File: fixedpoint96.c

package info (click to toggle)
zfp 1.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,744 kB
  • sloc: cpp: 20,656; ansic: 18,871; pascal: 1,231; f90: 907; python: 255; makefile: 183; sh: 79; fortran: 70
file content (296 lines) | stat: -rw-r--r-- 7,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include <limits.h>
#include "fixedpoint96.h"

void
initFixedPt(int64 i, uint32 f, fixedPt* result)
{
  result->i = i;
  result->f = f;
}

// logical shift
static void
shiftRightSigned(int64 input, uint shiftAmount, int64* result)
{
  if (input < 0) {
    *result = ~(~input >> shiftAmount);
  } else {
    *result = input >> shiftAmount;
  }
}

// split 64 bit unsigned into two 32 bit unsigned parts
// both parts live in the lowest 32 bits of the uint64
static void
splitUnsigned(uint64 input, uint64* upper, uint64* lower)
{
  *upper = input >> 32;
  *lower = input - (*upper << 32);
}

// split 64 bit signed into two 32 bit parts
// both parts live in the lowest 32 bits of the 64 bit int
// upper keeps the sign
// lower is unsigned
static void
splitSigned(int64 input, int64* upper, uint64* lower)
{
  shiftRightSigned(input, 32, upper);
  *lower = (uint64)(input - (*upper << 32));
}

static void
addFractional(uint32 a, uint32 b, uint32* result, uint32* carry)
{
  uint64 a64 = (uint64)a;
  uint64 b64 = (uint64)b;

  uint64 carry64, result64;
  splitUnsigned(a64 + b64, &carry64, &result64);

  // carry is 0 or 1
  *carry = (uint32)carry64;
  *result = (uint32)result64;
}

// returns 1 if sum overflows
static int
addSignedIntegers(int64 a, int64 b, int64* result)
{
  if (b >= 0 && a > LLONG_MAX - b) {
    return 1;
  } else if (b < 0 && a < LLONG_MIN - b) {
    return 1;
  }

  *result = a + b;

  return 0;
}

int
roundFixedPt(fixedPt* fp, int64* result)
{
  return addSignedIntegers(fp->i, (int64)(fp->f >= 0x80000000), result);
}

// returns 0 if successful, 1 otherwise
int
add(fixedPt* a, fixedPt* b, fixedPt* result)
{
  uint32 carry;
  addFractional(a->f, b->f, &result->f, &carry);

  // detect overflow while trying each combination: 3 terms, 2 operations
  int64 val;

  // (a + carry) + b
  if (addSignedIntegers(a->i, (int64)carry, &val) == 0) {
    if (addSignedIntegers(val, b->i, &result->i) == 0) {
      return 0;
    }
  }

  // a + (carry + b)
  if (addSignedIntegers((int64)carry, b->i, &val) == 0) {
    if (addSignedIntegers(a->i, val, &result->i) == 0) {
      return 0;
    }
  }

  // (a + b) + carry
  if (addSignedIntegers(a->i, b->i, &val) == 0) {
    if (addSignedIntegers(val, (int64)carry, &result->i) == 0) {
      return 0;
    }
  }

  // unavoidable overflow
  return 1;
}

// always successful
// subtract borrow from a's next MSB [integer] part
static void
subtractFractional(uint32 a, uint32 b, uint32* result, int64* borrow)
{
  *result = a - b;

  *borrow = (a < b) ? 1 : 0;
}

// returns 1 if subtraction goes out of range
static int
subtractSignedIntegers(int64 a, int64 b, int64* result)
{
  if (b < 0 && a > LLONG_MAX + b) {
    return 1;
  } else if (b >= 0 && a < LLONG_MIN + b) {
    return 1;
  }

  *result = a - b;

  return 0;
}

// returns 1 if result would go out of range
int
subtract(fixedPt* a, fixedPt* b, fixedPt* result)
{
  int64 borrow;
  subtractFractional(a->f, b->f, &result->f, &borrow);

  // detect overflow while trying each combination: 3 terms, 2 operations
  int64 val;

  // (a - borrow) - b
  if (subtractSignedIntegers(a->i, borrow, &val) == 0) {
    if (subtractSignedIntegers(val, b->i, &result->i) == 0) {
      return 0;
    }
  }

  // a - (borrow + b)
  if (addSignedIntegers(borrow, b->i, &val) == 0) {
    if (subtractSignedIntegers(a->i, val, &result->i) == 0) {
      return 0;
    }
  }

  // (a - b) - borrow
  if (subtractSignedIntegers(a->i, b->i, &val) == 0) {
    if (subtractSignedIntegers(val, borrow, &result->i) == 0) {
      return 0;
    }
  }

  // unavoidable overflow
  return 1;
}

// returns 1 if integer part overflows
// fractional part is truncated
int
multiply(fixedPt* a, fixedPt* b, fixedPt* result)
{
  // split everything into 32 bit values, stored in 64 bit types
  // that way, multiplying 2 32 bit values will fit in 64 bits
  // also, uint64 to int64 casts will be safe
  uint64 af, bf, rf;
  af = (uint64)a->f;
  bf = (uint64)b->f;

  uint64 ai0, bi0, ri0;
  int64 ai1, bi1, ri1;
  splitSigned(a->i, &ai1, &ai0);
  splitSigned(b->i, &bi1, &bi0);

  // actual values:
  //   a = (2^32)*ai1 + ai0 + (2^-32)*af
  //   b = (2^32)*bi1 + bi0 + (2^-32)*bf
  //
  //   r = a*b =
  // A            (2^64) * ai1*bi1
  // B          + (2^32) * (ai1*bi0 + ai0*bi1)
  // C          + (ai0*bi0 + ai1*bf + af*bi1)
  // D          + (2^-32) * (ai0*bf + af*bi0)
  // E          + (2^-64) * af*bf
  //
  //
  //        (MSB)                         (LSB)
  //                    -----fixedPt-----
  //   a*b= _____|_____|_ri1_|_ri0_|_rf__|_____
  //        -----A-----
  //              -----B-----
  //                    -----C-----
  //                          -----D-----
  //                                -----E-----
  //  perform sum from LSB to MSB
  //    - store 32 bit result
  //    - carry overflow to next, more significant 32 bit chunk

  // naming
  // highA : 32 MSB of A stored in 32 LSB of highA
  // lowA : 32 LSB of A stored in 32 LSB of lowA

  // (2^-64) * E
  uint64 E = af * bf;
  uint64 highE = E >> 32;
  // omit lowE (truncated)

  // D = (2^-32) * (D1 + D2)
  uint64 highD1, lowD1, highD2, lowD2;
  splitUnsigned(ai0 * bf, &highD1, &lowD1);
  splitUnsigned(af * bi0, &highD2, &lowD2);

  // highD -> result LSB integer part
  // lowD -> result fractional part
  uint64 highD, uCarryD;
  splitUnsigned(lowD1 + lowD2 + highE, &uCarryD, &rf);
  splitUnsigned(highD1 + highD2 + uCarryD, &uCarryD, &highD);

  // C = C1 + C2 + C3
  uint64 highC1;
  int64 highC2, highC3;
  uint64 lowC1, lowC2, lowC3;
  // C1 is unsigned (uint32 * uint32 only fits in uint64)
  // uint32 * int32 fits in int64
  splitUnsigned(ai0 * bi0, &highC1, &lowC1);
  splitSigned(ai1 * (int64)bf, &highC2, &lowC2);
  splitSigned((int64)af * bi1, &highC3, &lowC3);

  // highC -> MSB integer part
  // lowC -> LSB integer part
  int64 sCarryC;
  uint64 highC;
  splitSigned((int64)lowC1 + (int64)lowC2 + (int64)lowC3 + (int64)highD, &sCarryC, &ri0);
  splitSigned((int64)highC1 + highC2 + highC3 + (int64)uCarryD + sCarryC, &sCarryC, &highC);

  // B = (2^32) * (B1 + B2)
  int64 highB1, highB2;
  uint64 lowB1, lowB2;
  splitSigned(ai1 * (int64)bi0, &highB1, &lowB1);
  splitSigned((int64)ai0 * bi1, &highB2, &lowB2);

  // lowB -> MSB integer part
  // highB -> more significant 32 bits than we can hold in fixedPt
  uint64 ri1Unsigned;
  int64 sCarryB;
  splitSigned((int64)lowB1 + (int64)lowB2 + (int64)highC, &sCarryB, &ri1Unsigned);
  int64 highB = highB1 + highB2 + sCarryC + sCarryB;

  // MSB of overall product keeps sign
  int64 A = ai1 * bi1 + highB;

  // check ri1Unsigned with A's sign is in range of int64
  ri1Unsigned <<= 32;
  uint64 leftmostBitSetVal = (uint64)1 << 63;
  if (A == -1) {
    // result < 0

    if (ri1Unsigned <= LLONG_MAX) {
      return 1;
    }

    // cast ri1Unsigned safely (set MSB to 1)
    ri1 = (int64)(ri1Unsigned - leftmostBitSetVal) - leftmostBitSetVal;

  } else if (A == 0){
    // result >= 0

    if (ri1Unsigned > LLONG_MAX) {
      return 1;
    }

    ri1 = (int64)ri1Unsigned;

  } else {
    return 1;
  }

  result->f = (uint32)rf;
  result->i = ri1 + ri0;

  return 0;
}