1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* mod_hash: flexible hash table implementation.
*
* This is a reasonably fast, reasonably flexible hash table implementation
* which features pluggable hash algorithms to support storing arbitrary keys
* and values. It is designed to handle small (< 100,000 items) amounts of
* data. The hash uses chaining to resolve collisions, and does not feature a
* mechanism to grow the hash. Care must be taken to pick nchains to be large
* enough for the application at hand, or lots of time will be wasted searching
* hash chains.
*
* The client of the hash is required to supply a number of items to support
* the various hash functions:
*
* - Destructor functions for the key and value being hashed.
* A destructor is responsible for freeing an object when the hash
* table is no longer storing it. Since keys and values can be of
* arbitrary type, separate destructors for keys & values are used.
* These may be mod_hash_null_keydtor and mod_hash_null_valdtor if no
* destructor is needed for either a key or value.
*
* - A hashing algorithm which returns a uint_t representing a hash index
* The number returned need _not_ be between 0 and nchains. The mod_hash
* code will take care of doing that. The second argument (after the
* key) to the hashing function is a void * that represents
* hash_alg_data-- this is provided so that the hashing algorithm can
* maintain some state across calls, or keep algorithm-specific
* constants associated with the hash table.
*
* A pointer-hashing and a string-hashing algorithm are supplied in
* this file.
*
* - A key comparator (a la qsort).
* This is used when searching the hash chain. The key comparator
* determines if two keys match. It should follow the return value
* semantics of strcmp.
*
* string and pointer comparators are supplied in this file.
*
* mod_hash_create_strhash() and mod_hash_create_ptrhash() provide good
* examples of how to create a customized hash table.
*
* Basic hash operations:
*
* mod_hash_create_strhash(name, nchains, dtor),
* create a hash using strings as keys.
* NOTE: This create a hash which automatically cleans up the string
* values it is given for keys.
*
* mod_hash_create_ptrhash(name, nchains, dtor, key_elem_size):
* create a hash using pointers as keys.
*
* mod_hash_create_extended(name, nchains, kdtor, vdtor,
* hash_alg, hash_alg_data,
* keycmp, sleep)
* create a customized hash table.
*
* mod_hash_destroy_hash(hash):
* destroy the given hash table, calling the key and value destructors
* on each key-value pair stored in the hash.
*
* mod_hash_insert(hash, key, val):
* place a key, value pair into the given hash.
* duplicate keys are rejected.
*
* mod_hash_insert_reserve(hash, key, val, handle):
* place a key, value pair into the given hash, using handle to indicate
* the reserved storage for the pair. (no memory allocation is needed
* during a mod_hash_insert_reserve.) duplicate keys are rejected.
*
* mod_hash_reserve(hash, *handle):
* reserve storage for a key-value pair using the memory allocation
* policy of 'hash', returning the storage handle in 'handle'.
*
* mod_hash_reserve_nosleep(hash, *handle): reserve storage for a key-value
* pair ignoring the memory allocation policy of 'hash' and always without
* sleep, returning the storage handle in 'handle'.
*
* mod_hash_remove(hash, key, *val):
* remove a key-value pair with key 'key' from 'hash', destroying the
* stored key, and returning the value in val.
*
* mod_hash_replace(hash, key, val)
* atomically remove an existing key-value pair from a hash, and replace
* the key and value with the ones supplied. The removed key and value
* (if any) are destroyed.
*
* mod_hash_destroy(hash, key):
* remove a key-value pair with key 'key' from 'hash', destroying both
* stored key and stored value.
*
* mod_hash_find(hash, key, val):
* find a value in the hash table corresponding to the given key.
*
* mod_hash_find_cb(hash, key, val, found_callback)
* find a value in the hash table corresponding to the given key.
* If a value is found, call specified callback passing key and val to it.
* The callback is called with the hash lock held.
* It is intended to be used in situations where the act of locating the
* data must also modify it - such as in reference counting schemes.
*
* mod_hash_walk(hash, callback(key, elem, arg), arg)
* walks all the elements in the hashtable and invokes the callback
* function with the key/value pair for each element. the hashtable
* is locked for readers so the callback function should not attempt
* to do any updates to the hashable. the callback function should
* return MH_WALK_CONTINUE to continue walking the hashtable or
* MH_WALK_TERMINATE to abort the walk of the hashtable.
*
* mod_hash_clear(hash):
* clears the given hash table of entries, calling the key and value
* destructors for every element in the hash.
*/
#include <sys/zfs_context.h>
#include <sys/bitmap.h>
#include <sys/modhash_impl.h>
#include <sys/sysmacros.h>
/*
* MH_KEY_DESTROY()
* Invoke the key destructor.
*/
#define MH_KEY_DESTROY(hash, key) ((hash->mh_kdtor)(key))
/*
* MH_VAL_DESTROY()
* Invoke the value destructor.
*/
#define MH_VAL_DESTROY(hash, val) ((hash->mh_vdtor)(val))
/*
* MH_KEYCMP()
* Call the key comparator for the given hash keys.
*/
#define MH_KEYCMP(hash, key1, key2) ((hash->mh_keycmp)(key1, key2))
/*
* Cache for struct mod_hash_entry
*/
kmem_cache_t *mh_e_cache = NULL;
mod_hash_t *mh_head = NULL;
kmutex_t mh_head_lock;
/*
* mod_hash_null_keydtor()
* mod_hash_null_valdtor()
* no-op key and value destructors.
*/
/*ARGSUSED*/
void
mod_hash_null_keydtor(mod_hash_key_t key)
{
}
/*ARGSUSED*/
void
mod_hash_null_valdtor(mod_hash_val_t val)
{
}
/*
* mod_hash_bystr()
* mod_hash_strkey_cmp()
* mod_hash_strkey_dtor()
* mod_hash_strval_dtor()
* Hash and key comparison routines for hashes with string keys.
*
* mod_hash_create_strhash()
* Create a hash using strings as keys
*
* The string hashing algorithm is from the "Dragon Book" --
* "Compilers: Principles, Tools & Techniques", by Aho, Sethi, Ullman
*/
/*ARGSUSED*/
uint_t
mod_hash_bystr(void *hash_data, mod_hash_key_t key)
{
uint_t hash = 0;
uint_t g;
char *p, *k = (char *)key;
ASSERT(k);
for (p = k; *p != '\0'; p++) {
hash = (hash << 4) + *p;
if ((g = (hash & 0xf0000000)) != 0) {
hash ^= (g >> 24);
hash ^= g;
}
}
return (hash);
}
int
mod_hash_strkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
{
return (strcmp((char *)key1, (char *)key2));
}
void
mod_hash_strkey_dtor(mod_hash_key_t key)
{
char *c = (char *)key;
kmem_free(c, strlen(c) + 1);
}
void
mod_hash_strval_dtor(mod_hash_val_t val)
{
char *c = (char *)val;
kmem_free(c, strlen(c) + 1);
}
mod_hash_t *
mod_hash_create_strhash_nodtr(char *name, size_t nchains,
void (*val_dtor)(mod_hash_val_t))
{
return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
}
mod_hash_t *
mod_hash_create_strhash(char *name, size_t nchains,
void (*val_dtor)(mod_hash_val_t))
{
return mod_hash_create_extended(name, nchains, mod_hash_strkey_dtor,
val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
}
void
mod_hash_destroy_strhash(mod_hash_t *strhash)
{
ASSERT(strhash);
mod_hash_destroy_hash(strhash);
}
/*
* mod_hash_byptr()
* mod_hash_ptrkey_cmp()
* Hash and key comparison routines for hashes with pointer keys.
*
* mod_hash_create_ptrhash()
* mod_hash_destroy_ptrhash()
* Create a hash that uses pointers as keys. This hash algorithm
* picks an appropriate set of middle bits in the address to hash on
* based on the size of the hash table and a hint about the size of
* the items pointed at.
*/
uint_t
mod_hash_byptr(void *hash_data, mod_hash_key_t key)
{
uintptr_t k = (uintptr_t)key;
k >>= (int)(uintptr_t)hash_data;
return ((uint_t)k);
}
int
mod_hash_ptrkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
{
uintptr_t k1 = (uintptr_t)key1;
uintptr_t k2 = (uintptr_t)key2;
if (k1 > k2)
return (-1);
else if (k1 < k2)
return (1);
else
return (0);
}
mod_hash_t *
mod_hash_create_ptrhash(char *name, size_t nchains,
void (*val_dtor)(mod_hash_val_t), size_t key_elem_size)
{
size_t rshift;
/*
* We want to hash on the bits in the middle of the address word
* Bits far to the right in the word have little significance, and
* are likely to all look the same (for example, an array of
* 256-byte structures will have the bottom 8 bits of address
* words the same). So we want to right-shift each address to
* ignore the bottom bits.
*
* The high bits, which are also unused, will get taken out when
* mod_hash takes hashkey % nchains.
*/
rshift = highbit64(key_elem_size);
return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
val_dtor, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp,
KM_SLEEP);
}
void
mod_hash_destroy_ptrhash(mod_hash_t *hash)
{
ASSERT(hash);
mod_hash_destroy_hash(hash);
}
/*
* mod_hash_byid()
* mod_hash_idkey_cmp()
* Hash and key comparison routines for hashes with 32-bit unsigned keys.
*
* mod_hash_create_idhash()
* mod_hash_destroy_idhash()
* mod_hash_iddata_gen()
* Create a hash that uses numeric keys.
*
* The hash algorithm is documented in "Introduction to Algorithms"
* (Cormen, Leiserson, Rivest); when the hash table is created, it
* attempts to find the next largest prime above the number of hash
* slots. The hash index is then this number times the key modulo
* the hash size, or (key * prime) % nchains.
*/
uint_t
mod_hash_byid(void *hash_data, mod_hash_key_t key)
{
uint_t kval = (uint_t)(uintptr_t)hash_data;
return ((uint_t)(uintptr_t)key * (uint_t)kval);
}
int
mod_hash_idkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
{
return ((uint_t)(uintptr_t)key1 - (uint_t)(uintptr_t)key2);
}
/*
* Generate the next largest prime number greater than nchains; this value
* is intended to be later passed in to mod_hash_create_extended() as the
* hash_data.
*/
uint_t
mod_hash_iddata_gen(size_t nchains)
{
uint_t kval, i, prime;
/*
* Pick the first (odd) prime greater than nchains. Make sure kval is
* odd (so start with nchains +1 or +2 as appropriate).
*/
kval = (nchains % 2 == 0) ? nchains + 1 : nchains + 2;
for (;;) {
prime = 1;
for (i = 3; i * i <= kval; i += 2) {
if (kval % i == 0)
prime = 0;
}
if (prime == 1)
break;
kval += 2;
}
return (kval);
}
mod_hash_t *
mod_hash_create_idhash(char *name, size_t nchains,
void (*val_dtor)(mod_hash_val_t))
{
uint_t kval = mod_hash_iddata_gen(nchains);
return (mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
val_dtor, mod_hash_byid, (void *)(uintptr_t)kval,
mod_hash_idkey_cmp, KM_SLEEP));
}
void
mod_hash_destroy_idhash(mod_hash_t *hash)
{
ASSERT(hash);
mod_hash_destroy_hash(hash);
}
void
mod_hash_fini(void)
{
mutex_destroy(&mh_head_lock);
if (mh_e_cache) {
kmem_cache_destroy(mh_e_cache);
mh_e_cache = NULL;
}
}
/*
* mod_hash_init()
* sets up globals, etc for mod_hash_*
*/
void
mod_hash_init(void)
{
ASSERT(mh_e_cache == NULL);
mh_e_cache = kmem_cache_create("mod_hash_entries",
sizeof (struct mod_hash_entry), 0, NULL, NULL, NULL, NULL,
NULL, 0);
mutex_init(&mh_head_lock, NULL, MUTEX_DEFAULT, NULL);
}
/*
* mod_hash_create_extended()
* The full-blown hash creation function.
*
* notes:
* nchains - how many hash slots to create. More hash slots will
* result in shorter hash chains, but will consume
* slightly more memory up front.
* sleep - should be KM_SLEEP or KM_NOSLEEP, to indicate whether
* to sleep for memory, or fail in low-memory conditions.
*
* Fails only if KM_NOSLEEP was specified, and no memory was available.
*/
mod_hash_t *
mod_hash_create_extended(
char *hname, /* descriptive name for hash */
size_t nchains, /* number of hash slots */
void (*kdtor)(mod_hash_key_t), /* key destructor */
void (*vdtor)(mod_hash_val_t), /* value destructor */
uint_t (*hash_alg)(void *, mod_hash_key_t), /* hash algorithm */
void *hash_alg_data, /* pass-thru arg for hash_alg */
int (*keycmp)(mod_hash_key_t, mod_hash_key_t), /* key comparator */
int sleep) /* whether to sleep for mem */
{
mod_hash_t *mod_hash;
size_t size;
ASSERT(hname && keycmp && hash_alg && vdtor && kdtor);
if ((mod_hash = kmem_zalloc(MH_SIZE(nchains), sleep)) == NULL)
return (NULL);
size = strlen(hname) + 1;
mod_hash->mh_name = kmem_alloc(size, sleep);
if (mod_hash->mh_name == NULL) {
kmem_free(mod_hash, MH_SIZE(nchains));
return (NULL);
}
(void) strlcpy(mod_hash->mh_name, hname, size);
rw_init(&mod_hash->mh_contents, NULL, RW_DEFAULT, NULL);
mod_hash->mh_sleep = sleep;
mod_hash->mh_nchains = nchains;
mod_hash->mh_kdtor = kdtor;
mod_hash->mh_vdtor = vdtor;
mod_hash->mh_hashalg = hash_alg;
mod_hash->mh_hashalg_data = hash_alg_data;
mod_hash->mh_keycmp = keycmp;
/*
* Link the hash up on the list of hashes
*/
mutex_enter(&mh_head_lock);
mod_hash->mh_next = mh_head;
mh_head = mod_hash;
mutex_exit(&mh_head_lock);
return (mod_hash);
}
/*
* mod_hash_destroy_hash()
* destroy a hash table, destroying all of its stored keys and values
* as well.
*/
void
mod_hash_destroy_hash(mod_hash_t *hash)
{
mod_hash_t *mhp, *mhpp;
mutex_enter(&mh_head_lock);
/*
* Remove the hash from the hash list
*/
if (hash == mh_head) { /* removing 1st list elem */
mh_head = mh_head->mh_next;
} else {
/*
* mhpp can start out NULL since we know the 1st elem isn't the
* droid we're looking for.
*/
mhpp = NULL;
for (mhp = mh_head; mhp != NULL; mhp = mhp->mh_next) {
if (mhp == hash) {
mhpp->mh_next = mhp->mh_next;
break;
}
mhpp = mhp;
}
}
mutex_exit(&mh_head_lock);
/*
* Clean out keys and values.
*/
mod_hash_clear(hash);
rw_destroy(&hash->mh_contents);
kmem_free(hash->mh_name, strlen(hash->mh_name) + 1);
kmem_free(hash, MH_SIZE(hash->mh_nchains));
}
/*
* i_mod_hash()
* Call the hashing algorithm for this hash table, with the given key.
*/
uint_t
i_mod_hash(mod_hash_t *hash, mod_hash_key_t key)
{
uint_t h;
/*
* Prevent div by 0 problems;
* Also a nice shortcut when using a hash as a list
*/
if (hash->mh_nchains == 1)
return (0);
h = (hash->mh_hashalg)(hash->mh_hashalg_data, key);
return (h % (hash->mh_nchains - 1));
}
/*
* i_mod_hash_insert_nosync()
* mod_hash_insert()
* mod_hash_insert_reserve()
* insert 'val' into the hash table, using 'key' as its key. If 'key' is
* already a key in the hash, an error will be returned, and the key-val
* pair will not be inserted. i_mod_hash_insert_nosync() supports a simple
* handle abstraction, allowing hash entry allocation to be separated from
* the hash insertion. this abstraction allows simple use of the mod_hash
* structure in situations where mod_hash_insert() with a KM_SLEEP
* allocation policy would otherwise be unsafe.
*/
int
i_mod_hash_insert_nosync(mod_hash_t *hash, mod_hash_key_t key,
mod_hash_val_t val, mod_hash_hndl_t handle)
{
uint_t hashidx;
struct mod_hash_entry *entry;
ASSERT(hash);
/*
* If we've not been given reserved storage, allocate storage directly,
* using the hash's allocation policy.
*/
if (handle == (mod_hash_hndl_t)0) {
entry = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
if (entry == NULL) {
hash->mh_stat.mhs_nomem++;
return (MH_ERR_NOMEM);
}
} else {
entry = (struct mod_hash_entry *)handle;
}
hashidx = i_mod_hash(hash, key);
entry->mhe_key = key;
entry->mhe_val = val;
entry->mhe_next = hash->mh_entries[hashidx];
hash->mh_entries[hashidx] = entry;
hash->mh_stat.mhs_nelems++;
return (0);
}
int
mod_hash_insert(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
{
int res;
mod_hash_val_t v;
rw_enter(&hash->mh_contents, RW_WRITER);
/*
* Disallow duplicate keys in the hash
*/
if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
rw_exit(&hash->mh_contents);
hash->mh_stat.mhs_coll++;
return (MH_ERR_DUPLICATE);
}
res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
rw_exit(&hash->mh_contents);
return (res);
}
int
mod_hash_insert_reserve(mod_hash_t *hash, mod_hash_key_t key,
mod_hash_val_t val, mod_hash_hndl_t handle)
{
int res;
mod_hash_val_t v;
rw_enter(&hash->mh_contents, RW_WRITER);
/*
* Disallow duplicate keys in the hash
*/
if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
rw_exit(&hash->mh_contents);
hash->mh_stat.mhs_coll++;
return (MH_ERR_DUPLICATE);
}
res = i_mod_hash_insert_nosync(hash, key, val, handle);
rw_exit(&hash->mh_contents);
return (res);
}
/*
* mod_hash_reserve()
* mod_hash_reserve_nosleep()
* mod_hash_cancel()
* Make or cancel a mod_hash_entry_t reservation. Reservations are used in
* mod_hash_insert_reserve() above.
*/
int
mod_hash_reserve(mod_hash_t *hash, mod_hash_hndl_t *handlep)
{
*handlep = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
if (*handlep == NULL) {
hash->mh_stat.mhs_nomem++;
return (MH_ERR_NOMEM);
}
return (0);
}
int
mod_hash_reserve_nosleep(mod_hash_t *hash, mod_hash_hndl_t *handlep)
{
*handlep = kmem_cache_alloc(mh_e_cache, KM_NOSLEEP);
if (*handlep == NULL) {
hash->mh_stat.mhs_nomem++;
return (MH_ERR_NOMEM);
}
return (0);
}
/*ARGSUSED*/
void
mod_hash_cancel(mod_hash_t *hash, mod_hash_hndl_t *handlep)
{
kmem_cache_free(mh_e_cache, *handlep);
*handlep = (mod_hash_hndl_t)0;
}
/*
* i_mod_hash_remove_nosync()
* mod_hash_remove()
* Remove an element from the hash table.
*/
int
i_mod_hash_remove_nosync(mod_hash_t *hash, mod_hash_key_t key,
mod_hash_val_t *val)
{
int hashidx;
struct mod_hash_entry *e, *ep;
hashidx = i_mod_hash(hash, key);
ep = NULL; /* e's parent */
for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
if (MH_KEYCMP(hash, e->mhe_key, key) == 0)
break;
ep = e;
}
if (e == NULL) { /* not found */
return (MH_ERR_NOTFOUND);
}
if (ep == NULL) /* special case 1st element in bucket */
hash->mh_entries[hashidx] = e->mhe_next;
else
ep->mhe_next = e->mhe_next;
/*
* Clean up resources used by the node's key.
*/
MH_KEY_DESTROY(hash, e->mhe_key);
*val = e->mhe_val;
kmem_cache_free(mh_e_cache, e);
hash->mh_stat.mhs_nelems--;
return (0);
}
int
mod_hash_remove(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
{
int res;
rw_enter(&hash->mh_contents, RW_WRITER);
res = i_mod_hash_remove_nosync(hash, key, val);
rw_exit(&hash->mh_contents);
return (res);
}
/*
* mod_hash_replace()
* atomically remove an existing key-value pair from a hash, and replace
* the key and value with the ones supplied. The removed key and value
* (if any) are destroyed.
*/
int
mod_hash_replace(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
{
int res;
mod_hash_val_t v;
rw_enter(&hash->mh_contents, RW_WRITER);
if (i_mod_hash_remove_nosync(hash, key, &v) == 0) {
/*
* mod_hash_remove() takes care of freeing up the key resources.
*/
MH_VAL_DESTROY(hash, v);
}
res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
rw_exit(&hash->mh_contents);
return (res);
}
/*
* mod_hash_destroy()
* Remove an element from the hash table matching 'key', and destroy it.
*/
int
mod_hash_destroy(mod_hash_t *hash, mod_hash_key_t key)
{
mod_hash_val_t val;
int rv;
rw_enter(&hash->mh_contents, RW_WRITER);
if ((rv = i_mod_hash_remove_nosync(hash, key, &val)) == 0) {
/*
* mod_hash_remove() takes care of freeing up the key resources.
*/
MH_VAL_DESTROY(hash, val);
}
rw_exit(&hash->mh_contents);
return (rv);
}
/*
* i_mod_hash_find_nosync()
* mod_hash_find()
* Find a value in the hash table corresponding to the given key.
*/
int
i_mod_hash_find_nosync(mod_hash_t *hash, mod_hash_key_t key,
mod_hash_val_t *val)
{
uint_t hashidx;
struct mod_hash_entry *e;
hashidx = i_mod_hash(hash, key);
for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
if (MH_KEYCMP(hash, e->mhe_key, key) == 0) {
*val = e->mhe_val;
hash->mh_stat.mhs_hit++;
return (0);
}
}
hash->mh_stat.mhs_miss++;
return (MH_ERR_NOTFOUND);
}
int
mod_hash_find(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
{
int res;
rw_enter(&hash->mh_contents, RW_READER);
res = i_mod_hash_find_nosync(hash, key, val);
rw_exit(&hash->mh_contents);
return (res);
}
int
mod_hash_find_cb(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
void (*find_cb)(mod_hash_key_t, mod_hash_val_t))
{
int res;
rw_enter(&hash->mh_contents, RW_READER);
res = i_mod_hash_find_nosync(hash, key, val);
if (res == 0) {
find_cb(key, *val);
}
rw_exit(&hash->mh_contents);
return (res);
}
int
mod_hash_find_cb_rval(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
int (*find_cb)(mod_hash_key_t, mod_hash_val_t), int *cb_rval)
{
int res;
rw_enter(&hash->mh_contents, RW_READER);
res = i_mod_hash_find_nosync(hash, key, val);
if (res == 0) {
*cb_rval = find_cb(key, *val);
}
rw_exit(&hash->mh_contents);
return (res);
}
void
i_mod_hash_walk_nosync(mod_hash_t *hash,
uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
{
struct mod_hash_entry *e;
uint_t hashidx;
int res = MH_WALK_CONTINUE;
for (hashidx = 0;
(hashidx < (hash->mh_nchains - 1)) && (res == MH_WALK_CONTINUE);
hashidx++) {
e = hash->mh_entries[hashidx];
while ((e != NULL) && (res == MH_WALK_CONTINUE)) {
res = callback(e->mhe_key, e->mhe_val, arg);
e = e->mhe_next;
}
}
}
/*
* mod_hash_walk()
* Walks all the elements in the hashtable and invokes the callback
* function with the key/value pair for each element. The hashtable
* is locked for readers so the callback function should not attempt
* to do any updates to the hashable. The callback function should
* return MH_WALK_CONTINUE to continue walking the hashtable or
* MH_WALK_TERMINATE to abort the walk of the hashtable.
*/
void
mod_hash_walk(mod_hash_t *hash,
uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
{
rw_enter(&hash->mh_contents, RW_READER);
i_mod_hash_walk_nosync(hash, callback, arg);
rw_exit(&hash->mh_contents);
}
/*
* i_mod_hash_clear_nosync()
* mod_hash_clear()
* Clears the given hash table by calling the destructor of every hash
* element and freeing up all mod_hash_entry's.
*/
void
i_mod_hash_clear_nosync(mod_hash_t *hash)
{
int i;
struct mod_hash_entry *e, *old_e;
for (i = 0; i < hash->mh_nchains; i++) {
e = hash->mh_entries[i];
while (e != NULL) {
MH_KEY_DESTROY(hash, e->mhe_key);
MH_VAL_DESTROY(hash, e->mhe_val);
old_e = e;
e = e->mhe_next;
kmem_cache_free(mh_e_cache, old_e);
}
hash->mh_entries[i] = NULL;
}
hash->mh_stat.mhs_nelems = 0;
}
void
mod_hash_clear(mod_hash_t *hash)
{
ASSERT(hash);
rw_enter(&hash->mh_contents, RW_WRITER);
i_mod_hash_clear_nosync(hash);
rw_exit(&hash->mh_contents);
}
|