File: malloc.c

package info (click to toggle)
zfs-fuse 0.7.0-12
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 10,196 kB
  • ctags: 15,303
  • sloc: ansic: 154,043; sh: 9,694; asm: 1,690; perl: 367; xml: 300; python: 269; makefile: 83
file content (469 lines) | stat: -rw-r--r-- 9,737 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"@(#)malloc.c	1.5	05/06/08 SMI"

#include "config.h"
#include <unistd.h>

#include <errno.h>

#include <string.h>

#ifdef HAVE_SYS_SYSMACROS_H
#include <sys/sysmacros.h>
#endif

#include "umem_base.h"

#include "misc.h"

#ifdef __GLIBC__
# include <malloc.h>
#endif

/*
 * malloc_data_t is an 8-byte structure which is located "before" the pointer
 * returned from {m,c,re}alloc and memalign.  The first four bytes give
 * information about the buffer, and the second four bytes are a status byte.
 *
 * See umem_impl.h for the various magic numbers used, and the size
 * encode/decode macros.
 *
 * The 'size' of the buffer includes the tags.  That is, we encode the
 * argument to umem_alloc(), not the argument to malloc().
 */

typedef struct malloc_data {
	uint32_t malloc_size;
	uint32_t malloc_stat; /* = UMEM_MALLOC_ENCODE(state, malloc_size) */
} malloc_data_t;

#ifdef __GLIBC__
static void *umem_malloc_hook(size_t size_arg, const void *caller)
#else
void *
malloc(size_t size_arg)
#endif
{
#ifdef _LP64
	uint32_t high_size = 0;
#endif
	size_t size;

	malloc_data_t *ret;
	size = size_arg + sizeof (malloc_data_t);

#ifdef _LP64
	if (size > UMEM_SECOND_ALIGN) {
		size += sizeof (malloc_data_t);
		high_size = (size >> 32);
	}
#endif
	if (size < size_arg) {
		errno = ENOMEM;			/* overflow */
		return (NULL);
	}
	ret = (malloc_data_t *)_umem_alloc(size, UMEM_DEFAULT);
	if (ret == NULL) {
		if (size <= UMEM_MAXBUF)
			errno = EAGAIN;
		else
			errno = ENOMEM;
		return (NULL);
#ifdef _LP64
	} else if (high_size > 0) {
		uint32_t low_size = (uint32_t)size;

		/*
		 * uses different magic numbers to make it harder to
		 * undetectably corrupt
		 */
		ret->malloc_size = high_size;
		ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_MAGIC, high_size);
		ret++;

		ret->malloc_size = low_size;
		ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_OVERSIZE_MAGIC,
		    low_size);
		ret++;
	} else if (size > UMEM_SECOND_ALIGN) {
		uint32_t low_size = (uint32_t)size;

		ret++; /* leave the first 8 bytes alone */

		ret->malloc_size = low_size;
		ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_SECOND_MAGIC,
		    low_size);
		ret++;
#endif
	} else {
		ret->malloc_size = size;
		ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_MAGIC, size);
		ret++;
	}
	return ((void *)ret);
}

#ifndef __GLIBC__
void *
calloc(size_t nelem, size_t elsize)
{
	size_t size = nelem * elsize;
	void *retval;

	if (nelem > 0 && elsize > 0 && size/nelem != elsize) {
		errno = ENOMEM;				/* overflow */
		return (NULL);
	}

	retval = malloc(size);
	if (retval == NULL)
		return (NULL);

	(void) memset(retval, 0, size);
	return (retval);
}
#endif

/*
 * memalign uses vmem_xalloc to do its work.
 *
 * in 64-bit, the memaligned buffer always has two tags.  This simplifies the
 * code.
 */

#ifdef __GLIBC__
static void *umem_memalign_hook(size_t size_arg, size_t align, const void *caller)
#else
void *
memalign(size_t align, size_t size_arg)
#endif
{
	size_t size;
	uintptr_t phase;

	void *buf;
	malloc_data_t *ret;

	size_t overhead;

	if (size_arg == 0 || align == 0 || (align & (align - 1)) != 0) {
		errno = EINVAL;
		return (NULL);
	}

	/*
	 * if malloc provides the required alignment, use it.
	 */
	if (align <= UMEM_ALIGN ||
	    (align <= UMEM_SECOND_ALIGN && size_arg >= UMEM_SECOND_ALIGN))
		return (malloc(size_arg));

#ifdef _LP64
	overhead = 2 * sizeof (malloc_data_t);
#else
	overhead = sizeof (malloc_data_t);
#endif

	ASSERT(overhead <= align);

	size = size_arg + overhead;
	phase = align - overhead;

	if (umem_memalign_arena == NULL && umem_init() == 0) {
		errno = ENOMEM;
		return (NULL);
	}

	if (size < size_arg) {
		errno = ENOMEM;			/* overflow */
		return (NULL);
	}

	buf = vmem_xalloc(umem_memalign_arena, size, align, phase,
	    0, NULL, NULL, VM_NOSLEEP);

	if (buf == NULL) {
		if ((size_arg + align) <= UMEM_MAXBUF)
			errno = EAGAIN;
		else
			errno = ENOMEM;

		return (NULL);
	}

	ret = (malloc_data_t *)buf;
	{
		uint32_t low_size = (uint32_t)size;

#ifdef _LP64
		uint32_t high_size = (uint32_t)(size >> 32);

		ret->malloc_size = high_size;
		ret->malloc_stat = UMEM_MALLOC_ENCODE(MEMALIGN_MAGIC,
		    high_size);
		ret++;
#endif

		ret->malloc_size = low_size;
		ret->malloc_stat = UMEM_MALLOC_ENCODE(MEMALIGN_MAGIC, low_size);
		ret++;
	}

	ASSERT(P2PHASE((uintptr_t)ret, align) == 0);
	ASSERT((void *)((uintptr_t)ret - overhead) == buf);

	return ((void *)ret);
}

#ifndef __GLIBC__
void *
valloc(size_t size)
{
	return (memalign(pagesize, size));
}
#endif

/*
 * process_free:
 *
 * Pulls information out of a buffer pointer, and optionally free it.
 * This is used by free() and realloc() to process buffers.
 *
 * On failure, calls umem_err_recoverable() with an appropriate message
 * On success, returns the data size through *data_size_arg, if (!is_free).
 *
 * Preserves errno, since free()'s semantics require it.
 */

static int
process_free(void *buf_arg,
    int do_free,		/* free the buffer, or just get its size? */
    size_t *data_size_arg)	/* output: bytes of data in buf_arg */
{
	malloc_data_t *buf;

	void *base;
	size_t size;
	size_t data_size;

	const char *message;
	int old_errno = errno;

	buf = (malloc_data_t *)buf_arg;

	buf--;
	size = buf->malloc_size;

	switch (UMEM_MALLOC_DECODE(buf->malloc_stat, size)) {

	case MALLOC_MAGIC:
		base = (void *)buf;
		data_size = size - sizeof (malloc_data_t);

		if (do_free)
			buf->malloc_stat = UMEM_FREE_PATTERN_32;

		goto process_malloc;

#ifdef _LP64
	case MALLOC_SECOND_MAGIC:
		base = (void *)(buf - 1);
		data_size = size - 2 * sizeof (malloc_data_t);

		if (do_free)
			buf->malloc_stat = UMEM_FREE_PATTERN_32;

		goto process_malloc;

	case MALLOC_OVERSIZE_MAGIC: {
		size_t high_size;

		buf--;
		high_size = buf->malloc_size;

		if (UMEM_MALLOC_DECODE(buf->malloc_stat, high_size) !=
		    MALLOC_MAGIC) {
			message = "invalid or corrupted buffer";
			break;
		}

		size += high_size << 32;

		base = (void *)buf;
		data_size = size - 2 * sizeof (malloc_data_t);

		if (do_free) {
			buf->malloc_stat = UMEM_FREE_PATTERN_32;
			(buf + 1)->malloc_stat = UMEM_FREE_PATTERN_32;
		}

		goto process_malloc;
	}
#endif

	case MEMALIGN_MAGIC: {
		size_t overhead = sizeof (malloc_data_t);

#ifdef _LP64
		size_t high_size;

		overhead += sizeof (malloc_data_t);

		buf--;
		high_size = buf->malloc_size;

		if (UMEM_MALLOC_DECODE(buf->malloc_stat, high_size) !=
		    MEMALIGN_MAGIC) {
			message = "invalid or corrupted buffer";
			break;
		}
		size += high_size << 32;

		/*
		 * destroy the main tag's malloc_stat
		 */
		if (do_free)
			(buf + 1)->malloc_stat = UMEM_FREE_PATTERN_32;
#endif

		base = (void *)buf;
		data_size = size - overhead;

		if (do_free)
			buf->malloc_stat = UMEM_FREE_PATTERN_32;

		goto process_memalign;
	}
	default:
		if (buf->malloc_stat == UMEM_FREE_PATTERN_32)
			message = "double-free or invalid buffer";
		else
			message = "invalid or corrupted buffer";
		break;
	}

	umem_err_recoverable("%s(%p): %s\n",
	    do_free? "free" : "realloc", buf_arg, message);

	errno = old_errno;
	return (0);

process_malloc:
	if (do_free)
		_umem_free(base, size);
	else
		*data_size_arg = data_size;

	errno = old_errno;
	return (1);

process_memalign:
	if (do_free)
		vmem_xfree(umem_memalign_arena, base, size);
	else
		*data_size_arg = data_size;

	errno = old_errno;
	return (1);
}

#ifdef __GLIBC__
static void umem_free_hook(void *buf, const void *caller)
#else
void
free(void *buf)
#endif
{
	if (buf == NULL)
		return;

	/*
	 * Process buf, freeing it if it is not corrupt.
	 */
	(void) process_free(buf, 1, NULL);
}

#ifdef __GLIBC__
static void *umem_realloc_hook(void *buf_arg, size_t newsize, const void *caller)
#else
void *
realloc(void *buf_arg, size_t newsize)
#endif
{
	size_t oldsize;
	void *buf;

	if (buf_arg == NULL)
		return (malloc(newsize));

	/*
	 * get the old data size without freeing the buffer
	 */
	if (process_free(buf_arg, 0, &oldsize) == 0) {
		errno = EINVAL;
		return (NULL);
	}

	if (newsize == oldsize)		/* size didn't change */
		return (buf_arg);

	buf = malloc(newsize);
	if (buf == NULL)
		return (NULL);

	(void) memcpy(buf, buf_arg, MIN(newsize, oldsize));
	free(buf_arg);
	return (buf);
}

#ifdef __GLIBC__
static void __attribute__((constructor)) umem_malloc_init_hook(void)
{
	if (__malloc_hook != umem_malloc_hook) {
		umem_startup(NULL, 0, 0, NULL, NULL);
		__malloc_hook = umem_malloc_hook;
		__free_hook = umem_free_hook;
		__realloc_hook = umem_realloc_hook;
		__memalign_hook = umem_memalign_hook;
	}
}

#if __GLIBC_PREREQ(2, 14)
void (* __volatile __malloc_initialize_hook)(void) = umem_malloc_init_hook;
#else
void (* __malloc_initialize_hook)(void) = umem_malloc_init_hook;
#endif

#else
void __attribute__((constructor))
__malloc_umem_init (void)
{
	umem_startup(NULL, 0, 0, NULL, NULL);
}
#endif