1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/zio.h>
#include <umem.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
#include <assert.h>
#include <stdio.h>
#include "raidz_test.h"
static int *rand_data;
raidz_test_opts_t rto_opts;
static char gdb[256];
static const char gdb_tmpl[] = "gdb -ex \"set pagination 0\" -p %d";
static void sig_handler(int signo)
{
struct sigaction action;
/*
* Restore default action and re-raise signal so SIGSEGV and
* SIGABRT can trigger a core dump.
*/
action.sa_handler = SIG_DFL;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
(void) sigaction(signo, &action, NULL);
if (rto_opts.rto_gdb)
if (system(gdb)) { }
raise(signo);
}
static void print_opts(raidz_test_opts_t *opts, boolean_t force)
{
char *verbose;
switch (opts->rto_v) {
case 0:
verbose = "no";
break;
case 1:
verbose = "info";
break;
default:
verbose = "debug";
break;
}
if (force || opts->rto_v >= D_INFO) {
(void) fprintf(stdout, DBLSEP "Running with options:\n"
" (-a) zio ashift : %zu\n"
" (-o) zio offset : 1 << %zu\n"
" (-d) number of raidz data columns : %zu\n"
" (-s) size of DATA : 1 << %zu\n"
" (-S) sweep parameters : %s \n"
" (-v) verbose : %s \n\n",
opts->rto_ashift, /* -a */
ilog2(opts->rto_offset), /* -o */
opts->rto_dcols, /* -d */
ilog2(opts->rto_dsize), /* -s */
opts->rto_sweep ? "yes" : "no", /* -S */
verbose); /* -v */
}
}
static void usage(boolean_t requested)
{
const raidz_test_opts_t *o = &rto_opts_defaults;
FILE *fp = requested ? stdout : stderr;
(void) fprintf(fp, "Usage:\n"
"\t[-a zio ashift (default: %zu)]\n"
"\t[-o zio offset, exponent radix 2 (default: %zu)]\n"
"\t[-d number of raidz data columns (default: %zu)]\n"
"\t[-s zio size, exponent radix 2 (default: %zu)]\n"
"\t[-S parameter sweep (default: %s)]\n"
"\t[-t timeout for parameter sweep test]\n"
"\t[-B benchmark all raidz implementations]\n"
"\t[-v increase verbosity (default: %zu)]\n"
"\t[-h (print help)]\n"
"\t[-T test the test, see if failure would be detected]\n"
"\t[-D debug (attach gdb on SIGSEGV)]\n"
"",
o->rto_ashift, /* -a */
ilog2(o->rto_offset), /* -o */
o->rto_dcols, /* -d */
ilog2(o->rto_dsize), /* -s */
rto_opts.rto_sweep ? "yes" : "no", /* -S */
o->rto_v); /* -d */
exit(requested ? 0 : 1);
}
static void process_options(int argc, char **argv)
{
size_t value;
int opt;
raidz_test_opts_t *o = &rto_opts;
bcopy(&rto_opts_defaults, o, sizeof (*o));
while ((opt = getopt(argc, argv, "TDBSvha:o:d:s:t:")) != -1) {
value = 0;
switch (opt) {
case 'a':
value = strtoull(optarg, NULL, 0);
o->rto_ashift = MIN(13, MAX(9, value));
break;
case 'o':
value = strtoull(optarg, NULL, 0);
o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
break;
case 'd':
value = strtoull(optarg, NULL, 0);
o->rto_dcols = MIN(255, MAX(1, value));
break;
case 's':
value = strtoull(optarg, NULL, 0);
o->rto_dsize = 1ULL << MIN(SPA_MAXBLOCKSHIFT,
MAX(SPA_MINBLOCKSHIFT, value));
break;
case 't':
value = strtoull(optarg, NULL, 0);
o->rto_sweep_timeout = value;
break;
case 'v':
o->rto_v++;
break;
case 'S':
o->rto_sweep = 1;
break;
case 'B':
o->rto_benchmark = 1;
break;
case 'D':
o->rto_gdb = 1;
break;
case 'T':
o->rto_sanity = 1;
break;
case 'h':
usage(B_TRUE);
break;
case '?':
default:
usage(B_FALSE);
break;
}
}
}
#define DATA_COL(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_abd)
#define DATA_COL_SIZE(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_size)
#define CODE_COL(rm, i) ((rm)->rm_col[(i)].rc_abd)
#define CODE_COL_SIZE(rm, i) ((rm)->rm_col[(i)].rc_size)
static int
cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
{
int i, ret = 0;
VERIFY(parity >= 1 && parity <= 3);
for (i = 0; i < parity; i++) {
if (abd_cmp(CODE_COL(rm, i), CODE_COL(opts->rm_golden, i))
!= 0) {
ret++;
LOG_OPT(D_DEBUG, opts,
"\nParity block [%d] different!\n", i);
}
}
return (ret);
}
static int
cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
{
int i, ret = 0;
int dcols = opts->rm_golden->rm_cols - raidz_parity(opts->rm_golden);
for (i = 0; i < dcols; i++) {
if (abd_cmp(DATA_COL(opts->rm_golden, i), DATA_COL(rm, i))
!= 0) {
ret++;
LOG_OPT(D_DEBUG, opts,
"\nData block [%d] different!\n", i);
}
}
return (ret);
}
static int
init_rand(void *data, size_t size, void *private)
{
int i;
int *dst = (int *)data;
for (i = 0; i < size / sizeof (int); i++)
dst[i] = rand_data[i];
return (0);
}
static void
corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
{
int i;
raidz_col_t *col;
for (i = 0; i < cnt; i++) {
col = &rm->rm_col[tgts[i]];
abd_iterate_func(col->rc_abd, 0, col->rc_size, init_rand, NULL);
}
}
void
init_zio_abd(zio_t *zio)
{
abd_iterate_func(zio->io_abd, 0, zio->io_size, init_rand, NULL);
}
static void
fini_raidz_map(zio_t **zio, raidz_map_t **rm)
{
vdev_raidz_map_free(*rm);
raidz_free((*zio)->io_abd, (*zio)->io_size);
umem_free(*zio, sizeof (zio_t));
*zio = NULL;
*rm = NULL;
}
static int
init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
{
int err = 0;
zio_t *zio_test;
raidz_map_t *rm_test;
const size_t total_ncols = opts->rto_dcols + parity;
if (opts->rm_golden) {
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
}
opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset;
opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize;
opts->zio_golden->io_abd = raidz_alloc(opts->rto_dsize);
zio_test->io_abd = raidz_alloc(opts->rto_dsize);
init_zio_abd(opts->zio_golden);
init_zio_abd(zio_test);
VERIFY0(vdev_raidz_impl_set("original"));
opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
opts->rto_ashift, total_ncols, parity);
rm_test = vdev_raidz_map_alloc(zio_test,
opts->rto_ashift, total_ncols, parity);
VERIFY(opts->zio_golden);
VERIFY(opts->rm_golden);
vdev_raidz_generate_parity(opts->rm_golden);
vdev_raidz_generate_parity(rm_test);
/* sanity check */
err |= cmp_data(opts, rm_test);
err |= cmp_code(opts, rm_test, parity);
if (err)
ERR("initializing the golden copy ... [FAIL]!\n");
/* tear down raidz_map of test zio */
fini_raidz_map(&zio_test, &rm_test);
return (err);
}
static raidz_map_t *
init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
{
raidz_map_t *rm = NULL;
const size_t alloc_dsize = opts->rto_dsize;
const size_t total_ncols = opts->rto_dcols + parity;
const int ccols[] = { 0, 1, 2 };
VERIFY(zio);
VERIFY(parity <= 3 && parity >= 1);
*zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
(*zio)->io_offset = 0;
(*zio)->io_size = alloc_dsize;
(*zio)->io_abd = raidz_alloc(alloc_dsize);
init_zio_abd(*zio);
rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
total_ncols, parity);
VERIFY(rm);
/* Make sure code columns are destroyed */
corrupt_colums(rm, ccols, parity);
return (rm);
}
static int
run_gen_check(raidz_test_opts_t *opts)
{
char **impl_name;
int fn, err = 0;
zio_t *zio_test;
raidz_map_t *rm_test;
err = init_raidz_golden_map(opts, PARITY_PQR);
if (0 != err)
return (err);
LOG(D_INFO, DBLSEP);
LOG(D_INFO, "Testing parity generation...\n");
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
impl_name++) {
LOG(D_INFO, SEP);
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
if (0 != vdev_raidz_impl_set(*impl_name)) {
LOG(D_INFO, "[SKIP]\n");
continue;
} else {
LOG(D_INFO, "[SUPPORTED]\n");
}
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
/* create suitable raidz_map */
rm_test = init_raidz_map(opts, &zio_test, fn+1);
VERIFY(rm_test);
LOG(D_INFO, "\t\tTesting method [%s] ...",
raidz_gen_name[fn]);
if (!opts->rto_sanity)
vdev_raidz_generate_parity(rm_test);
if (cmp_code(opts, rm_test, fn+1) != 0) {
LOG(D_INFO, "[FAIL]\n");
err++;
} else
LOG(D_INFO, "[PASS]\n");
fini_raidz_map(&zio_test, &rm_test);
}
}
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
return (err);
}
static int
run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
{
int x0, x1, x2;
int tgtidx[3];
int err = 0;
static const int rec_tgts[7][3] = {
{1, 2, 3}, /* rec_p: bad QR & D[0] */
{0, 2, 3}, /* rec_q: bad PR & D[0] */
{0, 1, 3}, /* rec_r: bad PQ & D[0] */
{2, 3, 4}, /* rec_pq: bad R & D[0][1] */
{1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
{0, 3, 4}, /* rec_qr: bad P & D[0][1] */
{3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
};
memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx));
if (fn < RAIDZ_REC_PQ) {
/* can reconstruct 1 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
if (x0 >= rm->rm_cols - raidz_parity(rm))
continue;
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
LOG(D_DEBUG, "[%d] ", x0);
tgtidx[2] = x0 + raidz_parity(rm);
corrupt_colums(rm, tgtidx+2, 1);
if (!opts->rto_sanity)
vdev_raidz_reconstruct(rm, tgtidx, 3);
if (cmp_data(opts, rm) != 0) {
err++;
LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0);
}
}
} else if (fn < RAIDZ_REC_PQR) {
/* can reconstruct 2 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
if (x0 >= rm->rm_cols - raidz_parity(rm))
continue;
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
if (x1 >= rm->rm_cols - raidz_parity(rm))
continue;
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
LOG(D_DEBUG, "[%d %d] ", x0, x1);
tgtidx[1] = x0 + raidz_parity(rm);
tgtidx[2] = x1 + raidz_parity(rm);
corrupt_colums(rm, tgtidx+1, 2);
if (!opts->rto_sanity)
vdev_raidz_reconstruct(rm, tgtidx, 3);
if (cmp_data(opts, rm) != 0) {
err++;
LOG(D_DEBUG, "\nREC D[%d %d]... "
"[FAIL]\n", x0, x1);
}
}
}
} else {
/* can reconstruct 3 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
if (x0 >= rm->rm_cols - raidz_parity(rm))
continue;
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
if (x1 >= rm->rm_cols - raidz_parity(rm))
continue;
for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
if (x2 >=
rm->rm_cols - raidz_parity(rm))
continue;
/* Check if should stop */
if (rto_opts.rto_should_stop)
return (err);
LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2);
tgtidx[0] = x0 + raidz_parity(rm);
tgtidx[1] = x1 + raidz_parity(rm);
tgtidx[2] = x2 + raidz_parity(rm);
corrupt_colums(rm, tgtidx, 3);
if (!opts->rto_sanity)
vdev_raidz_reconstruct(rm,
tgtidx, 3);
if (cmp_data(opts, rm) != 0) {
err++;
LOG(D_DEBUG,
"\nREC D[%d %d %d]... "
"[FAIL]\n", x0, x1, x2);
}
}
}
}
}
return (err);
}
static int
run_rec_check(raidz_test_opts_t *opts)
{
char **impl_name;
unsigned fn, err = 0;
zio_t *zio_test;
raidz_map_t *rm_test;
err = init_raidz_golden_map(opts, PARITY_PQR);
if (0 != err)
return (err);
LOG(D_INFO, DBLSEP);
LOG(D_INFO, "Testing data reconstruction...\n");
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
impl_name++) {
LOG(D_INFO, SEP);
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
if (vdev_raidz_impl_set(*impl_name) != 0) {
LOG(D_INFO, "[SKIP]\n");
continue;
} else
LOG(D_INFO, "[SUPPORTED]\n");
/* create suitable raidz_map */
rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR);
/* generate parity */
vdev_raidz_generate_parity(rm_test);
for (fn = 0; fn < RAIDZ_REC_NUM; fn++) {
LOG(D_INFO, "\t\tTesting method [%s] ...",
raidz_rec_name[fn]);
if (run_rec_check_impl(opts, rm_test, fn) != 0) {
LOG(D_INFO, "[FAIL]\n");
err++;
} else
LOG(D_INFO, "[PASS]\n");
}
/* tear down test raidz_map */
fini_raidz_map(&zio_test, &rm_test);
}
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
return (err);
}
static int
run_test(raidz_test_opts_t *opts)
{
int err = 0;
if (opts == NULL)
opts = &rto_opts;
print_opts(opts, B_FALSE);
err |= run_gen_check(opts);
err |= run_rec_check(opts);
return (err);
}
#define SWEEP_RUNNING 0
#define SWEEP_FINISHED 1
#define SWEEP_ERROR 2
#define SWEEP_TIMEOUT 3
static int sweep_state = 0;
static raidz_test_opts_t failed_opts;
static kmutex_t sem_mtx;
static kcondvar_t sem_cv;
static int max_free_slots;
static int free_slots;
static void
sweep_thread(void *arg)
{
int err = 0;
raidz_test_opts_t *opts = (raidz_test_opts_t *)arg;
VERIFY(opts != NULL);
err = run_test(opts);
if (rto_opts.rto_sanity) {
/* 25% chance that a sweep test fails */
if (rand() < (RAND_MAX/4))
err = 1;
}
if (0 != err) {
mutex_enter(&sem_mtx);
memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t));
sweep_state = SWEEP_ERROR;
mutex_exit(&sem_mtx);
}
umem_free(opts, sizeof (raidz_test_opts_t));
/* signal the next thread */
mutex_enter(&sem_mtx);
free_slots++;
cv_signal(&sem_cv);
mutex_exit(&sem_mtx);
thread_exit();
}
static int
run_sweep(void)
{
static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 16 };
static const size_t ashift_v[] = { 9, 12, 14 };
static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12),
1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE };
(void) setvbuf(stdout, NULL, _IONBF, 0);
ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) *
ARRAY_SIZE(dcols_v);
ulong_t tried_comb = 0;
hrtime_t time_diff, start_time = gethrtime();
raidz_test_opts_t *opts;
int a, d, s;
max_free_slots = free_slots = MAX(2, boot_ncpus);
mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&sem_cv, NULL, CV_DEFAULT, NULL);
for (s = 0; s < ARRAY_SIZE(size_v); s++)
for (a = 0; a < ARRAY_SIZE(ashift_v); a++)
for (d = 0; d < ARRAY_SIZE(dcols_v); d++) {
if (size_v[s] < (1 << ashift_v[a])) {
total_comb--;
continue;
}
if (++tried_comb % 20 == 0)
LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb);
/* wait for signal to start new thread */
mutex_enter(&sem_mtx);
while (cv_timedwait_sig(&sem_cv, &sem_mtx,
ddi_get_lbolt() + hz)) {
/* check if should stop the test (timeout) */
time_diff = (gethrtime() - start_time) / NANOSEC;
if (rto_opts.rto_sweep_timeout > 0 &&
time_diff >= rto_opts.rto_sweep_timeout) {
sweep_state = SWEEP_TIMEOUT;
rto_opts.rto_should_stop = B_TRUE;
mutex_exit(&sem_mtx);
goto exit;
}
/* check if should stop the test (error) */
if (sweep_state != SWEEP_RUNNING) {
mutex_exit(&sem_mtx);
goto exit;
}
/* exit loop if a slot is available */
if (free_slots > 0) {
break;
}
}
free_slots--;
mutex_exit(&sem_mtx);
opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL);
opts->rto_ashift = ashift_v[a];
opts->rto_dcols = dcols_v[d];
opts->rto_offset = (1 << ashift_v[a]) * rand();
opts->rto_dsize = size_v[s];
opts->rto_v = 0; /* be quiet */
VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
0, NULL, TS_RUN, defclsyspri), !=, NULL);
}
exit:
LOG(D_ALL, "\nWaiting for test threads to finish...\n");
mutex_enter(&sem_mtx);
VERIFY(free_slots <= max_free_slots);
while (free_slots < max_free_slots) {
(void) cv_wait(&sem_cv, &sem_mtx);
}
mutex_exit(&sem_mtx);
if (sweep_state == SWEEP_ERROR) {
ERR("Sweep test failed! Failed option: \n");
print_opts(&failed_opts, B_TRUE);
} else {
if (sweep_state == SWEEP_TIMEOUT)
LOG(D_ALL, "Test timeout (%lus). Stopping...\n",
(ulong_t)rto_opts.rto_sweep_timeout);
LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n",
(ulong_t)tried_comb);
}
mutex_destroy(&sem_mtx);
return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
}
int
main(int argc, char **argv)
{
size_t i;
struct sigaction action;
int err = 0;
/* init gdb string early */
(void) sprintf(gdb, gdb_tmpl, getpid());
action.sa_handler = sig_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
if (sigaction(SIGSEGV, &action, NULL) < 0) {
ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
(void) setvbuf(stdout, NULL, _IOLBF, 0);
dprintf_setup(&argc, argv);
process_options(argc, argv);
kernel_init(SPA_MODE_READ);
/* setup random data because rand() is not reentrant */
rand_data = (int *)umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
srand((unsigned)time(NULL) * getpid());
for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++)
rand_data[i] = rand();
mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ);
if (rto_opts.rto_benchmark) {
run_raidz_benchmark();
} else if (rto_opts.rto_sweep) {
err = run_sweep();
} else {
err = run_test(NULL);
}
umem_free(rand_data, SPA_MAXBLOCKSIZE);
kernel_fini();
return (err);
}
|