File: kcf_prov_tabs.c

package info (click to toggle)
zfs-linux 2.1.11-1%2Bdeb12u1
  • links: PTS, VCS
  • area: contrib
  • in suites: bookworm
  • size: 77,344 kB
  • sloc: ansic: 376,447; sh: 59,625; python: 7,872; asm: 6,476; makefile: 5,812; perl: 770; sed: 41; awk: 5
file content (645 lines) | stat: -rw-r--r-- 18,931 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * This file is part of the core Kernel Cryptographic Framework.
 * It implements the management of tables of Providers. Entries to
 * added and removed when cryptographic providers register with
 * and unregister from the framework, respectively. The KCF scheduler
 * and ioctl pseudo driver call this function to obtain the list
 * of available providers.
 *
 * The provider table is indexed by crypto_provider_id_t. Each
 * element of the table contains a pointer to a provider descriptor,
 * or NULL if the entry is free.
 *
 * This file also implements helper functions to allocate and free
 * provider descriptors.
 */

#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#include <sys/crypto/sched_impl.h>
#include <sys/crypto/spi.h>

#define	KCF_MAX_PROVIDERS	512	/* max number of providers */

/*
 * Prov_tab is an array of providers which is updated when
 * a crypto provider registers with kcf. The provider calls the
 * SPI routine, crypto_register_provider(), which in turn calls
 * kcf_prov_tab_add_provider().
 *
 * A provider unregisters by calling crypto_unregister_provider()
 * which triggers the removal of the prov_tab entry.
 * It also calls kcf_remove_mech_provider().
 *
 * prov_tab entries are not updated from kcf.conf or by cryptoadm(1M).
 */
static kcf_provider_desc_t **prov_tab = NULL;
static kmutex_t prov_tab_mutex; /* ensure exclusive access to the table */
static uint_t prov_tab_num = 0; /* number of providers in table */
static uint_t prov_tab_max = KCF_MAX_PROVIDERS;

void
kcf_prov_tab_destroy(void)
{
	mutex_destroy(&prov_tab_mutex);

	if (prov_tab)
		kmem_free(prov_tab, prov_tab_max *
		    sizeof (kcf_provider_desc_t *));
}

/*
 * Initialize a mutex and the KCF providers table, prov_tab.
 * The providers table is dynamically allocated with prov_tab_max entries.
 * Called from kcf module _init().
 */
void
kcf_prov_tab_init(void)
{
	mutex_init(&prov_tab_mutex, NULL, MUTEX_DEFAULT, NULL);

	prov_tab = kmem_zalloc(prov_tab_max * sizeof (kcf_provider_desc_t *),
	    KM_SLEEP);
}

/*
 * Add a provider to the provider table. If no free entry can be found
 * for the new provider, returns CRYPTO_HOST_MEMORY. Otherwise, add
 * the provider to the table, initialize the pd_prov_id field
 * of the specified provider descriptor to the index in that table,
 * and return CRYPTO_SUCCESS. Note that a REFHOLD is done on the
 * provider when pointed to by a table entry.
 */
int
kcf_prov_tab_add_provider(kcf_provider_desc_t *prov_desc)
{
	uint_t i;

	ASSERT(prov_tab != NULL);

	mutex_enter(&prov_tab_mutex);

	/* find free slot in providers table */
	for (i = 1; i < KCF_MAX_PROVIDERS && prov_tab[i] != NULL; i++)
		;
	if (i == KCF_MAX_PROVIDERS) {
		/* ran out of providers entries */
		mutex_exit(&prov_tab_mutex);
		cmn_err(CE_WARN, "out of providers entries");
		return (CRYPTO_HOST_MEMORY);
	}

	/* initialize entry */
	prov_tab[i] = prov_desc;
	KCF_PROV_REFHOLD(prov_desc);
	KCF_PROV_IREFHOLD(prov_desc);
	prov_tab_num++;

	mutex_exit(&prov_tab_mutex);

	/* update provider descriptor */
	prov_desc->pd_prov_id = i;

	/*
	 * The KCF-private provider handle is defined as the internal
	 * provider id.
	 */
	prov_desc->pd_kcf_prov_handle =
	    (crypto_kcf_provider_handle_t)prov_desc->pd_prov_id;

	return (CRYPTO_SUCCESS);
}

/*
 * Remove the provider specified by its id. A REFRELE is done on the
 * corresponding provider descriptor before this function returns.
 * Returns CRYPTO_UNKNOWN_PROVIDER if the provider id is not valid.
 */
int
kcf_prov_tab_rem_provider(crypto_provider_id_t prov_id)
{
	kcf_provider_desc_t *prov_desc;

	ASSERT(prov_tab != NULL);
	ASSERT(prov_tab_num >= 0);

	/*
	 * Validate provider id, since it can be specified by a 3rd-party
	 * provider.
	 */

	mutex_enter(&prov_tab_mutex);
	if (prov_id >= KCF_MAX_PROVIDERS ||
	    ((prov_desc = prov_tab[prov_id]) == NULL)) {
		mutex_exit(&prov_tab_mutex);
		return (CRYPTO_INVALID_PROVIDER_ID);
	}
	mutex_exit(&prov_tab_mutex);

	/*
	 * The provider id must remain valid until the associated provider
	 * descriptor is freed. For this reason, we simply release our
	 * reference to the descriptor here. When the reference count
	 * reaches zero, kcf_free_provider_desc() will be invoked and
	 * the associated entry in the providers table will be released
	 * at that time.
	 */

	KCF_PROV_IREFRELE(prov_desc);
	KCF_PROV_REFRELE(prov_desc);

	return (CRYPTO_SUCCESS);
}

/*
 * Returns the provider descriptor corresponding to the specified
 * provider id. A REFHOLD is done on the descriptor before it is
 * returned to the caller. It is the responsibility of the caller
 * to do a REFRELE once it is done with the provider descriptor.
 */
kcf_provider_desc_t *
kcf_prov_tab_lookup(crypto_provider_id_t prov_id)
{
	kcf_provider_desc_t *prov_desc;

	mutex_enter(&prov_tab_mutex);

	prov_desc = prov_tab[prov_id];

	if (prov_desc == NULL) {
		mutex_exit(&prov_tab_mutex);
		return (NULL);
	}

	KCF_PROV_REFHOLD(prov_desc);

	mutex_exit(&prov_tab_mutex);

	return (prov_desc);
}

static void
allocate_ops_v1(crypto_ops_t *src, crypto_ops_t *dst, uint_t *mech_list_count)
{
	if (src->co_control_ops != NULL)
		dst->co_control_ops = kmem_alloc(sizeof (crypto_control_ops_t),
		    KM_SLEEP);

	if (src->co_digest_ops != NULL)
		dst->co_digest_ops = kmem_alloc(sizeof (crypto_digest_ops_t),
		    KM_SLEEP);

	if (src->co_cipher_ops != NULL)
		dst->co_cipher_ops = kmem_alloc(sizeof (crypto_cipher_ops_t),
		    KM_SLEEP);

	if (src->co_mac_ops != NULL)
		dst->co_mac_ops = kmem_alloc(sizeof (crypto_mac_ops_t),
		    KM_SLEEP);

	if (src->co_sign_ops != NULL)
		dst->co_sign_ops = kmem_alloc(sizeof (crypto_sign_ops_t),
		    KM_SLEEP);

	if (src->co_verify_ops != NULL)
		dst->co_verify_ops = kmem_alloc(sizeof (crypto_verify_ops_t),
		    KM_SLEEP);

	if (src->co_dual_ops != NULL)
		dst->co_dual_ops = kmem_alloc(sizeof (crypto_dual_ops_t),
		    KM_SLEEP);

	if (src->co_dual_cipher_mac_ops != NULL)
		dst->co_dual_cipher_mac_ops = kmem_alloc(
		    sizeof (crypto_dual_cipher_mac_ops_t), KM_SLEEP);

	if (src->co_random_ops != NULL) {
		dst->co_random_ops = kmem_alloc(
		    sizeof (crypto_random_number_ops_t), KM_SLEEP);

		/*
		 * Allocate storage to store the array of supported mechanisms
		 * specified by provider. We allocate extra mechanism storage
		 * if the provider has random_ops since we keep an internal
		 * mechanism, SUN_RANDOM, in this case.
		 */
		(*mech_list_count)++;
	}

	if (src->co_session_ops != NULL)
		dst->co_session_ops = kmem_alloc(sizeof (crypto_session_ops_t),
		    KM_SLEEP);

	if (src->co_object_ops != NULL)
		dst->co_object_ops = kmem_alloc(sizeof (crypto_object_ops_t),
		    KM_SLEEP);

	if (src->co_key_ops != NULL)
		dst->co_key_ops = kmem_alloc(sizeof (crypto_key_ops_t),
		    KM_SLEEP);

	if (src->co_provider_ops != NULL)
		dst->co_provider_ops = kmem_alloc(
		    sizeof (crypto_provider_management_ops_t), KM_SLEEP);

	if (src->co_ctx_ops != NULL)
		dst->co_ctx_ops = kmem_alloc(sizeof (crypto_ctx_ops_t),
		    KM_SLEEP);
}

static void
allocate_ops_v2(crypto_ops_t *src, crypto_ops_t *dst)
{
	if (src->co_mech_ops != NULL)
		dst->co_mech_ops = kmem_alloc(sizeof (crypto_mech_ops_t),
		    KM_SLEEP);
}

static void
allocate_ops_v3(crypto_ops_t *src, crypto_ops_t *dst)
{
	if (src->co_nostore_key_ops != NULL)
		dst->co_nostore_key_ops =
		    kmem_alloc(sizeof (crypto_nostore_key_ops_t), KM_SLEEP);
}

/*
 * Allocate a provider descriptor. mech_list_count specifies the
 * number of mechanisms supported by the providers, and is used
 * to allocate storage for the mechanism table.
 * This function may sleep while allocating memory, which is OK
 * since it is invoked from user context during provider registration.
 */
kcf_provider_desc_t *
kcf_alloc_provider_desc(crypto_provider_info_t *info)
{
	int i, j;
	kcf_provider_desc_t *desc;
	uint_t mech_list_count = info->pi_mech_list_count;
	crypto_ops_t *src_ops = info->pi_ops_vector;

	desc = kmem_zalloc(sizeof (kcf_provider_desc_t), KM_SLEEP);

	/*
	 * pd_description serves two purposes
	 * - Appears as a blank padded PKCS#11 style string, that will be
	 *   returned to applications in CK_SLOT_INFO.slotDescription.
	 *   This means that we should not have a null character in the
	 *   first CRYPTO_PROVIDER_DESCR_MAX_LEN bytes.
	 * - Appears as a null-terminated string that can be used by
	 *   other kcf routines.
	 *
	 * So, we allocate enough room for one extra null terminator
	 * which keeps every one happy.
	 */
	desc->pd_description = kmem_alloc(CRYPTO_PROVIDER_DESCR_MAX_LEN + 1,
	    KM_SLEEP);
	(void) memset(desc->pd_description, ' ',
	    CRYPTO_PROVIDER_DESCR_MAX_LEN);
	desc->pd_description[CRYPTO_PROVIDER_DESCR_MAX_LEN] = '\0';

	/*
	 * Since the framework does not require the ops vector specified
	 * by the providers during registration to be persistent,
	 * KCF needs to allocate storage where copies of the ops
	 * vectors are copied.
	 */
	desc->pd_ops_vector = kmem_zalloc(sizeof (crypto_ops_t), KM_SLEEP);

	if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) {
		allocate_ops_v1(src_ops, desc->pd_ops_vector, &mech_list_count);
		if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2)
			allocate_ops_v2(src_ops, desc->pd_ops_vector);
		if (info->pi_interface_version == CRYPTO_SPI_VERSION_3)
			allocate_ops_v3(src_ops, desc->pd_ops_vector);
	}

	desc->pd_mech_list_count = mech_list_count;
	desc->pd_mechanisms = kmem_zalloc(sizeof (crypto_mech_info_t) *
	    mech_list_count, KM_SLEEP);
	for (i = 0; i < KCF_OPS_CLASSSIZE; i++)
		for (j = 0; j < KCF_MAXMECHTAB; j++)
			desc->pd_mech_indx[i][j] = KCF_INVALID_INDX;

	desc->pd_prov_id = KCF_PROVID_INVALID;
	desc->pd_state = KCF_PROV_ALLOCATED;

	mutex_init(&desc->pd_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&desc->pd_resume_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&desc->pd_remove_cv, NULL, CV_DEFAULT, NULL);

	return (desc);
}

/*
 * Called by KCF_PROV_REFRELE when a provider's reference count drops
 * to zero. We free the descriptor when the last reference is released.
 * However, for software providers, we do not free it when there is an
 * unregister thread waiting. We signal that thread in this case and
 * that thread is responsible for freeing the descriptor.
 */
void
kcf_provider_zero_refcnt(kcf_provider_desc_t *desc)
{
	mutex_enter(&desc->pd_lock);
	switch (desc->pd_prov_type) {
	case CRYPTO_SW_PROVIDER:
		if (desc->pd_state == KCF_PROV_REMOVED ||
		    desc->pd_state == KCF_PROV_DISABLED) {
			desc->pd_state = KCF_PROV_FREED;
			cv_broadcast(&desc->pd_remove_cv);
			mutex_exit(&desc->pd_lock);
			break;
		}
		fallthrough;

	case CRYPTO_HW_PROVIDER:
	case CRYPTO_LOGICAL_PROVIDER:
		mutex_exit(&desc->pd_lock);
		kcf_free_provider_desc(desc);
	}
}

/*
 * Free a provider descriptor.
 */
void
kcf_free_provider_desc(kcf_provider_desc_t *desc)
{
	if (desc == NULL)
		return;

	mutex_enter(&prov_tab_mutex);
	if (desc->pd_prov_id != KCF_PROVID_INVALID) {
		/* release the associated providers table entry */
		ASSERT(prov_tab[desc->pd_prov_id] != NULL);
		prov_tab[desc->pd_prov_id] = NULL;
		prov_tab_num--;
	}
	mutex_exit(&prov_tab_mutex);

	/* free the kernel memory associated with the provider descriptor */

	if (desc->pd_description != NULL)
		kmem_free(desc->pd_description,
		    CRYPTO_PROVIDER_DESCR_MAX_LEN + 1);

	if (desc->pd_ops_vector != NULL) {

		if (desc->pd_ops_vector->co_control_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_control_ops,
			    sizeof (crypto_control_ops_t));

		if (desc->pd_ops_vector->co_digest_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_digest_ops,
			    sizeof (crypto_digest_ops_t));

		if (desc->pd_ops_vector->co_cipher_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_cipher_ops,
			    sizeof (crypto_cipher_ops_t));

		if (desc->pd_ops_vector->co_mac_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_mac_ops,
			    sizeof (crypto_mac_ops_t));

		if (desc->pd_ops_vector->co_sign_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_sign_ops,
			    sizeof (crypto_sign_ops_t));

		if (desc->pd_ops_vector->co_verify_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_verify_ops,
			    sizeof (crypto_verify_ops_t));

		if (desc->pd_ops_vector->co_dual_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_dual_ops,
			    sizeof (crypto_dual_ops_t));

		if (desc->pd_ops_vector->co_dual_cipher_mac_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_dual_cipher_mac_ops,
			    sizeof (crypto_dual_cipher_mac_ops_t));

		if (desc->pd_ops_vector->co_random_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_random_ops,
			    sizeof (crypto_random_number_ops_t));

		if (desc->pd_ops_vector->co_session_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_session_ops,
			    sizeof (crypto_session_ops_t));

		if (desc->pd_ops_vector->co_object_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_object_ops,
			    sizeof (crypto_object_ops_t));

		if (desc->pd_ops_vector->co_key_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_key_ops,
			    sizeof (crypto_key_ops_t));

		if (desc->pd_ops_vector->co_provider_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_provider_ops,
			    sizeof (crypto_provider_management_ops_t));

		if (desc->pd_ops_vector->co_ctx_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_ctx_ops,
			    sizeof (crypto_ctx_ops_t));

		if (desc->pd_ops_vector->co_mech_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_mech_ops,
			    sizeof (crypto_mech_ops_t));

		if (desc->pd_ops_vector->co_nostore_key_ops != NULL)
			kmem_free(desc->pd_ops_vector->co_nostore_key_ops,
			    sizeof (crypto_nostore_key_ops_t));

		kmem_free(desc->pd_ops_vector, sizeof (crypto_ops_t));
	}

	if (desc->pd_mechanisms != NULL)
		/* free the memory associated with the mechanism info's */
		kmem_free(desc->pd_mechanisms, sizeof (crypto_mech_info_t) *
		    desc->pd_mech_list_count);

	if (desc->pd_sched_info.ks_taskq != NULL)
		taskq_destroy(desc->pd_sched_info.ks_taskq);

	mutex_destroy(&desc->pd_lock);
	cv_destroy(&desc->pd_resume_cv);
	cv_destroy(&desc->pd_remove_cv);

	kmem_free(desc, sizeof (kcf_provider_desc_t));
}

/*
 * Returns an array of hardware and logical provider descriptors,
 * a.k.a the PKCS#11 slot list. A REFHOLD is done on each descriptor
 * before the array is returned. The entire table can be freed by
 * calling kcf_free_provider_tab().
 */
int
kcf_get_slot_list(uint_t *count, kcf_provider_desc_t ***array,
    boolean_t unverified)
{
	kcf_provider_desc_t *prov_desc;
	kcf_provider_desc_t **p = NULL;
	char *last;
	uint_t cnt = 0;
	uint_t i, j;
	int rval = CRYPTO_SUCCESS;
	size_t n, final_size;

	/* count the providers */
	mutex_enter(&prov_tab_mutex);
	for (i = 0; i < KCF_MAX_PROVIDERS; i++) {
		if ((prov_desc = prov_tab[i]) != NULL &&
		    ((prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER &&
		    (prov_desc->pd_flags & CRYPTO_HIDE_PROVIDER) == 0) ||
		    prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)) {
			if (KCF_IS_PROV_USABLE(prov_desc) ||
			    (unverified && KCF_IS_PROV_UNVERIFIED(prov_desc))) {
				cnt++;
			}
		}
	}
	mutex_exit(&prov_tab_mutex);

	if (cnt == 0)
		goto out;

	n = cnt * sizeof (kcf_provider_desc_t *);
again:
	p = kmem_zalloc(n, KM_SLEEP);

	/* pointer to last entry in the array */
	last = (char *)&p[cnt-1];

	mutex_enter(&prov_tab_mutex);
	/* fill the slot list */
	for (i = 0, j = 0; i < KCF_MAX_PROVIDERS; i++) {
		if ((prov_desc = prov_tab[i]) != NULL &&
		    ((prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER &&
		    (prov_desc->pd_flags & CRYPTO_HIDE_PROVIDER) == 0) ||
		    prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)) {
			if (KCF_IS_PROV_USABLE(prov_desc) ||
			    (unverified && KCF_IS_PROV_UNVERIFIED(prov_desc))) {
				if ((char *)&p[j] > last) {
					mutex_exit(&prov_tab_mutex);
					kcf_free_provider_tab(cnt, p);
					n = n << 1;
					cnt = cnt << 1;
					goto again;
				}
				p[j++] = prov_desc;
				KCF_PROV_REFHOLD(prov_desc);
			}
		}
	}
	mutex_exit(&prov_tab_mutex);

	final_size = j * sizeof (kcf_provider_desc_t *);
	cnt = j;
	ASSERT(final_size <= n);

	/* check if buffer we allocated is too large */
	if (final_size < n) {
		char *final_buffer = NULL;

		if (final_size > 0) {
			final_buffer = kmem_alloc(final_size, KM_SLEEP);
			bcopy(p, final_buffer, final_size);
		}
		kmem_free(p, n);
		p = (kcf_provider_desc_t **)final_buffer;
	}
out:
	*count = cnt;
	*array = p;
	return (rval);
}

/*
 * Free an array of hardware provider descriptors.  A REFRELE
 * is done on each descriptor before the table is freed.
 */
void
kcf_free_provider_tab(uint_t count, kcf_provider_desc_t **array)
{
	kcf_provider_desc_t *prov_desc;
	int i;

	for (i = 0; i < count; i++) {
		if ((prov_desc = array[i]) != NULL) {
			KCF_PROV_REFRELE(prov_desc);
		}
	}
	kmem_free(array, count * sizeof (kcf_provider_desc_t *));
}

/*
 * Returns in the location pointed to by pd a pointer to the descriptor
 * for the software provider for the specified mechanism.
 * The provider descriptor is returned held and it is the caller's
 * responsibility to release it when done. The mechanism entry
 * is returned if the optional argument mep is non NULL.
 *
 * Returns one of the CRYPTO_ * error codes on failure, and
 * CRYPTO_SUCCESS on success.
 */
int
kcf_get_sw_prov(crypto_mech_type_t mech_type, kcf_provider_desc_t **pd,
    kcf_mech_entry_t **mep, boolean_t log_warn)
{
	kcf_mech_entry_t *me;

	/* get the mechanism entry for this mechanism */
	if (kcf_get_mech_entry(mech_type, &me) != KCF_SUCCESS)
		return (CRYPTO_MECHANISM_INVALID);

	/*
	 * Get the software provider for this mechanism.
	 * Lock the mech_entry until we grab the 'pd'.
	 */
	mutex_enter(&me->me_mutex);

	if (me->me_sw_prov == NULL ||
	    (*pd = me->me_sw_prov->pm_prov_desc) == NULL) {
		/* no SW provider for this mechanism */
		if (log_warn)
			cmn_err(CE_WARN, "no SW provider for \"%s\"\n",
			    me->me_name);
		mutex_exit(&me->me_mutex);
		return (CRYPTO_MECH_NOT_SUPPORTED);
	}

	KCF_PROV_REFHOLD(*pd);
	mutex_exit(&me->me_mutex);

	if (mep != NULL)
		*mep = me;

	return (CRYPTO_SUCCESS);
}