1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
*/
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#include <sys/dmu_objset.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zpl.h>
static int
zpl_open(struct inode *ip, struct file *filp)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
error = generic_file_open(ip, filp);
if (error)
return (error);
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_release(struct inode *ip, struct file *filp)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
if (ITOZ(ip)->z_atime_dirty)
zfs_mark_inode_dirty(ip);
crhold(cr);
error = -zfs_close(ip, filp->f_flags, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_readdir(file_inode(filp), ctx, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
static int
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
zpl_dir_context_t ctx =
ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
int error;
error = zpl_iterate(filp, &ctx);
filp->f_pos = ctx.pos;
return (error);
}
#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
#if defined(HAVE_FSYNC_WITH_DENTRY)
/*
* Linux 2.6.x - 2.6.34 API,
* Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
* to the fops->fsync() hook. For this reason, we must be careful not to
* use filp unconditionally.
*/
static int
zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
{
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_fsync(dentry->d_inode, datasync, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
struct file *filp = kiocb->ki_filp;
return (zpl_fsync(filp, file_dentry(filp), datasync));
}
#endif
#elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
/*
* Linux 2.6.35 - 3.0 API,
* As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
* redundant. The dentry is still accessible via filp->f_path.dentry,
* and we are guaranteed that filp will never be NULL.
*/
static int
zpl_fsync(struct file *filp, int datasync)
{
struct inode *inode = filp->f_mapping->host;
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_fsync(inode, datasync, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
return (zpl_fsync(kiocb->ki_filp, datasync));
}
#endif
#elif defined(HAVE_FSYNC_RANGE)
/*
* Linux 3.1 - 3.x API,
* As of 3.1 the responsibility to call filemap_write_and_wait_range() has
* been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
* lock is no longer held by the caller, for zfs we don't require the lock
* to be held so we don't acquire it.
*/
static int
zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
struct inode *inode = filp->f_mapping->host;
cred_t *cr = CRED();
int error;
fstrans_cookie_t cookie;
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (error)
return (error);
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_fsync(inode, datasync, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_FILE_AIO_FSYNC
static int
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
{
return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
}
#endif
#else
#error "Unsupported fops->fsync() implementation"
#endif
static ssize_t
zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
cred_t *cr, size_t skip)
{
ssize_t read;
uio_t uio;
int error;
fstrans_cookie_t cookie;
uio.uio_iov = iovp;
uio.uio_skip = skip;
uio.uio_resid = count;
uio.uio_iovcnt = nr_segs;
uio.uio_loffset = *ppos;
uio.uio_limit = MAXOFFSET_T;
uio.uio_segflg = segment;
cookie = spl_fstrans_mark();
error = -zfs_read(ip, &uio, flags, cr);
spl_fstrans_unmark(cookie);
if (error < 0)
return (error);
read = count - uio.uio_resid;
*ppos += read;
task_io_account_read(read);
return (read);
}
inline ssize_t
zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
uio_seg_t segment, int flags, cred_t *cr)
{
struct iovec iov;
iov.iov_base = (void *)buf;
iov.iov_len = len;
return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
flags, cr, 0));
}
static ssize_t
zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
{
cred_t *cr = CRED();
struct file *filp = kiocb->ki_filp;
ssize_t read;
crhold(cr);
read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
crfree(cr);
file_accessed(filp);
return (read);
}
#if defined(HAVE_VFS_RW_ITERATE)
static ssize_t
zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
{
ssize_t ret;
uio_seg_t seg = UIO_USERSPACE;
if (to->type & ITER_KVEC)
seg = UIO_SYSSPACE;
if (to->type & ITER_BVEC)
seg = UIO_BVEC;
ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
iov_iter_count(to), seg, to->iov_offset);
if (ret > 0)
iov_iter_advance(to, ret);
return (ret);
}
#else
static ssize_t
zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
unsigned long nr_segs, loff_t pos)
{
ssize_t ret;
size_t count;
ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_WRITE);
if (ret)
return (ret);
return (zpl_iter_read_common(kiocb, iovp, nr_segs, count,
UIO_USERSPACE, 0));
}
#endif /* HAVE_VFS_RW_ITERATE */
static ssize_t
zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
cred_t *cr, size_t skip)
{
ssize_t wrote;
uio_t uio;
int error;
fstrans_cookie_t cookie;
if (flags & O_APPEND)
*ppos = i_size_read(ip);
uio.uio_iov = iovp;
uio.uio_skip = skip;
uio.uio_resid = count;
uio.uio_iovcnt = nr_segs;
uio.uio_loffset = *ppos;
uio.uio_limit = MAXOFFSET_T;
uio.uio_segflg = segment;
cookie = spl_fstrans_mark();
error = -zfs_write(ip, &uio, flags, cr);
spl_fstrans_unmark(cookie);
if (error < 0)
return (error);
wrote = count - uio.uio_resid;
*ppos += wrote;
task_io_account_write(wrote);
return (wrote);
}
inline ssize_t
zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
uio_seg_t segment, int flags, cred_t *cr)
{
struct iovec iov;
iov.iov_base = (void *)buf;
iov.iov_len = len;
return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
flags, cr, 0));
}
static ssize_t
zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
{
cred_t *cr = CRED();
struct file *filp = kiocb->ki_filp;
ssize_t wrote;
crhold(cr);
wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
crfree(cr);
return (wrote);
}
#if defined(HAVE_VFS_RW_ITERATE)
static ssize_t
zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
{
size_t count;
ssize_t ret;
uio_seg_t seg = UIO_USERSPACE;
#ifndef HAVE_GENERIC_WRITE_CHECKS_KIOCB
struct file *file = kiocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *ip = mapping->host;
int isblk = S_ISBLK(ip->i_mode);
count = iov_iter_count(from);
ret = generic_write_checks(file, &kiocb->ki_pos, &count, isblk);
if (ret)
return (ret);
#else
/*
* XXX - ideally this check should be in the same lock region with
* write operations, so that there's no TOCTTOU race when doing
* append and someone else grow the file.
*/
ret = generic_write_checks(kiocb, from);
if (ret <= 0)
return (ret);
count = ret;
#endif
if (from->type & ITER_KVEC)
seg = UIO_SYSSPACE;
if (from->type & ITER_BVEC)
seg = UIO_BVEC;
ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
count, seg, from->iov_offset);
if (ret > 0)
iov_iter_advance(from, ret);
return (ret);
}
#else
static ssize_t
zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
unsigned long nr_segs, loff_t pos)
{
struct file *file = kiocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *ip = mapping->host;
int isblk = S_ISBLK(ip->i_mode);
size_t count;
ssize_t ret;
ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_READ);
if (ret)
return (ret);
ret = generic_write_checks(file, &pos, &count, isblk);
if (ret)
return (ret);
return (zpl_iter_write_common(kiocb, iovp, nr_segs, count,
UIO_USERSPACE, 0));
}
#endif /* HAVE_VFS_RW_ITERATE */
static loff_t
zpl_llseek(struct file *filp, loff_t offset, int whence)
{
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
fstrans_cookie_t cookie;
if (whence == SEEK_DATA || whence == SEEK_HOLE) {
struct inode *ip = filp->f_mapping->host;
loff_t maxbytes = ip->i_sb->s_maxbytes;
loff_t error;
spl_inode_lock_shared(ip);
cookie = spl_fstrans_mark();
error = -zfs_holey(ip, whence, &offset);
spl_fstrans_unmark(cookie);
if (error == 0)
error = lseek_execute(filp, ip, offset, maxbytes);
spl_inode_unlock_shared(ip);
return (error);
}
#endif /* SEEK_HOLE && SEEK_DATA */
return (generic_file_llseek(filp, offset, whence));
}
/*
* It's worth taking a moment to describe how mmap is implemented
* for zfs because it differs considerably from other Linux filesystems.
* However, this issue is handled the same way under OpenSolaris.
*
* The issue is that by design zfs bypasses the Linux page cache and
* leaves all caching up to the ARC. This has been shown to work
* well for the common read(2)/write(2) case. However, mmap(2)
* is problem because it relies on being tightly integrated with the
* page cache. To handle this we cache mmap'ed files twice, once in
* the ARC and a second time in the page cache. The code is careful
* to keep both copies synchronized.
*
* When a file with an mmap'ed region is written to using write(2)
* both the data in the ARC and existing pages in the page cache
* are updated. For a read(2) data will be read first from the page
* cache then the ARC if needed. Neither a write(2) or read(2) will
* will ever result in new pages being added to the page cache.
*
* New pages are added to the page cache only via .readpage() which
* is called when the vfs needs to read a page off disk to back the
* virtual memory region. These pages may be modified without
* notifying the ARC and will be written out periodically via
* .writepage(). This will occur due to either a sync or the usual
* page aging behavior. Note because a read(2) of a mmap'ed file
* will always check the page cache first even when the ARC is out
* of date correct data will still be returned.
*
* While this implementation ensures correct behavior it does have
* have some drawbacks. The most obvious of which is that it
* increases the required memory footprint when access mmap'ed
* files. It also adds additional complexity to the code keeping
* both caches synchronized.
*
* Longer term it may be possible to cleanly resolve this wart by
* mapping page cache pages directly on to the ARC buffers. The
* Linux address space operations are flexible enough to allow
* selection of which pages back a particular index. The trick
* would be working out the details of which subsystem is in
* charge, the ARC, the page cache, or both. It may also prove
* helpful to move the ARC buffers to a scatter-gather lists
* rather than a vmalloc'ed region.
*/
static int
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct inode *ip = filp->f_mapping->host;
znode_t *zp = ITOZ(ip);
int error;
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
(size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
spl_fstrans_unmark(cookie);
if (error)
return (error);
error = generic_file_mmap(filp, vma);
if (error)
return (error);
mutex_enter(&zp->z_lock);
zp->z_is_mapped = 1;
mutex_exit(&zp->z_lock);
return (error);
}
/*
* Populate a page with data for the Linux page cache. This function is
* only used to support mmap(2). There will be an identical copy of the
* data in the ARC which is kept up to date via .write() and .writepage().
*
* Current this function relies on zpl_read_common() and the O_DIRECT
* flag to read in a page. This works but the more correct way is to
* update zfs_fillpage() to be Linux friendly and use that interface.
*/
static int
zpl_readpage(struct file *filp, struct page *pp)
{
struct inode *ip;
struct page *pl[1];
int error = 0;
fstrans_cookie_t cookie;
ASSERT(PageLocked(pp));
ip = pp->mapping->host;
pl[0] = pp;
cookie = spl_fstrans_mark();
error = -zfs_getpage(ip, pl, 1);
spl_fstrans_unmark(cookie);
if (error) {
SetPageError(pp);
ClearPageUptodate(pp);
} else {
ClearPageError(pp);
SetPageUptodate(pp);
flush_dcache_page(pp);
}
unlock_page(pp);
return (error);
}
/*
* Populate a set of pages with data for the Linux page cache. This
* function will only be called for read ahead and never for demand
* paging. For simplicity, the code relies on read_cache_pages() to
* correctly lock each page for IO and call zpl_readpage().
*/
static int
zpl_readpages(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
return (read_cache_pages(mapping, pages,
(filler_t *)zpl_readpage, filp));
}
int
zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
{
struct address_space *mapping = data;
fstrans_cookie_t cookie;
ASSERT(PageLocked(pp));
ASSERT(!PageWriteback(pp));
cookie = spl_fstrans_mark();
(void) zfs_putpage(mapping->host, pp, wbc);
spl_fstrans_unmark(cookie);
return (0);
}
static int
zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
znode_t *zp = ITOZ(mapping->host);
zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
enum writeback_sync_modes sync_mode;
int result;
ZFS_ENTER(zfsvfs);
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
wbc->sync_mode = WB_SYNC_ALL;
ZFS_EXIT(zfsvfs);
sync_mode = wbc->sync_mode;
/*
* We don't want to run write_cache_pages() in SYNC mode here, because
* that would make putpage() wait for a single page to be committed to
* disk every single time, resulting in atrocious performance. Instead
* we run it once in non-SYNC mode so that the ZIL gets all the data,
* and then we commit it all in one go.
*/
wbc->sync_mode = WB_SYNC_NONE;
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
if (sync_mode != wbc->sync_mode) {
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if (zfsvfs->z_log != NULL)
zil_commit(zfsvfs->z_log, zp->z_id);
ZFS_EXIT(zfsvfs);
/*
* We need to call write_cache_pages() again (we can't just
* return after the commit) because the previous call in
* non-SYNC mode does not guarantee that we got all the dirty
* pages (see the implementation of write_cache_pages() for
* details). That being said, this is a no-op in most cases.
*/
wbc->sync_mode = sync_mode;
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
}
return (result);
}
/*
* Write out dirty pages to the ARC, this function is only required to
* support mmap(2). Mapped pages may be dirtied by memory operations
* which never call .write(). These dirty pages are kept in sync with
* the ARC buffers via this hook.
*/
static int
zpl_writepage(struct page *pp, struct writeback_control *wbc)
{
if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
wbc->sync_mode = WB_SYNC_ALL;
return (zpl_putpage(pp, wbc, pp->mapping));
}
/*
* The only flag combination which matches the behavior of zfs_space()
* is FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
* flag was introduced in the 2.6.38 kernel.
*/
#if defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE)
long
zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
{
int error = -EOPNOTSUPP;
#if defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE)
cred_t *cr = CRED();
flock64_t bf;
loff_t olen;
fstrans_cookie_t cookie;
if (mode != (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return (error);
if (offset < 0 || len <= 0)
return (-EINVAL);
spl_inode_lock(ip);
olen = i_size_read(ip);
if (offset > olen) {
spl_inode_unlock(ip);
return (0);
}
if (offset + len > olen)
len = olen - offset;
bf.l_type = F_WRLCK;
bf.l_whence = 0;
bf.l_start = offset;
bf.l_len = len;
bf.l_pid = 0;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
spl_fstrans_unmark(cookie);
spl_inode_unlock(ip);
crfree(cr);
#endif /* defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE) */
ASSERT3S(error, <=, 0);
return (error);
}
#endif /* defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE) */
#ifdef HAVE_FILE_FALLOCATE
static long
zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
{
return zpl_fallocate_common(file_inode(filp),
mode, offset, len);
}
#endif /* HAVE_FILE_FALLOCATE */
/*
* Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
* attributes common to both Linux and Solaris are mapped.
*/
static int
zpl_ioctl_getflags(struct file *filp, void __user *arg)
{
struct inode *ip = file_inode(filp);
unsigned int ioctl_flags = 0;
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
int error;
if (zfs_flags & ZFS_IMMUTABLE)
ioctl_flags |= FS_IMMUTABLE_FL;
if (zfs_flags & ZFS_APPENDONLY)
ioctl_flags |= FS_APPEND_FL;
if (zfs_flags & ZFS_NODUMP)
ioctl_flags |= FS_NODUMP_FL;
ioctl_flags &= FS_FL_USER_VISIBLE;
error = copy_to_user(arg, &ioctl_flags, sizeof (ioctl_flags));
return (error);
}
/*
* fchange() is a helper macro to detect if we have been asked to change a
* flag. This is ugly, but the requirement that we do this is a consequence of
* how the Linux file attribute interface was designed. Another consequence is
* that concurrent modification of files suffers from a TOCTOU race. Neither
* are things we can fix without modifying the kernel-userland interface, which
* is outside of our jurisdiction.
*/
#define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
static int
zpl_ioctl_setflags(struct file *filp, void __user *arg)
{
struct inode *ip = file_inode(filp);
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
unsigned int ioctl_flags;
cred_t *cr = CRED();
xvattr_t xva;
xoptattr_t *xoap;
int error;
fstrans_cookie_t cookie;
if (copy_from_user(&ioctl_flags, arg, sizeof (ioctl_flags)))
return (-EFAULT);
if ((ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL)))
return (-EOPNOTSUPP);
if ((ioctl_flags & ~(FS_FL_USER_MODIFIABLE)))
return (-EACCES);
if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
!capable(CAP_LINUX_IMMUTABLE))
return (-EACCES);
if (!zpl_inode_owner_or_capable(ip))
return (-EACCES);
xva_init(&xva);
xoap = xva_getxoptattr(&xva);
XVA_SET_REQ(&xva, XAT_IMMUTABLE);
if (ioctl_flags & FS_IMMUTABLE_FL)
xoap->xoa_immutable = B_TRUE;
XVA_SET_REQ(&xva, XAT_APPENDONLY);
if (ioctl_flags & FS_APPEND_FL)
xoap->xoa_appendonly = B_TRUE;
XVA_SET_REQ(&xva, XAT_NODUMP);
if (ioctl_flags & FS_NODUMP_FL)
xoap->xoa_nodump = B_TRUE;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
return (error);
}
static long
zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case FS_IOC_GETFLAGS:
return (zpl_ioctl_getflags(filp, (void *)arg));
case FS_IOC_SETFLAGS:
return (zpl_ioctl_setflags(filp, (void *)arg));
default:
return (-ENOTTY);
}
}
#ifdef CONFIG_COMPAT
static long
zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case FS_IOC32_GETFLAGS:
cmd = FS_IOC_GETFLAGS;
break;
case FS_IOC32_SETFLAGS:
cmd = FS_IOC_SETFLAGS;
break;
default:
return (-ENOTTY);
}
return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
}
#endif /* CONFIG_COMPAT */
const struct address_space_operations zpl_address_space_operations = {
.readpages = zpl_readpages,
.readpage = zpl_readpage,
.writepage = zpl_writepage,
.writepages = zpl_writepages,
};
const struct file_operations zpl_file_operations = {
.open = zpl_open,
.release = zpl_release,
.llseek = zpl_llseek,
#ifdef HAVE_VFS_RW_ITERATE
#ifdef HAVE_NEW_SYNC_READ
.read = new_sync_read,
.write = new_sync_write,
#endif
.read_iter = zpl_iter_read,
.write_iter = zpl_iter_write,
#else
.read = do_sync_read,
.write = do_sync_write,
.aio_read = zpl_aio_read,
.aio_write = zpl_aio_write,
#endif
.mmap = zpl_mmap,
.fsync = zpl_fsync,
#ifdef HAVE_FILE_AIO_FSYNC
.aio_fsync = zpl_aio_fsync,
#endif
#ifdef HAVE_FILE_FALLOCATE
.fallocate = zpl_fallocate,
#endif /* HAVE_FILE_FALLOCATE */
.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpl_compat_ioctl,
#endif
};
const struct file_operations zpl_dir_file_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
#if defined(HAVE_VFS_ITERATE_SHARED)
.iterate_shared = zpl_iterate,
#elif defined(HAVE_VFS_ITERATE)
.iterate = zpl_iterate,
#else
.readdir = zpl_readdir,
#endif
.fsync = zpl_fsync,
.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpl_compat_ioctl,
#endif
};
|