1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
* Copyright (c) 2016 Gvozden Nešković. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
#include <sys/fm/fs/zfs.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
#include <sys/vdev_draid.h>
#ifdef ZFS_DEBUG
#include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */
#endif
/*
* Virtual device vector for RAID-Z.
*
* This vdev supports single, double, and triple parity. For single parity,
* we use a simple XOR of all the data columns. For double or triple parity,
* we use a special case of Reed-Solomon coding. This extends the
* technique described in "The mathematics of RAID-6" by H. Peter Anvin by
* drawing on the system described in "A Tutorial on Reed-Solomon Coding for
* Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
* former is also based. The latter is designed to provide higher performance
* for writes.
*
* Note that the Plank paper claimed to support arbitrary N+M, but was then
* amended six years later identifying a critical flaw that invalidates its
* claims. Nevertheless, the technique can be adapted to work for up to
* triple parity. For additional parity, the amendment "Note: Correction to
* the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
* is viable, but the additional complexity means that write performance will
* suffer.
*
* All of the methods above operate on a Galois field, defined over the
* integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
* can be expressed with a single byte. Briefly, the operations on the
* field are defined as follows:
*
* o addition (+) is represented by a bitwise XOR
* o subtraction (-) is therefore identical to addition: A + B = A - B
* o multiplication of A by 2 is defined by the following bitwise expression:
*
* (A * 2)_7 = A_6
* (A * 2)_6 = A_5
* (A * 2)_5 = A_4
* (A * 2)_4 = A_3 + A_7
* (A * 2)_3 = A_2 + A_7
* (A * 2)_2 = A_1 + A_7
* (A * 2)_1 = A_0
* (A * 2)_0 = A_7
*
* In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
* As an aside, this multiplication is derived from the error correcting
* primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
*
* Observe that any number in the field (except for 0) can be expressed as a
* power of 2 -- a generator for the field. We store a table of the powers of
* 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
* be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
* than field addition). The inverse of a field element A (A^-1) is therefore
* A ^ (255 - 1) = A^254.
*
* The up-to-three parity columns, P, Q, R over several data columns,
* D_0, ... D_n-1, can be expressed by field operations:
*
* P = D_0 + D_1 + ... + D_n-2 + D_n-1
* Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
* = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
* R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
* = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
*
* We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
* XOR operation, and 2 and 4 can be computed quickly and generate linearly-
* independent coefficients. (There are no additional coefficients that have
* this property which is why the uncorrected Plank method breaks down.)
*
* See the reconstruction code below for how P, Q and R can used individually
* or in concert to recover missing data columns.
*/
#define VDEV_RAIDZ_P 0
#define VDEV_RAIDZ_Q 1
#define VDEV_RAIDZ_R 2
#define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
#define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
/*
* We provide a mechanism to perform the field multiplication operation on a
* 64-bit value all at once rather than a byte at a time. This works by
* creating a mask from the top bit in each byte and using that to
* conditionally apply the XOR of 0x1d.
*/
#define VDEV_RAIDZ_64MUL_2(x, mask) \
{ \
(mask) = (x) & 0x8080808080808080ULL; \
(mask) = ((mask) << 1) - ((mask) >> 7); \
(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
((mask) & 0x1d1d1d1d1d1d1d1dULL); \
}
#define VDEV_RAIDZ_64MUL_4(x, mask) \
{ \
VDEV_RAIDZ_64MUL_2((x), mask); \
VDEV_RAIDZ_64MUL_2((x), mask); \
}
static void
vdev_raidz_row_free(raidz_row_t *rr)
{
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_size != 0)
abd_free(rc->rc_abd);
if (rc->rc_orig_data != NULL)
abd_free(rc->rc_orig_data);
}
if (rr->rr_abd_empty != NULL)
abd_free(rr->rr_abd_empty);
kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
}
void
vdev_raidz_map_free(raidz_map_t *rm)
{
for (int i = 0; i < rm->rm_nrows; i++)
vdev_raidz_row_free(rm->rm_row[i]);
kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
}
static void
vdev_raidz_map_free_vsd(zio_t *zio)
{
raidz_map_t *rm = zio->io_vsd;
vdev_raidz_map_free(rm);
}
const zio_vsd_ops_t vdev_raidz_vsd_ops = {
.vsd_free = vdev_raidz_map_free_vsd,
};
static void
vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift)
{
int c;
int nwrapped = 0;
uint64_t off = 0;
raidz_row_t *rr = rm->rm_row[0];
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
ASSERT3U(rm->rm_nrows, ==, 1);
/*
* Pad any parity columns with additional space to account for skip
* sectors.
*/
if (rm->rm_skipstart < rr->rr_firstdatacol) {
ASSERT0(rm->rm_skipstart);
nwrapped = rm->rm_nskip;
} else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) {
nwrapped =
(rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols;
}
/*
* Optional single skip sectors (rc_size == 0) will be handled in
* vdev_raidz_io_start_write().
*/
int skipped = rr->rr_scols - rr->rr_cols;
/* Allocate buffers for the parity columns */
for (c = 0; c < rr->rr_firstdatacol; c++) {
raidz_col_t *rc = &rr->rr_col[c];
/*
* Parity columns will pad out a linear ABD to account for
* the skip sector. A linear ABD is used here because
* parity calculations use the ABD buffer directly to calculate
* parity. This avoids doing a memcpy back to the ABD after the
* parity has been calculated. By issuing the parity column
* with the skip sector we can reduce contention on the child
* VDEV queue locks (vq_lock).
*/
if (c < nwrapped) {
rc->rc_abd = abd_alloc_linear(
rc->rc_size + (1ULL << ashift), B_FALSE);
abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift);
skipped++;
} else {
rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
}
}
for (off = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct,
zio->io_abd, off, rc->rc_size);
/*
* Generate I/O for skip sectors to improve aggregation
* continuity. We will use gang ABD's to reduce contention
* on the child VDEV queue locks (vq_lock) by issuing
* a single I/O that contains the data and skip sector.
*
* It is important to make sure that rc_size is not updated
* even though we are adding a skip sector to the ABD. When
* calculating the parity in vdev_raidz_generate_parity_row()
* the rc_size is used to iterate through the ABD's. We can
* not have zero'd out skip sectors used for calculating
* parity for raidz, because those same sectors are not used
* during reconstruction.
*/
if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) {
rc->rc_abd = abd_alloc_gang();
abd_gang_add(rc->rc_abd, abd, B_TRUE);
abd_gang_add(rc->rc_abd,
abd_get_zeros(1ULL << ashift), B_TRUE);
skipped++;
} else {
rc->rc_abd = abd;
}
off += rc->rc_size;
}
ASSERT3U(off, ==, zio->io_size);
ASSERT3S(skipped, ==, rm->rm_nskip);
}
static void
vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm)
{
int c;
raidz_row_t *rr = rm->rm_row[0];
ASSERT3U(rm->rm_nrows, ==, 1);
/* Allocate buffers for the parity columns */
for (c = 0; c < rr->rr_firstdatacol; c++)
rr->rr_col[c].rc_abd =
abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
for (uint64_t off = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
zio->io_abd, off, rc->rc_size);
off += rc->rc_size;
}
}
/*
* Divides the IO evenly across all child vdevs; usually, dcols is
* the number of children in the target vdev.
*
* Avoid inlining the function to keep vdev_raidz_io_start(), which
* is this functions only caller, as small as possible on the stack.
*/
noinline raidz_map_t *
vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
uint64_t nparity)
{
raidz_row_t *rr;
/* The starting RAIDZ (parent) vdev sector of the block. */
uint64_t b = zio->io_offset >> ashift;
/* The zio's size in units of the vdev's minimum sector size. */
uint64_t s = zio->io_size >> ashift;
/* The first column for this stripe. */
uint64_t f = b % dcols;
/* The starting byte offset on each child vdev. */
uint64_t o = (b / dcols) << ashift;
uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
raidz_map_t *rm =
kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
rm->rm_nrows = 1;
/*
* "Quotient": The number of data sectors for this stripe on all but
* the "big column" child vdevs that also contain "remainder" data.
*/
q = s / (dcols - nparity);
/*
* "Remainder": The number of partial stripe data sectors in this I/O.
* This will add a sector to some, but not all, child vdevs.
*/
r = s - q * (dcols - nparity);
/* The number of "big columns" - those which contain remainder data. */
bc = (r == 0 ? 0 : r + nparity);
/*
* The total number of data and parity sectors associated with
* this I/O.
*/
tot = s + nparity * (q + (r == 0 ? 0 : 1));
/*
* acols: The columns that will be accessed.
* scols: The columns that will be accessed or skipped.
*/
if (q == 0) {
/* Our I/O request doesn't span all child vdevs. */
acols = bc;
scols = MIN(dcols, roundup(bc, nparity + 1));
} else {
acols = dcols;
scols = dcols;
}
ASSERT3U(acols, <=, scols);
rr = kmem_alloc(offsetof(raidz_row_t, rr_col[scols]), KM_SLEEP);
rm->rm_row[0] = rr;
rr->rr_cols = acols;
rr->rr_scols = scols;
rr->rr_bigcols = bc;
rr->rr_missingdata = 0;
rr->rr_missingparity = 0;
rr->rr_firstdatacol = nparity;
rr->rr_abd_empty = NULL;
rr->rr_nempty = 0;
#ifdef ZFS_DEBUG
rr->rr_offset = zio->io_offset;
rr->rr_size = zio->io_size;
#endif
asize = 0;
for (c = 0; c < scols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
col = f + c;
coff = o;
if (col >= dcols) {
col -= dcols;
coff += 1ULL << ashift;
}
rc->rc_devidx = col;
rc->rc_offset = coff;
rc->rc_abd = NULL;
rc->rc_orig_data = NULL;
rc->rc_error = 0;
rc->rc_tried = 0;
rc->rc_skipped = 0;
rc->rc_force_repair = 0;
rc->rc_allow_repair = 1;
rc->rc_need_orig_restore = B_FALSE;
if (c >= acols)
rc->rc_size = 0;
else if (c < bc)
rc->rc_size = (q + 1) << ashift;
else
rc->rc_size = q << ashift;
asize += rc->rc_size;
}
ASSERT3U(asize, ==, tot << ashift);
rm->rm_nskip = roundup(tot, nparity + 1) - tot;
rm->rm_skipstart = bc;
/*
* If all data stored spans all columns, there's a danger that parity
* will always be on the same device and, since parity isn't read
* during normal operation, that device's I/O bandwidth won't be
* used effectively. We therefore switch the parity every 1MB.
*
* ... at least that was, ostensibly, the theory. As a practical
* matter unless we juggle the parity between all devices evenly, we
* won't see any benefit. Further, occasional writes that aren't a
* multiple of the LCM of the number of children and the minimum
* stripe width are sufficient to avoid pessimal behavior.
* Unfortunately, this decision created an implicit on-disk format
* requirement that we need to support for all eternity, but only
* for single-parity RAID-Z.
*
* If we intend to skip a sector in the zeroth column for padding
* we must make sure to note this swap. We will never intend to
* skip the first column since at least one data and one parity
* column must appear in each row.
*/
ASSERT(rr->rr_cols >= 2);
ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
devidx = rr->rr_col[0].rc_devidx;
o = rr->rr_col[0].rc_offset;
rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
rr->rr_col[1].rc_devidx = devidx;
rr->rr_col[1].rc_offset = o;
if (rm->rm_skipstart == 0)
rm->rm_skipstart = 1;
}
if (zio->io_type == ZIO_TYPE_WRITE) {
vdev_raidz_map_alloc_write(zio, rm, ashift);
} else {
vdev_raidz_map_alloc_read(zio, rm);
}
/* init RAIDZ parity ops */
rm->rm_ops = vdev_raidz_math_get_ops();
return (rm);
}
struct pqr_struct {
uint64_t *p;
uint64_t *q;
uint64_t *r;
};
static int
vdev_raidz_p_func(void *buf, size_t size, void *private)
{
struct pqr_struct *pqr = private;
const uint64_t *src = buf;
int i, cnt = size / sizeof (src[0]);
ASSERT(pqr->p && !pqr->q && !pqr->r);
for (i = 0; i < cnt; i++, src++, pqr->p++)
*pqr->p ^= *src;
return (0);
}
static int
vdev_raidz_pq_func(void *buf, size_t size, void *private)
{
struct pqr_struct *pqr = private;
const uint64_t *src = buf;
uint64_t mask;
int i, cnt = size / sizeof (src[0]);
ASSERT(pqr->p && pqr->q && !pqr->r);
for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
*pqr->p ^= *src;
VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
*pqr->q ^= *src;
}
return (0);
}
static int
vdev_raidz_pqr_func(void *buf, size_t size, void *private)
{
struct pqr_struct *pqr = private;
const uint64_t *src = buf;
uint64_t mask;
int i, cnt = size / sizeof (src[0]);
ASSERT(pqr->p && pqr->q && pqr->r);
for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
*pqr->p ^= *src;
VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
*pqr->q ^= *src;
VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
*pqr->r ^= *src;
}
return (0);
}
static void
vdev_raidz_generate_parity_p(raidz_row_t *rr)
{
uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
abd_t *src = rr->rr_col[c].rc_abd;
if (c == rr->rr_firstdatacol) {
abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
} else {
struct pqr_struct pqr = { p, NULL, NULL };
(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
vdev_raidz_p_func, &pqr);
}
}
}
static void
vdev_raidz_generate_parity_pq(raidz_row_t *rr)
{
uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
rr->rr_col[VDEV_RAIDZ_Q].rc_size);
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
abd_t *src = rr->rr_col[c].rc_abd;
uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
if (c == rr->rr_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
(void) memcpy(q, p, rr->rr_col[c].rc_size);
for (uint64_t i = ccnt; i < pcnt; i++) {
p[i] = 0;
q[i] = 0;
}
} else {
struct pqr_struct pqr = { p, q, NULL };
ASSERT(ccnt <= pcnt);
(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
vdev_raidz_pq_func, &pqr);
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
uint64_t mask;
for (uint64_t i = ccnt; i < pcnt; i++) {
VDEV_RAIDZ_64MUL_2(q[i], mask);
}
}
}
}
static void
vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
{
uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
rr->rr_col[VDEV_RAIDZ_Q].rc_size);
ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
rr->rr_col[VDEV_RAIDZ_R].rc_size);
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
abd_t *src = rr->rr_col[c].rc_abd;
uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
if (c == rr->rr_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
(void) memcpy(q, p, rr->rr_col[c].rc_size);
(void) memcpy(r, p, rr->rr_col[c].rc_size);
for (uint64_t i = ccnt; i < pcnt; i++) {
p[i] = 0;
q[i] = 0;
r[i] = 0;
}
} else {
struct pqr_struct pqr = { p, q, r };
ASSERT(ccnt <= pcnt);
(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
vdev_raidz_pqr_func, &pqr);
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
uint64_t mask;
for (uint64_t i = ccnt; i < pcnt; i++) {
VDEV_RAIDZ_64MUL_2(q[i], mask);
VDEV_RAIDZ_64MUL_4(r[i], mask);
}
}
}
}
/*
* Generate RAID parity in the first virtual columns according to the number of
* parity columns available.
*/
void
vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
{
ASSERT3U(rr->rr_cols, !=, 0);
/* Generate using the new math implementation */
if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
return;
switch (rr->rr_firstdatacol) {
case 1:
vdev_raidz_generate_parity_p(rr);
break;
case 2:
vdev_raidz_generate_parity_pq(rr);
break;
case 3:
vdev_raidz_generate_parity_pqr(rr);
break;
default:
cmn_err(CE_PANIC, "invalid RAID-Z configuration");
}
}
void
vdev_raidz_generate_parity(raidz_map_t *rm)
{
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
vdev_raidz_generate_parity_row(rm, rr);
}
}
static int
vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
{
(void) private;
uint64_t *dst = dbuf;
uint64_t *src = sbuf;
int cnt = size / sizeof (src[0]);
for (int i = 0; i < cnt; i++) {
dst[i] ^= src[i];
}
return (0);
}
static int
vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
void *private)
{
(void) private;
uint64_t *dst = dbuf;
uint64_t *src = sbuf;
uint64_t mask;
int cnt = size / sizeof (dst[0]);
for (int i = 0; i < cnt; i++, dst++, src++) {
VDEV_RAIDZ_64MUL_2(*dst, mask);
*dst ^= *src;
}
return (0);
}
static int
vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
{
(void) private;
uint64_t *dst = buf;
uint64_t mask;
int cnt = size / sizeof (dst[0]);
for (int i = 0; i < cnt; i++, dst++) {
/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
VDEV_RAIDZ_64MUL_2(*dst, mask);
}
return (0);
}
struct reconst_q_struct {
uint64_t *q;
int exp;
};
static int
vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
{
struct reconst_q_struct *rq = private;
uint64_t *dst = buf;
int cnt = size / sizeof (dst[0]);
for (int i = 0; i < cnt; i++, dst++, rq->q++) {
int j;
uint8_t *b;
*dst ^= *rq->q;
for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
*b = vdev_raidz_exp2(*b, rq->exp);
}
}
return (0);
}
struct reconst_pq_struct {
uint8_t *p;
uint8_t *q;
uint8_t *pxy;
uint8_t *qxy;
int aexp;
int bexp;
};
static int
vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
{
struct reconst_pq_struct *rpq = private;
uint8_t *xd = xbuf;
uint8_t *yd = ybuf;
for (int i = 0; i < size;
i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
*yd = *rpq->p ^ *rpq->pxy ^ *xd;
}
return (0);
}
static int
vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
{
struct reconst_pq_struct *rpq = private;
uint8_t *xd = xbuf;
for (int i = 0; i < size;
i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
/* same operation as vdev_raidz_reconst_pq_func() on xd */
*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
}
return (0);
}
static void
vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
{
int x = tgts[0];
abd_t *dst, *src;
ASSERT3U(ntgts, ==, 1);
ASSERT3U(x, >=, rr->rr_firstdatacol);
ASSERT3U(x, <, rr->rr_cols);
ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
dst = rr->rr_col[x].rc_abd;
abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
uint64_t size = MIN(rr->rr_col[x].rc_size,
rr->rr_col[c].rc_size);
src = rr->rr_col[c].rc_abd;
if (c == x)
continue;
(void) abd_iterate_func2(dst, src, 0, 0, size,
vdev_raidz_reconst_p_func, NULL);
}
}
static void
vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
{
int x = tgts[0];
int c, exp;
abd_t *dst, *src;
ASSERT(ntgts == 1);
ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
rr->rr_col[c].rc_size);
src = rr->rr_col[c].rc_abd;
dst = rr->rr_col[x].rc_abd;
if (c == rr->rr_firstdatacol) {
abd_copy(dst, src, size);
if (rr->rr_col[x].rc_size > size) {
abd_zero_off(dst, size,
rr->rr_col[x].rc_size - size);
}
} else {
ASSERT3U(size, <=, rr->rr_col[x].rc_size);
(void) abd_iterate_func2(dst, src, 0, 0, size,
vdev_raidz_reconst_q_pre_func, NULL);
(void) abd_iterate_func(dst,
size, rr->rr_col[x].rc_size - size,
vdev_raidz_reconst_q_pre_tail_func, NULL);
}
}
src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
dst = rr->rr_col[x].rc_abd;
exp = 255 - (rr->rr_cols - 1 - x);
struct reconst_q_struct rq = { abd_to_buf(src), exp };
(void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
vdev_raidz_reconst_q_post_func, &rq);
}
static void
vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
{
uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
abd_t *pdata, *qdata;
uint64_t xsize, ysize;
int x = tgts[0];
int y = tgts[1];
abd_t *xd, *yd;
ASSERT(ntgts == 2);
ASSERT(x < y);
ASSERT(x >= rr->rr_firstdatacol);
ASSERT(y < rr->rr_cols);
ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
/*
* Move the parity data aside -- we're going to compute parity as
* though columns x and y were full of zeros -- Pxy and Qxy. We want to
* reuse the parity generation mechanism without trashing the actual
* parity so we make those columns appear to be full of zeros by
* setting their lengths to zero.
*/
pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
xsize = rr->rr_col[x].rc_size;
ysize = rr->rr_col[y].rc_size;
rr->rr_col[VDEV_RAIDZ_P].rc_abd =
abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
rr->rr_col[x].rc_size = 0;
rr->rr_col[y].rc_size = 0;
vdev_raidz_generate_parity_pq(rr);
rr->rr_col[x].rc_size = xsize;
rr->rr_col[y].rc_size = ysize;
p = abd_to_buf(pdata);
q = abd_to_buf(qdata);
pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
xd = rr->rr_col[x].rc_abd;
yd = rr->rr_col[y].rc_abd;
/*
* We now have:
* Pxy = P + D_x + D_y
* Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
*
* We can then solve for D_x:
* D_x = A * (P + Pxy) + B * (Q + Qxy)
* where
* A = 2^(x - y) * (2^(x - y) + 1)^-1
* B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
*
* With D_x in hand, we can easily solve for D_y:
* D_y = P + Pxy + D_x
*/
a = vdev_raidz_pow2[255 + x - y];
b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
tmp = 255 - vdev_raidz_log2[a ^ 1];
aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
ASSERT3U(xsize, >=, ysize);
struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
vdev_raidz_reconst_pq_func, &rpq);
(void) abd_iterate_func(xd, ysize, xsize - ysize,
vdev_raidz_reconst_pq_tail_func, &rpq);
abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
/*
* Restore the saved parity data.
*/
rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
}
/*
* In the general case of reconstruction, we must solve the system of linear
* equations defined by the coefficients used to generate parity as well as
* the contents of the data and parity disks. This can be expressed with
* vectors for the original data (D) and the actual data (d) and parity (p)
* and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
*
* __ __ __ __
* | | __ __ | p_0 |
* | V | | D_0 | | p_m-1 |
* | | x | : | = | d_0 |
* | I | | D_n-1 | | : |
* | | ~~ ~~ | d_n-1 |
* ~~ ~~ ~~ ~~
*
* I is simply a square identity matrix of size n, and V is a vandermonde
* matrix defined by the coefficients we chose for the various parity columns
* (1, 2, 4). Note that these values were chosen both for simplicity, speedy
* computation as well as linear separability.
*
* __ __ __ __
* | 1 .. 1 1 1 | | p_0 |
* | 2^n-1 .. 4 2 1 | __ __ | : |
* | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
* | 1 .. 0 0 0 | | D_1 | | d_0 |
* | 0 .. 0 0 0 | x | D_2 | = | d_1 |
* | : : : : | | : | | d_2 |
* | 0 .. 1 0 0 | | D_n-1 | | : |
* | 0 .. 0 1 0 | ~~ ~~ | : |
* | 0 .. 0 0 1 | | d_n-1 |
* ~~ ~~ ~~ ~~
*
* Note that I, V, d, and p are known. To compute D, we must invert the
* matrix and use the known data and parity values to reconstruct the unknown
* data values. We begin by removing the rows in V|I and d|p that correspond
* to failed or missing columns; we then make V|I square (n x n) and d|p
* sized n by removing rows corresponding to unused parity from the bottom up
* to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
* using Gauss-Jordan elimination. In the example below we use m=3 parity
* columns, n=8 data columns, with errors in d_1, d_2, and p_1:
* __ __
* | 1 1 1 1 1 1 1 1 |
* | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
* | 19 205 116 29 64 16 4 1 | / /
* | 1 0 0 0 0 0 0 0 | / /
* | 0 1 0 0 0 0 0 0 | <--' /
* (V|I) = | 0 0 1 0 0 0 0 0 | <---'
* | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 1 1 1 1 1 1 1 |
* | 128 64 32 16 8 4 2 1 |
* | 19 205 116 29 64 16 4 1 |
* | 1 0 0 0 0 0 0 0 |
* | 0 1 0 0 0 0 0 0 |
* (V|I)' = | 0 0 1 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
*
* Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
* have carefully chosen the seed values 1, 2, and 4 to ensure that this
* matrix is not singular.
* __ __
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 0 0 1 0 0 0 0 0 |
* | 167 100 5 41 159 169 217 208 |
* | 166 100 4 40 158 168 216 209 |
* (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
*
* We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
* of the missing data.
*
* As is apparent from the example above, the only non-trivial rows in the
* inverse matrix correspond to the data disks that we're trying to
* reconstruct. Indeed, those are the only rows we need as the others would
* only be useful for reconstructing data known or assumed to be valid. For
* that reason, we only build the coefficients in the rows that correspond to
* targeted columns.
*/
static void
vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
uint8_t **rows)
{
int i, j;
int pow;
ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
/*
* Fill in the missing rows of interest.
*/
for (i = 0; i < nmap; i++) {
ASSERT3S(0, <=, map[i]);
ASSERT3S(map[i], <=, 2);
pow = map[i] * n;
if (pow > 255)
pow -= 255;
ASSERT(pow <= 255);
for (j = 0; j < n; j++) {
pow -= map[i];
if (pow < 0)
pow += 255;
rows[i][j] = vdev_raidz_pow2[pow];
}
}
}
static void
vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
uint8_t **rows, uint8_t **invrows, const uint8_t *used)
{
int i, j, ii, jj;
uint8_t log;
/*
* Assert that the first nmissing entries from the array of used
* columns correspond to parity columns and that subsequent entries
* correspond to data columns.
*/
for (i = 0; i < nmissing; i++) {
ASSERT3S(used[i], <, rr->rr_firstdatacol);
}
for (; i < n; i++) {
ASSERT3S(used[i], >=, rr->rr_firstdatacol);
}
/*
* First initialize the storage where we'll compute the inverse rows.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
invrows[i][j] = (i == j) ? 1 : 0;
}
}
/*
* Subtract all trivial rows from the rows of consequence.
*/
for (i = 0; i < nmissing; i++) {
for (j = nmissing; j < n; j++) {
ASSERT3U(used[j], >=, rr->rr_firstdatacol);
jj = used[j] - rr->rr_firstdatacol;
ASSERT3S(jj, <, n);
invrows[i][j] = rows[i][jj];
rows[i][jj] = 0;
}
}
/*
* For each of the rows of interest, we must normalize it and subtract
* a multiple of it from the other rows.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < missing[i]; j++) {
ASSERT0(rows[i][j]);
}
ASSERT3U(rows[i][missing[i]], !=, 0);
/*
* Compute the inverse of the first element and multiply each
* element in the row by that value.
*/
log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
for (j = 0; j < n; j++) {
rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
}
for (ii = 0; ii < nmissing; ii++) {
if (i == ii)
continue;
ASSERT3U(rows[ii][missing[i]], !=, 0);
log = vdev_raidz_log2[rows[ii][missing[i]]];
for (j = 0; j < n; j++) {
rows[ii][j] ^=
vdev_raidz_exp2(rows[i][j], log);
invrows[ii][j] ^=
vdev_raidz_exp2(invrows[i][j], log);
}
}
}
/*
* Verify that the data that is left in the rows are properly part of
* an identity matrix.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
if (j == missing[i]) {
ASSERT3U(rows[i][j], ==, 1);
} else {
ASSERT0(rows[i][j]);
}
}
}
}
static void
vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
int *missing, uint8_t **invrows, const uint8_t *used)
{
int i, j, x, cc, c;
uint8_t *src;
uint64_t ccount;
uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
uint8_t log = 0;
uint8_t val;
int ll;
uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
uint8_t *p, *pp;
size_t psize;
psize = sizeof (invlog[0][0]) * n * nmissing;
p = kmem_alloc(psize, KM_SLEEP);
for (pp = p, i = 0; i < nmissing; i++) {
invlog[i] = pp;
pp += n;
}
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
ASSERT3U(invrows[i][j], !=, 0);
invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
}
}
for (i = 0; i < n; i++) {
c = used[i];
ASSERT3U(c, <, rr->rr_cols);
ccount = rr->rr_col[c].rc_size;
ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
if (ccount == 0)
continue;
src = abd_to_buf(rr->rr_col[c].rc_abd);
for (j = 0; j < nmissing; j++) {
cc = missing[j] + rr->rr_firstdatacol;
ASSERT3U(cc, >=, rr->rr_firstdatacol);
ASSERT3U(cc, <, rr->rr_cols);
ASSERT3U(cc, !=, c);
dcount[j] = rr->rr_col[cc].rc_size;
if (dcount[j] != 0)
dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
}
for (x = 0; x < ccount; x++, src++) {
if (*src != 0)
log = vdev_raidz_log2[*src];
for (cc = 0; cc < nmissing; cc++) {
if (x >= dcount[cc])
continue;
if (*src == 0) {
val = 0;
} else {
if ((ll = log + invlog[cc][i]) >= 255)
ll -= 255;
val = vdev_raidz_pow2[ll];
}
if (i == 0)
dst[cc][x] = val;
else
dst[cc][x] ^= val;
}
}
}
kmem_free(p, psize);
}
static void
vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
{
int i, c, t, tt;
unsigned int n;
unsigned int nmissing_rows;
int missing_rows[VDEV_RAIDZ_MAXPARITY];
int parity_map[VDEV_RAIDZ_MAXPARITY];
uint8_t *p, *pp;
size_t psize;
uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
uint8_t *used;
abd_t **bufs = NULL;
/*
* Matrix reconstruction can't use scatter ABDs yet, so we allocate
* temporary linear ABDs if any non-linear ABDs are found.
*/
for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
KM_PUSHPAGE);
for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *col = &rr->rr_col[c];
bufs[c] = col->rc_abd;
if (bufs[c] != NULL) {
col->rc_abd = abd_alloc_linear(
col->rc_size, B_TRUE);
abd_copy(col->rc_abd, bufs[c],
col->rc_size);
}
}
break;
}
}
n = rr->rr_cols - rr->rr_firstdatacol;
/*
* Figure out which data columns are missing.
*/
nmissing_rows = 0;
for (t = 0; t < ntgts; t++) {
if (tgts[t] >= rr->rr_firstdatacol) {
missing_rows[nmissing_rows++] =
tgts[t] - rr->rr_firstdatacol;
}
}
/*
* Figure out which parity columns to use to help generate the missing
* data columns.
*/
for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
ASSERT(tt < ntgts);
ASSERT(c < rr->rr_firstdatacol);
/*
* Skip any targeted parity columns.
*/
if (c == tgts[tt]) {
tt++;
continue;
}
parity_map[i] = c;
i++;
}
psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
nmissing_rows * n + sizeof (used[0]) * n;
p = kmem_alloc(psize, KM_SLEEP);
for (pp = p, i = 0; i < nmissing_rows; i++) {
rows[i] = pp;
pp += n;
invrows[i] = pp;
pp += n;
}
used = pp;
for (i = 0; i < nmissing_rows; i++) {
used[i] = parity_map[i];
}
for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
if (tt < nmissing_rows &&
c == missing_rows[tt] + rr->rr_firstdatacol) {
tt++;
continue;
}
ASSERT3S(i, <, n);
used[i] = c;
i++;
}
/*
* Initialize the interesting rows of the matrix.
*/
vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
/*
* Invert the matrix.
*/
vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
invrows, used);
/*
* Reconstruct the missing data using the generated matrix.
*/
vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
invrows, used);
kmem_free(p, psize);
/*
* copy back from temporary linear abds and free them
*/
if (bufs) {
for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *col = &rr->rr_col[c];
if (bufs[c] != NULL) {
abd_copy(bufs[c], col->rc_abd, col->rc_size);
abd_free(col->rc_abd);
}
col->rc_abd = bufs[c];
}
kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
}
}
static void
vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
const int *t, int nt)
{
int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
int ntgts;
int i, c, ret;
int nbadparity, nbaddata;
int parity_valid[VDEV_RAIDZ_MAXPARITY];
nbadparity = rr->rr_firstdatacol;
nbaddata = rr->rr_cols - nbadparity;
ntgts = 0;
for (i = 0, c = 0; c < rr->rr_cols; c++) {
if (c < rr->rr_firstdatacol)
parity_valid[c] = B_FALSE;
if (i < nt && c == t[i]) {
tgts[ntgts++] = c;
i++;
} else if (rr->rr_col[c].rc_error != 0) {
tgts[ntgts++] = c;
} else if (c >= rr->rr_firstdatacol) {
nbaddata--;
} else {
parity_valid[c] = B_TRUE;
nbadparity--;
}
}
ASSERT(ntgts >= nt);
ASSERT(nbaddata >= 0);
ASSERT(nbaddata + nbadparity == ntgts);
dt = &tgts[nbadparity];
/* Reconstruct using the new math implementation */
ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
if (ret != RAIDZ_ORIGINAL_IMPL)
return;
/*
* See if we can use any of our optimized reconstruction routines.
*/
switch (nbaddata) {
case 1:
if (parity_valid[VDEV_RAIDZ_P]) {
vdev_raidz_reconstruct_p(rr, dt, 1);
return;
}
ASSERT(rr->rr_firstdatacol > 1);
if (parity_valid[VDEV_RAIDZ_Q]) {
vdev_raidz_reconstruct_q(rr, dt, 1);
return;
}
ASSERT(rr->rr_firstdatacol > 2);
break;
case 2:
ASSERT(rr->rr_firstdatacol > 1);
if (parity_valid[VDEV_RAIDZ_P] &&
parity_valid[VDEV_RAIDZ_Q]) {
vdev_raidz_reconstruct_pq(rr, dt, 2);
return;
}
ASSERT(rr->rr_firstdatacol > 2);
break;
}
vdev_raidz_reconstruct_general(rr, tgts, ntgts);
}
static int
vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *logical_ashift, uint64_t *physical_ashift)
{
vdev_raidz_t *vdrz = vd->vdev_tsd;
uint64_t nparity = vdrz->vd_nparity;
int c;
int lasterror = 0;
int numerrors = 0;
ASSERT(nparity > 0);
if (nparity > VDEV_RAIDZ_MAXPARITY ||
vd->vdev_children < nparity + 1) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (SET_ERROR(EINVAL));
}
vdev_open_children(vd);
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_open_error != 0) {
lasterror = cvd->vdev_open_error;
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
}
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_open_error != 0)
continue;
*physical_ashift = vdev_best_ashift(*logical_ashift,
*physical_ashift, cvd->vdev_physical_ashift);
}
*asize *= vd->vdev_children;
*max_asize *= vd->vdev_children;
if (numerrors > nparity) {
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (lasterror);
}
return (0);
}
static void
vdev_raidz_close(vdev_t *vd)
{
for (int c = 0; c < vd->vdev_children; c++) {
if (vd->vdev_child[c] != NULL)
vdev_close(vd->vdev_child[c]);
}
}
static uint64_t
vdev_raidz_asize(vdev_t *vd, uint64_t psize)
{
vdev_raidz_t *vdrz = vd->vdev_tsd;
uint64_t asize;
uint64_t ashift = vd->vdev_top->vdev_ashift;
uint64_t cols = vdrz->vd_logical_width;
uint64_t nparity = vdrz->vd_nparity;
asize = ((psize - 1) >> ashift) + 1;
asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
asize = roundup(asize, nparity + 1) << ashift;
return (asize);
}
/*
* The allocatable space for a raidz vdev is N * sizeof(smallest child)
* so each child must provide at least 1/Nth of its asize.
*/
static uint64_t
vdev_raidz_min_asize(vdev_t *vd)
{
return ((vd->vdev_min_asize + vd->vdev_children - 1) /
vd->vdev_children);
}
void
vdev_raidz_child_done(zio_t *zio)
{
raidz_col_t *rc = zio->io_private;
ASSERT3P(rc->rc_abd, !=, NULL);
rc->rc_error = zio->io_error;
rc->rc_tried = 1;
rc->rc_skipped = 0;
}
static void
vdev_raidz_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
{
#ifdef ZFS_DEBUG
vdev_t *tvd = vd->vdev_top;
range_seg64_t logical_rs, physical_rs, remain_rs;
logical_rs.rs_start = rr->rr_offset;
logical_rs.rs_end = logical_rs.rs_start +
vdev_raidz_asize(vd, rr->rr_size);
raidz_col_t *rc = &rr->rr_col[col];
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
ASSERT(vdev_xlate_is_empty(&remain_rs));
ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
/*
* It would be nice to assert that rs_end is equal
* to rc_offset + rc_size but there might be an
* optional I/O at the end that is not accounted in
* rc_size.
*/
if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
rc->rc_size + (1 << tvd->vdev_ashift));
} else {
ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
}
#endif
}
static void
vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr, uint64_t ashift)
{
vdev_t *vd = zio->io_vd;
raidz_map_t *rm = zio->io_vsd;
vdev_raidz_generate_parity_row(rm, rr);
for (int c = 0; c < rr->rr_scols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
/* Verify physical to logical translation */
vdev_raidz_io_verify(vd, rr, c);
if (rc->rc_size > 0) {
ASSERT3P(rc->rc_abd, !=, NULL);
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_abd,
abd_get_size(rc->rc_abd), zio->io_type,
zio->io_priority, 0, vdev_raidz_child_done, rc));
} else {
/*
* Generate optional write for skip sector to improve
* aggregation contiguity.
*/
ASSERT3P(rc->rc_abd, ==, NULL);
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, NULL, 1ULL << ashift,
zio->io_type, zio->io_priority,
ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL,
NULL));
}
}
}
static void
vdev_raidz_io_start_read(zio_t *zio, raidz_row_t *rr)
{
vdev_t *vd = zio->io_vd;
/*
* Iterate over the columns in reverse order so that we hit the parity
* last -- any errors along the way will force us to read the parity.
*/
for (int c = rr->rr_cols - 1; c >= 0; c--) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_size == 0)
continue;
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
if (!vdev_readable(cvd)) {
if (c >= rr->rr_firstdatacol)
rr->rr_missingdata++;
else
rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ENXIO);
rc->rc_tried = 1; /* don't even try */
rc->rc_skipped = 1;
continue;
}
if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
if (c >= rr->rr_firstdatacol)
rr->rr_missingdata++;
else
rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ESTALE);
rc->rc_skipped = 1;
continue;
}
if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_abd, rc->rc_size,
zio->io_type, zio->io_priority, 0,
vdev_raidz_child_done, rc));
}
}
}
/*
* Start an IO operation on a RAIDZ VDev
*
* Outline:
* - For write operations:
* 1. Generate the parity data
* 2. Create child zio write operations to each column's vdev, for both
* data and parity.
* 3. If the column skips any sectors for padding, create optional dummy
* write zio children for those areas to improve aggregation continuity.
* - For read operations:
* 1. Create child zio read operations to each data column's vdev to read
* the range of data required for zio.
* 2. If this is a scrub or resilver operation, or if any of the data
* vdevs have had errors, then create zio read operations to the parity
* columns' VDevs as well.
*/
static void
vdev_raidz_io_start(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
vdev_t *tvd = vd->vdev_top;
vdev_raidz_t *vdrz = vd->vdev_tsd;
raidz_map_t *rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift,
vdrz->vd_logical_width, vdrz->vd_nparity);
zio->io_vsd = rm;
zio->io_vsd_ops = &vdev_raidz_vsd_ops;
/*
* Until raidz expansion is implemented all maps for a raidz vdev
* contain a single row.
*/
ASSERT3U(rm->rm_nrows, ==, 1);
raidz_row_t *rr = rm->rm_row[0];
if (zio->io_type == ZIO_TYPE_WRITE) {
vdev_raidz_io_start_write(zio, rr, tvd->vdev_ashift);
} else {
ASSERT(zio->io_type == ZIO_TYPE_READ);
vdev_raidz_io_start_read(zio, rr);
}
zio_execute(zio);
}
/*
* Report a checksum error for a child of a RAID-Z device.
*/
void
vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
{
vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
zio->io_priority != ZIO_PRIORITY_REBUILD) {
zio_bad_cksum_t zbc;
raidz_map_t *rm = zio->io_vsd;
zbc.zbc_has_cksum = 0;
zbc.zbc_injected = rm->rm_ecksuminjected;
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_checksum_errors++;
mutex_exit(&vd->vdev_stat_lock);
(void) zfs_ereport_post_checksum(zio->io_spa, vd,
&zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
rc->rc_abd, bad_data, &zbc);
}
}
/*
* We keep track of whether or not there were any injected errors, so that
* any ereports we generate can note it.
*/
static int
raidz_checksum_verify(zio_t *zio)
{
zio_bad_cksum_t zbc = {0};
raidz_map_t *rm = zio->io_vsd;
int ret = zio_checksum_error(zio, &zbc);
if (ret != 0 && zbc.zbc_injected != 0)
rm->rm_ecksuminjected = 1;
return (ret);
}
/*
* Generate the parity from the data columns. If we tried and were able to
* read the parity without error, verify that the generated parity matches the
* data we read. If it doesn't, we fire off a checksum error. Return the
* number of such failures.
*/
static int
raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
{
abd_t *orig[VDEV_RAIDZ_MAXPARITY];
int c, ret = 0;
raidz_map_t *rm = zio->io_vsd;
raidz_col_t *rc;
blkptr_t *bp = zio->io_bp;
enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
(BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
if (checksum == ZIO_CHECKSUM_NOPARITY)
return (ret);
for (c = 0; c < rr->rr_firstdatacol; c++) {
rc = &rr->rr_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
orig[c] = rc->rc_abd;
ASSERT3U(abd_get_size(rc->rc_abd), ==, rc->rc_size);
rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
}
/*
* Verify any empty sectors are zero filled to ensure the parity
* is calculated correctly even if these non-data sectors are damaged.
*/
if (rr->rr_nempty && rr->rr_abd_empty != NULL)
ret += vdev_draid_map_verify_empty(zio, rr);
/*
* Regenerates parity even for !tried||rc_error!=0 columns. This
* isn't harmful but it does have the side effect of fixing stuff
* we didn't realize was necessary (i.e. even if we return 0).
*/
vdev_raidz_generate_parity_row(rm, rr);
for (c = 0; c < rr->rr_firstdatacol; c++) {
rc = &rr->rr_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
if (abd_cmp(orig[c], rc->rc_abd) != 0) {
vdev_raidz_checksum_error(zio, rc, orig[c]);
rc->rc_error = SET_ERROR(ECKSUM);
ret++;
}
abd_free(orig[c]);
}
return (ret);
}
static int
vdev_raidz_worst_error(raidz_row_t *rr)
{
int error = 0;
for (int c = 0; c < rr->rr_cols; c++)
error = zio_worst_error(error, rr->rr_col[c].rc_error);
return (error);
}
static void
vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
{
int unexpected_errors = 0;
int parity_errors = 0;
int parity_untried = 0;
int data_errors = 0;
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_error) {
if (c < rr->rr_firstdatacol)
parity_errors++;
else
data_errors++;
if (!rc->rc_skipped)
unexpected_errors++;
} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
parity_untried++;
}
if (rc->rc_force_repair)
unexpected_errors++;
}
/*
* If we read more parity disks than were used for
* reconstruction, confirm that the other parity disks produced
* correct data.
*
* Note that we also regenerate parity when resilvering so we
* can write it out to failed devices later.
*/
if (parity_errors + parity_untried <
rr->rr_firstdatacol - data_errors ||
(zio->io_flags & ZIO_FLAG_RESILVER)) {
int n = raidz_parity_verify(zio, rr);
unexpected_errors += n;
}
if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
(unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
/*
* Use the good data we have in hand to repair damaged children.
*/
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
vdev_t *vd = zio->io_vd;
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
if (!rc->rc_allow_repair) {
continue;
} else if (!rc->rc_force_repair &&
(rc->rc_error == 0 || rc->rc_size == 0)) {
continue;
}
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_abd, rc->rc_size,
ZIO_TYPE_WRITE,
zio->io_priority == ZIO_PRIORITY_REBUILD ?
ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
}
}
}
static void
raidz_restore_orig_data(raidz_map_t *rm)
{
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_need_orig_restore) {
abd_copy(rc->rc_abd,
rc->rc_orig_data, rc->rc_size);
rc->rc_need_orig_restore = B_FALSE;
}
}
}
}
/*
* returns EINVAL if reconstruction of the block will not be possible
* returns ECKSUM if this specific reconstruction failed
* returns 0 on successful reconstruction
*/
static int
raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
{
raidz_map_t *rm = zio->io_vsd;
/* Reconstruct each row */
for (int r = 0; r < rm->rm_nrows; r++) {
raidz_row_t *rr = rm->rm_row[r];
int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
int t = 0;
int dead = 0;
int dead_data = 0;
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
ASSERT0(rc->rc_need_orig_restore);
if (rc->rc_error != 0) {
dead++;
if (c >= nparity)
dead_data++;
continue;
}
if (rc->rc_size == 0)
continue;
for (int lt = 0; lt < ntgts; lt++) {
if (rc->rc_devidx == ltgts[lt]) {
if (rc->rc_orig_data == NULL) {
rc->rc_orig_data =
abd_alloc_linear(
rc->rc_size, B_TRUE);
abd_copy(rc->rc_orig_data,
rc->rc_abd, rc->rc_size);
}
rc->rc_need_orig_restore = B_TRUE;
dead++;
if (c >= nparity)
dead_data++;
my_tgts[t++] = c;
break;
}
}
}
if (dead > nparity) {
/* reconstruction not possible */
raidz_restore_orig_data(rm);
return (EINVAL);
}
if (dead_data > 0)
vdev_raidz_reconstruct_row(rm, rr, my_tgts, t);
}
/* Check for success */
if (raidz_checksum_verify(zio) == 0) {
/* Reconstruction succeeded - report errors */
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_need_orig_restore) {
/*
* Note: if this is a parity column,
* we don't really know if it's wrong.
* We need to let
* vdev_raidz_io_done_verified() check
* it, and if we set rc_error, it will
* think that it is a "known" error
* that doesn't need to be checked
* or corrected.
*/
if (rc->rc_error == 0 &&
c >= rr->rr_firstdatacol) {
vdev_raidz_checksum_error(zio,
rc, rc->rc_orig_data);
rc->rc_error =
SET_ERROR(ECKSUM);
}
rc->rc_need_orig_restore = B_FALSE;
}
}
vdev_raidz_io_done_verified(zio, rr);
}
zio_checksum_verified(zio);
return (0);
}
/* Reconstruction failed - restore original data */
raidz_restore_orig_data(rm);
return (ECKSUM);
}
/*
* Iterate over all combinations of N bad vdevs and attempt a reconstruction.
* Note that the algorithm below is non-optimal because it doesn't take into
* account how reconstruction is actually performed. For example, with
* triple-parity RAID-Z the reconstruction procedure is the same if column 4
* is targeted as invalid as if columns 1 and 4 are targeted since in both
* cases we'd only use parity information in column 0.
*
* The order that we find the various possible combinations of failed
* disks is dictated by these rules:
* - Examine each "slot" (the "i" in tgts[i])
* - Try to increment this slot (tgts[i] = tgts[i] + 1)
* - if we can't increment because it runs into the next slot,
* reset our slot to the minimum, and examine the next slot
*
* For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
* 3 columns to reconstruct), we will generate the following sequence:
*
* STATE ACTION
* 0 1 2 special case: skip since these are all parity
* 0 1 3 first slot: reset to 0; middle slot: increment to 2
* 0 2 3 first slot: increment to 1
* 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4
* 0 1 4 first: reset to 0; middle: increment to 2
* 0 2 4 first: increment to 1
* 1 2 4 first: reset to 0; middle: increment to 3
* 0 3 4 first: increment to 1
* 1 3 4 first: increment to 2
* 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5
* 0 1 5 first: reset to 0; middle: increment to 2
* 0 2 5 first: increment to 1
* 1 2 5 first: reset to 0; middle: increment to 3
* 0 3 5 first: increment to 1
* 1 3 5 first: increment to 2
* 2 3 5 first: reset to 0; middle: increment to 4
* 0 4 5 first: increment to 1
* 1 4 5 first: increment to 2
* 2 4 5 first: increment to 3
* 3 4 5 done
*
* This strategy works for dRAID but is less efficient when there are a large
* number of child vdevs and therefore permutations to check. Furthermore,
* since the raidz_map_t rows likely do not overlap reconstruction would be
* possible as long as there are no more than nparity data errors per row.
* These additional permutations are not currently checked but could be as
* a future improvement.
*/
static int
vdev_raidz_combrec(zio_t *zio)
{
int nparity = vdev_get_nparity(zio->io_vd);
raidz_map_t *rm = zio->io_vsd;
/* Check if there's enough data to attempt reconstrution. */
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
int total_errors = 0;
for (int c = 0; c < rr->rr_cols; c++) {
if (rr->rr_col[c].rc_error)
total_errors++;
}
if (total_errors > nparity)
return (vdev_raidz_worst_error(rr));
}
for (int num_failures = 1; num_failures <= nparity; num_failures++) {
int tstore[VDEV_RAIDZ_MAXPARITY + 2];
int *ltgts = &tstore[1]; /* value is logical child ID */
/* Determine number of logical children, n */
int n = zio->io_vd->vdev_children;
ASSERT3U(num_failures, <=, nparity);
ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
/* Handle corner cases in combrec logic */
ltgts[-1] = -1;
for (int i = 0; i < num_failures; i++) {
ltgts[i] = i;
}
ltgts[num_failures] = n;
for (;;) {
int err = raidz_reconstruct(zio, ltgts, num_failures,
nparity);
if (err == EINVAL) {
/*
* Reconstruction not possible with this #
* failures; try more failures.
*/
break;
} else if (err == 0)
return (0);
/* Compute next targets to try */
for (int t = 0; ; t++) {
ASSERT3U(t, <, num_failures);
ltgts[t]++;
if (ltgts[t] == n) {
/* try more failures */
ASSERT3U(t, ==, num_failures - 1);
break;
}
ASSERT3U(ltgts[t], <, n);
ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
/*
* If that spot is available, we're done here.
* Try the next combination.
*/
if (ltgts[t] != ltgts[t + 1])
break;
/*
* Otherwise, reset this tgt to the minimum,
* and move on to the next tgt.
*/
ltgts[t] = ltgts[t - 1] + 1;
ASSERT3U(ltgts[t], ==, t);
}
/* Increase the number of failures and keep trying. */
if (ltgts[num_failures - 1] == n)
break;
}
}
return (ECKSUM);
}
void
vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
{
for (uint64_t row = 0; row < rm->rm_nrows; row++) {
raidz_row_t *rr = rm->rm_row[row];
vdev_raidz_reconstruct_row(rm, rr, t, nt);
}
}
/*
* Complete a write IO operation on a RAIDZ VDev
*
* Outline:
* 1. Check for errors on the child IOs.
* 2. Return, setting an error code if too few child VDevs were written
* to reconstruct the data later. Note that partial writes are
* considered successful if they can be reconstructed at all.
*/
static void
vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
{
int total_errors = 0;
ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_error) {
ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
total_errors++;
}
}
/*
* Treat partial writes as a success. If we couldn't write enough
* columns to reconstruct the data, the I/O failed. Otherwise,
* good enough.
*
* Now that we support write reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
*/
if (total_errors > rr->rr_firstdatacol) {
zio->io_error = zio_worst_error(zio->io_error,
vdev_raidz_worst_error(rr));
}
}
static void
vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
raidz_row_t *rr)
{
int parity_errors = 0;
int parity_untried = 0;
int data_errors = 0;
int total_errors = 0;
ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
/*
* If scrubbing and a replacing/sparing child vdev determined
* that not all of its children have an identical copy of the
* data, then clear the error so the column is treated like
* any other read and force a repair to correct the damage.
*/
if (rc->rc_error == ECKSUM) {
ASSERT(zio->io_flags & ZIO_FLAG_SCRUB);
vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
rc->rc_force_repair = 1;
rc->rc_error = 0;
}
if (rc->rc_error) {
if (c < rr->rr_firstdatacol)
parity_errors++;
else
data_errors++;
total_errors++;
} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
parity_untried++;
}
}
/*
* If there were data errors and the number of errors we saw was
* correctable -- less than or equal to the number of parity disks read
* -- reconstruct based on the missing data.
*/
if (data_errors != 0 &&
total_errors <= rr->rr_firstdatacol - parity_untried) {
/*
* We either attempt to read all the parity columns or
* none of them. If we didn't try to read parity, we
* wouldn't be here in the correctable case. There must
* also have been fewer parity errors than parity
* columns or, again, we wouldn't be in this code path.
*/
ASSERT(parity_untried == 0);
ASSERT(parity_errors < rr->rr_firstdatacol);
/*
* Identify the data columns that reported an error.
*/
int n = 0;
int tgts[VDEV_RAIDZ_MAXPARITY];
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_error != 0) {
ASSERT(n < VDEV_RAIDZ_MAXPARITY);
tgts[n++] = c;
}
}
ASSERT(rr->rr_firstdatacol >= n);
vdev_raidz_reconstruct_row(rm, rr, tgts, n);
}
}
/*
* Return the number of reads issued.
*/
static int
vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
{
vdev_t *vd = zio->io_vd;
int nread = 0;
rr->rr_missingdata = 0;
rr->rr_missingparity = 0;
/*
* If this rows contains empty sectors which are not required
* for a normal read then allocate an ABD for them now so they
* may be read, verified, and any needed repairs performed.
*/
if (rr->rr_nempty && rr->rr_abd_empty == NULL)
vdev_draid_map_alloc_empty(zio, rr);
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_tried || rc->rc_size == 0)
continue;
zio_nowait(zio_vdev_child_io(zio, NULL,
vd->vdev_child[rc->rc_devidx],
rc->rc_offset, rc->rc_abd, rc->rc_size,
zio->io_type, zio->io_priority, 0,
vdev_raidz_child_done, rc));
nread++;
}
return (nread);
}
/*
* We're here because either there were too many errors to even attempt
* reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
* failed. In either case, there is enough bad data to prevent reconstruction.
* Start checksum ereports for all children which haven't failed.
*/
static void
vdev_raidz_io_done_unrecoverable(zio_t *zio)
{
raidz_map_t *rm = zio->io_vsd;
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
if (rc->rc_error != 0)
continue;
zio_bad_cksum_t zbc;
zbc.zbc_has_cksum = 0;
zbc.zbc_injected = rm->rm_ecksuminjected;
mutex_enter(&cvd->vdev_stat_lock);
cvd->vdev_stat.vs_checksum_errors++;
mutex_exit(&cvd->vdev_stat_lock);
(void) zfs_ereport_start_checksum(zio->io_spa,
cvd, &zio->io_bookmark, zio, rc->rc_offset,
rc->rc_size, &zbc);
}
}
}
void
vdev_raidz_io_done(zio_t *zio)
{
raidz_map_t *rm = zio->io_vsd;
if (zio->io_type == ZIO_TYPE_WRITE) {
for (int i = 0; i < rm->rm_nrows; i++) {
vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
}
} else {
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
vdev_raidz_io_done_reconstruct_known_missing(zio,
rm, rr);
}
if (raidz_checksum_verify(zio) == 0) {
for (int i = 0; i < rm->rm_nrows; i++) {
raidz_row_t *rr = rm->rm_row[i];
vdev_raidz_io_done_verified(zio, rr);
}
zio_checksum_verified(zio);
} else {
/*
* A sequential resilver has no checksum which makes
* combinatoral reconstruction impossible. This code
* path is unreachable since raidz_checksum_verify()
* has no checksum to verify and must succeed.
*/
ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
/*
* This isn't a typical situation -- either we got a
* read error or a child silently returned bad data.
* Read every block so we can try again with as much
* data and parity as we can track down. If we've
* already been through once before, all children will
* be marked as tried so we'll proceed to combinatorial
* reconstruction.
*/
int nread = 0;
for (int i = 0; i < rm->rm_nrows; i++) {
nread += vdev_raidz_read_all(zio,
rm->rm_row[i]);
}
if (nread != 0) {
/*
* Normally our stage is VDEV_IO_DONE, but if
* we've already called redone(), it will have
* changed to VDEV_IO_START, in which case we
* don't want to call redone() again.
*/
if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
zio_vdev_io_redone(zio);
return;
}
zio->io_error = vdev_raidz_combrec(zio);
if (zio->io_error == ECKSUM &&
!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
vdev_raidz_io_done_unrecoverable(zio);
}
}
}
}
static void
vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
{
vdev_raidz_t *vdrz = vd->vdev_tsd;
if (faulted > vdrz->vd_nparity)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
else
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
/*
* Determine if any portion of the provided block resides on a child vdev
* with a dirty DTL and therefore needs to be resilvered. The function
* assumes that at least one DTL is dirty which implies that full stripe
* width blocks must be resilvered.
*/
static boolean_t
vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
uint64_t phys_birth)
{
vdev_raidz_t *vdrz = vd->vdev_tsd;
uint64_t dcols = vd->vdev_children;
uint64_t nparity = vdrz->vd_nparity;
uint64_t ashift = vd->vdev_top->vdev_ashift;
/* The starting RAIDZ (parent) vdev sector of the block. */
uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
/* The zio's size in units of the vdev's minimum sector size. */
uint64_t s = ((psize - 1) >> ashift) + 1;
/* The first column for this stripe. */
uint64_t f = b % dcols;
/* Unreachable by sequential resilver. */
ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
return (B_FALSE);
if (s + nparity >= dcols)
return (B_TRUE);
for (uint64_t c = 0; c < s + nparity; c++) {
uint64_t devidx = (f + c) % dcols;
vdev_t *cvd = vd->vdev_child[devidx];
/*
* dsl_scan_need_resilver() already checked vd with
* vdev_dtl_contains(). So here just check cvd with
* vdev_dtl_empty(), cheaper and a good approximation.
*/
if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
return (B_TRUE);
}
return (B_FALSE);
}
static void
vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
{
(void) remain_rs;
vdev_t *raidvd = cvd->vdev_parent;
ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
uint64_t width = raidvd->vdev_children;
uint64_t tgt_col = cvd->vdev_id;
uint64_t ashift = raidvd->vdev_top->vdev_ashift;
/* make sure the offsets are block-aligned */
ASSERT0(logical_rs->rs_start % (1 << ashift));
ASSERT0(logical_rs->rs_end % (1 << ashift));
uint64_t b_start = logical_rs->rs_start >> ashift;
uint64_t b_end = logical_rs->rs_end >> ashift;
uint64_t start_row = 0;
if (b_start > tgt_col) /* avoid underflow */
start_row = ((b_start - tgt_col - 1) / width) + 1;
uint64_t end_row = 0;
if (b_end > tgt_col)
end_row = ((b_end - tgt_col - 1) / width) + 1;
physical_rs->rs_start = start_row << ashift;
physical_rs->rs_end = end_row << ashift;
ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
logical_rs->rs_end - logical_rs->rs_start);
}
/*
* Initialize private RAIDZ specific fields from the nvlist.
*/
static int
vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
{
vdev_raidz_t *vdrz;
uint64_t nparity;
uint_t children;
nvlist_t **child;
int error = nvlist_lookup_nvlist_array(nv,
ZPOOL_CONFIG_CHILDREN, &child, &children);
if (error != 0)
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
return (SET_ERROR(EINVAL));
/*
* Previous versions could only support 1 or 2 parity
* device.
*/
if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
return (SET_ERROR(EINVAL));
else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
return (SET_ERROR(EINVAL));
} else {
/*
* We require the parity to be specified for SPAs that
* support multiple parity levels.
*/
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
return (SET_ERROR(EINVAL));
/*
* Otherwise, we default to 1 parity device for RAID-Z.
*/
nparity = 1;
}
vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
vdrz->vd_logical_width = children;
vdrz->vd_nparity = nparity;
*tsd = vdrz;
return (0);
}
static void
vdev_raidz_fini(vdev_t *vd)
{
kmem_free(vd->vdev_tsd, sizeof (vdev_raidz_t));
}
/*
* Add RAIDZ specific fields to the config nvlist.
*/
static void
vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
{
ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
vdev_raidz_t *vdrz = vd->vdev_tsd;
/*
* Make sure someone hasn't managed to sneak a fancy new vdev
* into a crufty old storage pool.
*/
ASSERT(vdrz->vd_nparity == 1 ||
(vdrz->vd_nparity <= 2 &&
spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
(vdrz->vd_nparity <= 3 &&
spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
/*
* Note that we'll add these even on storage pools where they
* aren't strictly required -- older software will just ignore
* it.
*/
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
}
static uint64_t
vdev_raidz_nparity(vdev_t *vd)
{
vdev_raidz_t *vdrz = vd->vdev_tsd;
return (vdrz->vd_nparity);
}
static uint64_t
vdev_raidz_ndisks(vdev_t *vd)
{
return (vd->vdev_children);
}
vdev_ops_t vdev_raidz_ops = {
.vdev_op_init = vdev_raidz_init,
.vdev_op_fini = vdev_raidz_fini,
.vdev_op_open = vdev_raidz_open,
.vdev_op_close = vdev_raidz_close,
.vdev_op_asize = vdev_raidz_asize,
.vdev_op_min_asize = vdev_raidz_min_asize,
.vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_raidz_io_start,
.vdev_op_io_done = vdev_raidz_io_done,
.vdev_op_state_change = vdev_raidz_state_change,
.vdev_op_need_resilver = vdev_raidz_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_raidz_xlate,
.vdev_op_rebuild_asize = NULL,
.vdev_op_metaslab_init = NULL,
.vdev_op_config_generate = vdev_raidz_config_generate,
.vdev_op_nparity = vdev_raidz_nparity,
.vdev_op_ndisks = vdev_raidz_ndisks,
.vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
|