1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#include <string.h>
#include "stridedOperations.h"
// reversed array ([inputArrLen - 1], [inputArrLen - 2], ..., [1], [0])
void
reverseArray(void* inputArr, void* outputArr, size_t inputArrLen, zfp_type zfpType)
{
const size_t elementSizeBytes = zfp_type_size(zfpType);
// move ptr to last element
inputArr = (char *)inputArr + elementSizeBytes * (inputArrLen - 1);
size_t i;
for (i = 0; i < inputArrLen; i++) {
memcpy(outputArr, inputArr, elementSizeBytes);
outputArr = (char *)outputArr + elementSizeBytes;
inputArr = (char *)inputArr - elementSizeBytes;
}
}
// interleaved array ([0], [0], [1], [1], [2], ...)
void
interleaveArray(void* inputArr, void* outputArr, size_t inputArrLen, zfp_type zfpType)
{
const size_t elementSizeBytes = zfp_type_size(zfpType);
size_t i;
for (i = 0; i < inputArrLen; i++) {
memcpy(outputArr, inputArr, elementSizeBytes);
memcpy((char *)outputArr + elementSizeBytes, inputArr, elementSizeBytes);
inputArr = (char *)inputArr + elementSizeBytes;
outputArr = (char *)outputArr + 2 * elementSizeBytes;
}
}
int
permuteSquareArray(void* inputArr, void* outputArr, size_t sideLen, int dims, zfp_type zfpType)
{
const size_t elementSizeBytes = zfp_type_size(zfpType);
size_t i, j, k, l;
switch(dims) {
case 4:
// permute ijkl lkji
for (l = 0; l < sideLen; l++) {
for (k = 0; k < sideLen; k++) {
for (j = 0; j < sideLen; j++) {
for (i = 0; i < sideLen; i++) {
size_t index = l*sideLen*sideLen*sideLen + k*sideLen*sideLen + j*sideLen + i;
size_t transposedIndex = i*sideLen*sideLen*sideLen + j*sideLen*sideLen + k*sideLen + l;
memcpy((char *)outputArr + elementSizeBytes * index, (char *)inputArr + elementSizeBytes * transposedIndex, elementSizeBytes);
}
}
}
}
break;
case 3:
// permute ijk to kji
for (k = 0; k < sideLen; k++) {
for (j = 0; j < sideLen; j++) {
for (i = 0; i < sideLen; i++) {
size_t index = k*sideLen*sideLen + j*sideLen + i;
size_t transposedIndex = i*sideLen*sideLen + j*sideLen + k;
memcpy((char *)outputArr + elementSizeBytes * index, (char *)inputArr + elementSizeBytes * transposedIndex, elementSizeBytes);
}
}
}
break;
case 2:
// permute ij to ji
for (j = 0; j < sideLen; j++) {
for (i = 0; i < sideLen; i++) {
size_t index = j*sideLen + i;
size_t transposedIndex = i*sideLen + j;
memcpy((char *)outputArr + elementSizeBytes * index, (char *)inputArr + elementSizeBytes * transposedIndex, elementSizeBytes);
}
}
break;
// considered an error if requested to permute a 1 dimensional array
case 1:
default:
return 1;
}
return 0;
}
static void
completeStrides(int dims, size_t n[4], ptrdiff_t s[4])
{
int i;
for (i = 1; i < dims; i++) {
s[i] = s[i-1] * (ptrdiff_t)n[i-1];
}
}
void
getReversedStrides(int dims, size_t n[4], ptrdiff_t s[4])
{
s[0] = -1;
completeStrides(dims, n, s);
}
void
getInterleavedStrides(int dims, size_t n[4], ptrdiff_t s[4])
{
s[0] = 2;
completeStrides(dims, n, s);
}
void
getPermutedStrides(int dims, size_t n[4], ptrdiff_t s[4])
{
if (dims == 4) {
s[0] = (ptrdiff_t)(n[0] * n[1] * n[2]);
s[1] = (ptrdiff_t)(n[0] * n[1]);
s[2] = (ptrdiff_t)n[0];
s[3] = 1;
} else if (dims == 3) {
s[0] = (ptrdiff_t)(n[0] * n[1]);
s[1] = (ptrdiff_t)n[0];
s[2] = 1;
} else if (dims == 2) {
s[0] = (ptrdiff_t)n[0];
s[1] = 1;
}
}
|