ztype, mode, compressParamNum)
cpdef computeParameterValue(zfpy.zfp_mode mode, int param):
validate_mode(mode)
validate_compress_param(param)
if mode == zfpy.mode_fixed_accuracy:
return computeFixedAccuracyParam(param)
elif mode == zfpy.mode_fixed_precision:
return computeFixedPrecisionParam(param)
elif mode == zfpy.mode_fixed_rate:
return computeFixedRateParam(param)
cpdef hashStridedArray(
bytes inarray,
zfpy.zfp_type ztype,
shape,
strides,
):
cdef char* array = inarray
cdef size_t[4] padded_shape
for i in range(4):
padded_shape[i] = zfpy.gen_padded_int_list(shape)[i]
cdef ptrdiff_t[4] padded_strides
for i in range(4):
padded_strides[i] = zfpy.gen_padded_int_list(strides)[i]
if ztype == zfpy.type_int32 or ztype == zfpy.type_float:
return hashStridedArray32(<uint32_t*>array, padded_shape, padded_strides)
elif ztype == zfpy.type_int64 or ztype == zfpy.type_double:
return hashStridedArray64(<uint64_t*>array, padded_shape, padded_strides)
cpdef hashNumpyArray(
np.ndarray nparray,
stride_config stride_conf = AS_IS,
):
dtype = nparray.dtype
if dtype not in [np.int32, np.float32, np.int64, np.float64]:
raise ValueError("Unsupported numpy type: {}".format(dtype))
if stride_conf not in [AS_IS, PERMUTED, INTERLEAVED, REVERSED]:
raise ValueError("Unsupported stride config: {}".format(stride_conf))
size = int(nparray.size)
cdef ptrdiff_t[4] strides
cdef size_t[4] shape
if stride_conf in [AS_IS, INTERLEAVED]:
stride_width = 1 if stride_conf is AS_IS else 2
if dtype == np.int32 or dtype == np.float32:
return hashArray32(<uint32_t*>nparray.data, size, stride_width)
elif dtype == np.int64 or dtype == np.float64:
return hashArray64(<uint64_t*>nparray.data, size, stride_width)
elif stride_conf in [REVERSED, PERMUTED]:
for i in range(4):
strides[i] = zfpy.gen_padded_int_list(
[x for x in nparray.strides[:nparray.ndim]][i]
)
for i in range(4):
shape[i] = zfpy.gen_padded_int_list(
[x for x in nparray.shape[:nparray.ndim]][i]
)
if dtype == np.int32 or dtype == np.float32:
return hashStridedArray32(<uint32_t*>nparray.data, shape, strides)
elif dtype == np.int64 or dtype == np.float64:
return hashStridedArray64(<uint64_t*>nparray.data, shape, strides)
cpdef hashCompressedArray(
bytes array,
):
cdef const char* c_array = array
return hashBitstream(<uint64_t*> c_array, len(array))
cpdef generateStridedRandomNumpyArray(
stride_config stride,
np.ndarray randomArray,
):
cdef int ndim = randomArray.ndim
shape = [int(x) for x in randomArray.shape[:ndim]]
dtype = randomArray.dtype
cdef zfpy.zfp_type ztype = zfpy.dtype_to_ztype(dtype)
cdef ptrdiff_t[4] strides
for i in range(4):
strides[i] = 0
cdef size_t[4] dims
for i in range(4):
dims[i] = zfpy.gen_padded_int_list(shape)[i]
cdef size_t inputLen = len(randomArray)
cdef void* output_array_ptr = NULL
cdef np.ndarray output_array = None
cdef view.array output_array_view = None
if stride == AS_IS:
# return an unmodified copy
return randomArray.copy(order='K')
elif stride == PERMUTED:
if ndim == 1:
raise ValueError("Permutation not supported on 1D arrays")
output_array = np.empty_like(randomArray, order='K')
getPermutedStrides(ndim, dims, strides)
for i in range(4):
strides[i] = int(strides[i]) * (randomArray.itemsize)
ret = permuteSquareArray(
randomArray.data,
output_array.data,
dims[0],
ndim,
ztype
)
if ret != 0:
raise RuntimeError("Error permuting square array")
return np.lib.stride_tricks.as_strided(
output_array,
shape=[x for x in dims[:ndim]],
strides=reversed([x for x in strides[:ndim]]),
)
elif stride == INTERLEAVED:
num_elements = np.prod(shape)
new_shape = [x for x in dims if x > 0]
new_shape[-1] *= 2
for i in range(4):
dims[i] = zfpy.gen_padded_int_list(new_shape, pad=0, length=4)[i]
output_array = np.empty(
new_shape,
dtype=dtype
)
interleaveArray(
randomArray.data,
output_array.data,
num_elements,
ztype
)
getInterleavedStrides(ndim, dims, strides)
for i in range(4):
strides[i] = int(strides[i]) * (randomArray.itemsize)
return np.lib.stride_tricks.as_strided(
output_array,
shape=shape,
strides=reversed([x for x in strides[:ndim]]),
)
else:
raise ValueError("Unsupported_config: {|}".format(stride))
|