1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
|
// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2022 by Delphix. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
* Copyright 2017 RackTop Systems.
* Copyright (c) 2018 Datto Inc.
* Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
*/
/*
* Routines to manage ZFS mounts. We separate all the nasty routines that have
* to deal with the OS. The following functions are the main entry points --
* they are used by mount and unmount and when changing a filesystem's
* mountpoint.
*
* zfs_is_mounted()
* zfs_mount()
* zfs_mount_at()
* zfs_unmount()
* zfs_unmountall()
*
* This file also contains the functions used to manage sharing filesystems:
*
* zfs_is_shared()
* zfs_share()
* zfs_unshare()
* zfs_unshareall()
* zfs_commit_shares()
*
* The following functions are available for pool consumers, and will
* mount/unmount and share/unshare all datasets within pool:
*
* zpool_enable_datasets()
* zpool_disable_datasets()
*/
#include <dirent.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <zone.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/vfs.h>
#include <sys/dsl_crypt.h>
#include <libzfs.h>
#include <libzutil.h>
#include "libzfs_impl.h"
#include <thread_pool.h>
#include <libshare.h>
#include <sys/systeminfo.h>
#define MAXISALEN 257 /* based on sysinfo(2) man page */
static void zfs_mount_task(void *);
static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
[SA_PROTOCOL_NFS] =
{ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
[SA_PROTOCOL_SMB] =
{ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
};
static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
SA_PROTOCOL_NFS,
SA_PROTOCOL_SMB,
SA_NO_PROTOCOL
};
static boolean_t
dir_is_empty_stat(const char *dirname)
{
struct stat st;
/*
* We only want to return false if the given path is a non empty
* directory, all other errors are handled elsewhere.
*/
if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
return (B_TRUE);
}
/*
* An empty directory will still have two entries in it, one
* entry for each of "." and "..".
*/
if (st.st_size > 2) {
return (B_FALSE);
}
return (B_TRUE);
}
static boolean_t
dir_is_empty_readdir(const char *dirname)
{
DIR *dirp;
struct dirent64 *dp;
int dirfd;
if ((dirfd = openat(AT_FDCWD, dirname,
O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
return (B_TRUE);
}
if ((dirp = fdopendir(dirfd)) == NULL) {
(void) close(dirfd);
return (B_TRUE);
}
while ((dp = readdir64(dirp)) != NULL) {
if (strcmp(dp->d_name, ".") == 0 ||
strcmp(dp->d_name, "..") == 0)
continue;
(void) closedir(dirp);
return (B_FALSE);
}
(void) closedir(dirp);
return (B_TRUE);
}
/*
* Returns true if the specified directory is empty. If we can't open the
* directory at all, return true so that the mount can fail with a more
* informative error message.
*/
static boolean_t
dir_is_empty(const char *dirname)
{
struct statfs64 st;
/*
* If the statvfs call fails or the filesystem is not a ZFS
* filesystem, fall back to the slow path which uses readdir.
*/
if ((statfs64(dirname, &st) != 0) ||
(st.f_type != ZFS_SUPER_MAGIC)) {
return (dir_is_empty_readdir(dirname));
}
/*
* At this point, we know the provided path is on a ZFS
* filesystem, so we can use stat instead of readdir to
* determine if the directory is empty or not. We try to avoid
* using readdir because that requires opening "dirname"; this
* open file descriptor can potentially end up in a child
* process if there's a concurrent fork, thus preventing the
* zfs_mount() from otherwise succeeding (the open file
* descriptor inherited by the child process will cause the
* parent's mount to fail with EBUSY). The performance
* implications of replacing the open, read, and close with a
* single stat is nice; but is not the main motivation for the
* added complexity.
*/
return (dir_is_empty_stat(dirname));
}
/*
* Checks to see if the mount is active. If the filesystem is mounted, we fill
* in 'where' with the current mountpoint, and return 1. Otherwise, we return
* 0.
*/
boolean_t
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
{
struct mnttab entry;
if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
return (B_FALSE);
if (where != NULL)
*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
return (B_TRUE);
}
boolean_t
zfs_is_mounted(zfs_handle_t *zhp, char **where)
{
return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
}
/*
* Checks any higher order concerns about whether the given dataset is
* mountable, false otherwise. zfs_is_mountable_internal specifically assumes
* that the caller has verified the sanity of mounting the dataset at
* its mountpoint to the extent the caller wants.
*/
static boolean_t
zfs_is_mountable_internal(zfs_handle_t *zhp)
{
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
getzoneid() == GLOBAL_ZONEID)
return (B_FALSE);
return (B_TRUE);
}
/*
* Returns true if the given dataset is mountable, false otherwise. Returns the
* mountpoint in 'buf'.
*/
static boolean_t
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
zprop_source_t *source, int flags)
{
char sourceloc[MAXNAMELEN];
zprop_source_t sourcetype;
if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
B_FALSE))
return (B_FALSE);
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
&sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
return (B_FALSE);
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
return (B_FALSE);
if (!zfs_is_mountable_internal(zhp))
return (B_FALSE);
if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
return (B_FALSE);
if (source)
*source = sourcetype;
return (B_TRUE);
}
/*
* The filesystem is mounted by invoking the system mount utility rather
* than by the system call mount(2). This ensures that the /etc/mtab
* file is correctly locked for the update. Performing our own locking
* and /etc/mtab update requires making an unsafe assumption about how
* the mount utility performs its locking. Unfortunately, this also means
* in the case of a mount failure we do not have the exact errno. We must
* make due with return value from the mount process.
*
* In the long term a shared library called libmount is under development
* which provides a common API to address the locking and errno issues.
* Once the standard mount utility has been updated to use this library
* we can add an autoconf check to conditionally use it.
*
* http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
*/
static int
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
zfs_prop_t prop, const char *on, const char *off)
{
const char *source;
uint64_t value;
/* Skip adding duplicate default options */
if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
return (0);
/*
* zfs_prop_get_int() is not used to ensure our mount options
* are not influenced by the current /proc/self/mounts contents.
*/
value = getprop_uint64(zhp, prop, &source);
(void) strlcat(options, ",", len);
(void) strlcat(options, value ? on : off, len);
return (0);
}
static int
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
{
int error = 0;
error = zfs_add_option(zhp, options, len,
ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
/*
* don't add relatime/strictatime when atime=off, otherwise strictatime
* will force atime=on
*/
if (strstr(options, MNTOPT_NOATIME) == NULL) {
error = zfs_add_option(zhp, options, len,
ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
}
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
return (error);
}
int
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
{
char mountpoint[ZFS_MAXPROPLEN];
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
flags))
return (0);
return (zfs_mount_at(zhp, options, flags, mountpoint));
}
/*
* Mount the given filesystem.
*/
int
zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
const char *mountpoint)
{
struct stat buf;
char mntopts[MNT_LINE_MAX];
char overlay[ZFS_MAXPROPLEN];
char prop_encroot[MAXNAMELEN];
boolean_t is_encroot;
zfs_handle_t *encroot_hp = zhp;
libzfs_handle_t *hdl = zhp->zfs_hdl;
uint64_t keystatus;
int remount = 0, rc;
if (options == NULL) {
(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
} else {
(void) strlcpy(mntopts, options, sizeof (mntopts));
}
if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
remount = 1;
/* Potentially duplicates some checks if invoked by zfs_mount(). */
if (!zfs_is_mountable_internal(zhp))
return (0);
/*
* If the pool is imported read-only then all mounts must be read-only
*/
if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
/*
* Append default mount options which apply to the mount point.
* This is done because under Linux (unlike Solaris) multiple mount
* points may reference a single super block. This means that just
* given a super block there is no back reference to update the per
* mount point options.
*/
rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
if (rc) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"default options unavailable"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
/*
* If the filesystem is encrypted the key must be loaded in order to
* mount. If the key isn't loaded, the MS_CRYPT flag decides whether
* or not we attempt to load the keys. Note: we must call
* zfs_refresh_properties() here since some callers of this function
* (most notably zpool_enable_datasets()) may implicitly load our key
* by loading the parent's key first.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
zfs_refresh_properties(zhp);
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
/*
* If the key is unavailable and MS_CRYPT is set give the
* user a chance to enter the key. Otherwise just fail
* immediately.
*/
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
if (flags & MS_CRYPT) {
rc = zfs_crypto_get_encryption_root(zhp,
&is_encroot, prop_encroot);
if (rc) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Failed to get encryption root for "
"'%s'."), zfs_get_name(zhp));
return (rc);
}
if (!is_encroot) {
encroot_hp = zfs_open(hdl, prop_encroot,
ZFS_TYPE_DATASET);
if (encroot_hp == NULL)
return (hdl->libzfs_error);
}
rc = zfs_crypto_load_key(encroot_hp,
B_FALSE, NULL);
if (!is_encroot)
zfs_close(encroot_hp);
if (rc)
return (rc);
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"encryption key not loaded"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
}
}
/*
* Append zfsutil option so the mount helper allow the mount
*/
strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
/* Create the directory if it doesn't already exist */
if (lstat(mountpoint, &buf) != 0) {
if (mkdirp(mountpoint, 0755) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to create mountpoint: %s"),
zfs_strerror(errno));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
}
/*
* Overlay mounts are enabled by default but may be disabled
* via the 'overlay' property. The -O flag remains for compatibility.
*/
if (!(flags & MS_OVERLAY)) {
if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
if (strcmp(overlay, "on") == 0) {
flags |= MS_OVERLAY;
}
}
}
/*
* Determine if the mountpoint is empty. If so, refuse to perform the
* mount. We don't perform this check if 'remount' is
* specified or if overlay option (-O) is given
*/
if ((flags & MS_OVERLAY) == 0 && !remount &&
!dir_is_empty(mountpoint)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"directory is not empty"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
}
/* perform the mount */
rc = do_mount(zhp, mountpoint, mntopts, flags);
if (rc) {
/*
* Generic errors are nasty, but there are just way too many
* from mount(), and they're well-understood. We pick a few
* common ones to improve upon.
*/
if (rc == EBUSY) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"mountpoint or dataset is busy"));
} else if (rc == EPERM) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Insufficient privileges"));
} else if (rc == ENOTSUP) {
int spa_version;
VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Can't mount a version %llu "
"file system on a version %d pool. Pool must be"
" upgraded to mount this file system."),
(u_longlong_t)zfs_prop_get_int(zhp,
ZFS_PROP_VERSION), spa_version);
} else {
zfs_error_aux(hdl, "%s", zfs_strerror(rc));
}
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
zhp->zfs_name));
}
/* remove the mounted entry before re-adding on remount */
if (remount)
libzfs_mnttab_remove(hdl, zhp->zfs_name);
/* add the mounted entry into our cache */
libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
return (0);
}
/*
* Unmount a single filesystem.
*/
static int
unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
{
int error;
error = do_unmount(zhp, mountpoint, flags);
if (error != 0) {
int libzfs_err;
switch (error) {
case EBUSY:
libzfs_err = EZFS_BUSY;
break;
case EIO:
libzfs_err = EZFS_IO;
break;
case ENOENT:
libzfs_err = EZFS_NOENT;
break;
case ENOMEM:
libzfs_err = EZFS_NOMEM;
break;
case EPERM:
libzfs_err = EZFS_PERM;
break;
default:
libzfs_err = EZFS_UMOUNTFAILED;
}
if (zhp) {
return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
mountpoint));
} else {
return (-1);
}
}
return (0);
}
/*
* Unmount the given filesystem.
*/
int
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
char *mntpt = NULL;
boolean_t encroot, unmounted = B_FALSE;
/* check to see if we need to unmount the filesystem */
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
/*
* mountpoint may have come from a call to
* getmnt/getmntany if it isn't NULL. If it is NULL,
* we know it comes from libzfs_mnttab_find which can
* then get freed later. We strdup it to play it safe.
*/
if (mountpoint == NULL)
mntpt = zfs_strdup(hdl, entry.mnt_mountp);
else
mntpt = zfs_strdup(hdl, mountpoint);
/*
* Unshare and unmount the filesystem
*/
if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
free(mntpt);
return (-1);
}
zfs_commit_shares(NULL);
if (unmount_one(zhp, mntpt, flags) != 0) {
free(mntpt);
(void) zfs_share(zhp, NULL);
zfs_commit_shares(NULL);
return (-1);
}
libzfs_mnttab_remove(hdl, zhp->zfs_name);
free(mntpt);
unmounted = B_TRUE;
}
/*
* If the MS_CRYPT flag is provided we must ensure we attempt to
* unload the dataset's key regardless of whether we did any work
* to unmount it. We only do this for encryption roots.
*/
if ((flags & MS_CRYPT) != 0 &&
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
zfs_refresh_properties(zhp);
if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
unmounted) {
(void) zfs_mount(zhp, NULL, 0);
return (-1);
}
if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_AVAILABLE &&
zfs_crypto_unload_key(zhp) != 0) {
(void) zfs_mount(zhp, NULL, 0);
return (-1);
}
}
zpool_disable_volume_os(zhp->zfs_name);
return (0);
}
/*
* Unmount this filesystem and any children inheriting the mountpoint property.
* To do this, just act like we're changing the mountpoint property, but don't
* remount the filesystems afterwards.
*/
int
zfs_unmountall(zfs_handle_t *zhp, int flags)
{
prop_changelist_t *clp;
int ret;
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
CL_GATHER_ITER_MOUNTED, flags);
if (clp == NULL)
return (-1);
ret = changelist_prefix(clp);
changelist_free(clp);
return (ret);
}
/*
* Unshare a filesystem by mountpoint.
*/
static int
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
enum sa_protocol proto)
{
int err = sa_disable_share(mountpoint, proto);
if (err != SA_OK)
return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
name, sa_errorstr(err)));
return (0);
}
/*
* Share the given filesystem according to the options in the specified
* protocol specific properties (sharenfs, sharesmb). We rely
* on "libshare" to do the dirty work for us.
*/
int
zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
{
char mountpoint[ZFS_MAXPROPLEN];
char shareopts[ZFS_MAXPROPLEN];
char sourcestr[ZFS_MAXPROPLEN];
const enum sa_protocol *curr_proto;
zprop_source_t sourcetype;
int err = 0;
if (proto == NULL)
proto = share_all_proto;
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
return (0);
for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
/*
* Return success if there are no share options.
*/
if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
shareopts, sizeof (shareopts), &sourcetype, sourcestr,
ZFS_MAXPROPLEN, B_FALSE) != 0 ||
strcmp(shareopts, "off") == 0)
continue;
/*
* If the 'zoned' property is set, then zfs_is_mountable()
* will have already bailed out if we are in the global zone.
* But local zones cannot be NFS servers, so we ignore it for
* local zones as well.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
continue;
err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
*curr_proto);
if (err != SA_OK) {
return (zfs_error_fmt(zhp->zfs_hdl,
proto_table[*curr_proto].p_share_err,
dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
zfs_get_name(zhp), sa_errorstr(err)));
}
}
return (0);
}
/*
* Check to see if the filesystem is currently shared.
*/
boolean_t
zfs_is_shared(zfs_handle_t *zhp, char **where,
const enum sa_protocol *proto)
{
char *mountpoint;
if (proto == NULL)
proto = share_all_proto;
if (ZFS_IS_VOLUME(zhp))
return (B_FALSE);
if (!zfs_is_mounted(zhp, &mountpoint))
return (B_FALSE);
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
if (sa_is_shared(mountpoint, *p)) {
if (where != NULL)
*where = mountpoint;
else
free(mountpoint);
return (B_TRUE);
}
free(mountpoint);
return (B_FALSE);
}
void
zfs_commit_shares(const enum sa_protocol *proto)
{
if (proto == NULL)
proto = share_all_proto;
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
sa_commit_shares(*p);
}
void
zfs_truncate_shares(const enum sa_protocol *proto)
{
if (proto == NULL)
proto = share_all_proto;
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
sa_truncate_shares(*p);
}
/*
* Unshare the given filesystem.
*/
int
zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
const enum sa_protocol *proto)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
if (proto == NULL)
proto = share_all_proto;
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
/* check to see if need to unmount the filesystem */
const char *mntpt = mountpoint ?: entry.mnt_mountp;
for (const enum sa_protocol *curr_proto = proto;
*curr_proto != SA_NO_PROTOCOL; curr_proto++)
if (sa_is_shared(mntpt, *curr_proto) &&
unshare_one(hdl, zhp->zfs_name,
mntpt, *curr_proto) != 0)
return (-1);
}
return (0);
}
/*
* Same as zfs_unmountall(), but for NFS and SMB unshares.
*/
int
zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
{
prop_changelist_t *clp;
int ret;
if (proto == NULL)
proto = share_all_proto;
clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
if (clp == NULL)
return (-1);
ret = changelist_unshare(clp, proto);
changelist_free(clp);
return (ret);
}
/*
* Remove the mountpoint associated with the current dataset, if necessary.
* We only remove the underlying directory if:
*
* - The mountpoint is not 'none' or 'legacy'
* - The mountpoint is non-empty
* - The mountpoint is the default or inherited
* - The 'zoned' property is set, or we're in a local zone
*
* Any other directories we leave alone.
*/
void
remove_mountpoint(zfs_handle_t *zhp)
{
char mountpoint[ZFS_MAXPROPLEN];
zprop_source_t source;
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
&source, 0))
return;
if (source == ZPROP_SRC_DEFAULT ||
source == ZPROP_SRC_INHERITED) {
/*
* Try to remove the directory, silently ignoring any errors.
* The filesystem may have since been removed or moved around,
* and this error isn't really useful to the administrator in
* any way.
*/
(void) rmdir(mountpoint);
}
}
/*
* Add the given zfs handle to the cb_handles array, dynamically reallocating
* the array if it is out of space.
*/
void
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
{
if (cbp->cb_alloc == cbp->cb_used) {
size_t newsz;
zfs_handle_t **newhandles;
newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
newhandles = zfs_realloc(zhp->zfs_hdl,
cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
newsz * sizeof (zfs_handle_t *));
cbp->cb_handles = newhandles;
cbp->cb_alloc = newsz;
}
cbp->cb_handles[cbp->cb_used++] = zhp;
}
/*
* Recursive helper function used during file system enumeration
*/
static int
zfs_iter_cb(zfs_handle_t *zhp, void *data)
{
get_all_cb_t *cbp = data;
if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE) {
zfs_close(zhp);
return (0);
}
/*
* If this filesystem is inconsistent and has a receive resume
* token, we can not mount it.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
zfs_close(zhp);
return (0);
}
libzfs_add_handle(cbp, zhp);
if (zfs_iter_filesystems_v2(zhp, 0, zfs_iter_cb, cbp) != 0) {
zfs_close(zhp);
return (-1);
}
return (0);
}
/*
* Sort comparator that compares two mountpoint paths. We sort these paths so
* that subdirectories immediately follow their parents. This means that we
* effectively treat the '/' character as the lowest value non-nul char.
* Since filesystems from non-global zones can have the same mountpoint
* as other filesystems, the comparator sorts global zone filesystems to
* the top of the list. This means that the global zone will traverse the
* filesystem list in the correct order and can stop when it sees the
* first zoned filesystem. In a non-global zone, only the delegated
* filesystems are seen.
*
* An example sorted list using this comparator would look like:
*
* /foo
* /foo/bar
* /foo/bar/baz
* /foo/baz
* /foo.bar
* /foo (NGZ1)
* /foo (NGZ2)
*
* The mounting code depends on this ordering to deterministically iterate
* over filesystems in order to spawn parallel mount tasks.
*/
static int
mountpoint_cmp(const void *arga, const void *argb)
{
zfs_handle_t *const *zap = arga;
zfs_handle_t *za = *zap;
zfs_handle_t *const *zbp = argb;
zfs_handle_t *zb = *zbp;
char mounta[MAXPATHLEN];
char mountb[MAXPATHLEN];
const char *a = mounta;
const char *b = mountb;
boolean_t gota, gotb;
uint64_t zoneda, zonedb;
zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
if (zoneda && !zonedb)
return (1);
if (!zoneda && zonedb)
return (-1);
gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
if (gota) {
verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
}
gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
if (gotb) {
verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
}
if (gota && gotb) {
while (*a != '\0' && (*a == *b)) {
a++;
b++;
}
if (*a == *b)
return (0);
if (*a == '\0')
return (-1);
if (*b == '\0')
return (1);
if (*a == '/')
return (-1);
if (*b == '/')
return (1);
return (*a < *b ? -1 : *a > *b);
}
if (gota)
return (-1);
if (gotb)
return (1);
/*
* If neither filesystem has a mountpoint, revert to sorting by
* dataset name.
*/
return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
}
/*
* Return true if path2 is a child of path1 or path2 equals path1 or
* path1 is "/" (path2 is always a child of "/").
*/
static boolean_t
libzfs_path_contains(const char *path1, const char *path2)
{
return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
(strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
}
/*
* Given a mountpoint specified by idx in the handles array, find the first
* non-descendent of that mountpoint and return its index. Descendant paths
* start with the parent's path. This function relies on the ordering
* enforced by mountpoint_cmp().
*/
static int
non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
{
char parent[ZFS_MAXPROPLEN];
char child[ZFS_MAXPROPLEN];
int i;
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
for (i = idx + 1; i < num_handles; i++) {
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
if (!libzfs_path_contains(parent, child))
break;
}
return (i);
}
typedef struct mnt_param {
libzfs_handle_t *mnt_hdl;
tpool_t *mnt_tp;
zfs_handle_t **mnt_zhps; /* filesystems to mount */
size_t mnt_num_handles;
int mnt_idx; /* Index of selected entry to mount */
zfs_iter_f mnt_func;
void *mnt_data;
} mnt_param_t;
/*
* Allocate and populate the parameter struct for mount function, and
* schedule mounting of the entry selected by idx.
*/
static void
zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
{
mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
mnt_param->mnt_hdl = hdl;
mnt_param->mnt_tp = tp;
mnt_param->mnt_zhps = handles;
mnt_param->mnt_num_handles = num_handles;
mnt_param->mnt_idx = idx;
mnt_param->mnt_func = func;
mnt_param->mnt_data = data;
if (tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param)) {
/* Could not dispatch to thread pool; execute directly */
zfs_mount_task((void*)mnt_param);
}
}
/*
* This is the structure used to keep state of mounting or sharing operations
* during a call to zpool_enable_datasets().
*/
typedef struct mount_state {
/*
* ms_mntstatus is set to -1 if any mount fails. While multiple threads
* could update this variable concurrently, no synchronization is
* needed as it's only ever set to -1.
*/
int ms_mntstatus;
int ms_mntflags;
const char *ms_mntopts;
} mount_state_t;
static int
zfs_mount_one(zfs_handle_t *zhp, void *arg)
{
mount_state_t *ms = arg;
int ret = 0;
/*
* don't attempt to mount encrypted datasets with
* unloaded keys
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE)
return (0);
if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
ret = ms->ms_mntstatus = -1;
return (ret);
}
static int
zfs_share_one(zfs_handle_t *zhp, void *arg)
{
mount_state_t *ms = arg;
int ret = 0;
if (zfs_share(zhp, NULL) != 0)
ret = ms->ms_mntstatus = -1;
return (ret);
}
/*
* Thread pool function to mount one file system. On completion, it finds and
* schedules its children to be mounted. This depends on the sorting done in
* zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
* each descending from the previous) will have no parallelism since we always
* have to wait for the parent to finish mounting before we can schedule
* its children.
*/
static void
zfs_mount_task(void *arg)
{
mnt_param_t *mp = arg;
int idx = mp->mnt_idx;
zfs_handle_t **handles = mp->mnt_zhps;
size_t num_handles = mp->mnt_num_handles;
char mountpoint[ZFS_MAXPROPLEN];
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
goto out;
/*
* We dispatch tasks to mount filesystems with mountpoints underneath
* this one. We do this by dispatching the next filesystem with a
* descendant mountpoint of the one we just mounted, then skip all of
* its descendants, dispatch the next descendant mountpoint, and so on.
* The non_descendant_idx() function skips over filesystems that are
* descendants of the filesystem we just dispatched.
*/
for (int i = idx + 1; i < num_handles;
i = non_descendant_idx(handles, num_handles, i)) {
char child[ZFS_MAXPROPLEN];
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
if (!libzfs_path_contains(mountpoint, child))
break; /* not a descendant, return */
zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
mp->mnt_func, mp->mnt_data, mp->mnt_tp);
}
out:
free(mp);
}
/*
* Issue the func callback for each ZFS handle contained in the handles
* array. This function is used to mount all datasets, and so this function
* guarantees that filesystems for parent mountpoints are called before their
* children. As such, before issuing any callbacks, we first sort the array
* of handles by mountpoint.
*
* Callbacks are issued in one of two ways:
*
* 1. Sequentially: If the nthr argument is <= 1 or the ZFS_SERIAL_MOUNT
* environment variable is set, then we issue callbacks sequentially.
*
* 2. In parallel: If the nthr argument is > 1 and the ZFS_SERIAL_MOUNT
* environment variable is not set, then we use a tpool to dispatch threads
* to mount filesystems in parallel. This function dispatches tasks to mount
* the filesystems at the top-level mountpoints, and these tasks in turn
* are responsible for recursively mounting filesystems in their children
* mountpoints. The value of the nthr argument will be the number of worker
* threads for the thread pool.
*/
void
zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
size_t num_handles, zfs_iter_f func, void *data, uint_t nthr)
{
zoneid_t zoneid = getzoneid();
/*
* The ZFS_SERIAL_MOUNT environment variable is an undocumented
* variable that can be used as a convenience to do a/b comparison
* of serial vs. parallel mounting.
*/
boolean_t serial_mount = nthr <= 1 ||
(getenv("ZFS_SERIAL_MOUNT") != NULL);
/*
* Sort the datasets by mountpoint. See mountpoint_cmp for details
* of how these are sorted.
*/
qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
if (serial_mount) {
for (int i = 0; i < num_handles; i++) {
func(handles[i], data);
}
return;
}
/*
* Issue the callback function for each dataset using a parallel
* algorithm that uses a thread pool to manage threads.
*/
tpool_t *tp = tpool_create(1, nthr, 0, NULL);
/*
* There may be multiple "top level" mountpoints outside of the pool's
* root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
* these.
*/
for (int i = 0; i < num_handles;
i = non_descendant_idx(handles, num_handles, i)) {
/*
* Since the mountpoints have been sorted so that the zoned
* filesystems are at the end, a zoned filesystem seen from
* the global zone means that we're done.
*/
if (zoneid == GLOBAL_ZONEID &&
zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
break;
zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
tp);
}
tpool_wait(tp); /* wait for all scheduled mounts to complete */
tpool_destroy(tp);
}
/*
* Mount and share all datasets within the given pool. This assumes that no
* datasets within the pool are currently mounted. nthr will be number of
* worker threads to use while mounting datasets.
*/
int
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags,
uint_t nthr)
{
get_all_cb_t cb = { 0 };
mount_state_t ms = { 0 };
zfs_handle_t *zfsp;
int ret = 0;
if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
ZFS_TYPE_DATASET)) == NULL)
goto out;
/*
* Gather all non-snapshot datasets within the pool. Start by adding
* the root filesystem for this pool to the list, and then iterate
* over all child filesystems.
*/
libzfs_add_handle(&cb, zfsp);
if (zfs_iter_filesystems_v2(zfsp, 0, zfs_iter_cb, &cb) != 0)
goto out;
/*
* Mount all filesystems
*/
ms.ms_mntopts = mntopts;
ms.ms_mntflags = flags;
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
zfs_mount_one, &ms, nthr);
if (ms.ms_mntstatus != 0)
ret = EZFS_MOUNTFAILED;
/*
* Share all filesystems that need to be shared. This needs to be
* a separate pass because libshare is not mt-safe, and so we need
* to share serially.
*/
ms.ms_mntstatus = 0;
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
zfs_share_one, &ms, 1);
if (ms.ms_mntstatus != 0)
ret = EZFS_SHAREFAILED;
else
zfs_commit_shares(NULL);
out:
for (int i = 0; i < cb.cb_used; i++)
zfs_close(cb.cb_handles[i]);
free(cb.cb_handles);
return (ret);
}
struct sets_s {
char *mountpoint;
zfs_handle_t *dataset;
};
static int
mountpoint_compare(const void *a, const void *b)
{
const struct sets_s *mounta = (struct sets_s *)a;
const struct sets_s *mountb = (struct sets_s *)b;
return (strcmp(mountb->mountpoint, mounta->mountpoint));
}
/*
* Unshare and unmount all datasets within the given pool. We don't want to
* rely on traversing the DSL to discover the filesystems within the pool,
* because this may be expensive (if not all of them are mounted), and can fail
* arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
* and gather all the filesystems that are currently mounted.
*/
int
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
{
int used, alloc;
FILE *mnttab;
struct mnttab entry;
size_t namelen;
struct sets_s *sets = NULL;
libzfs_handle_t *hdl = zhp->zpool_hdl;
int i;
int ret = -1;
int flags = (force ? MS_FORCE : 0);
namelen = strlen(zhp->zpool_name);
if ((mnttab = fopen(MNTTAB, "re")) == NULL)
return (ENOENT);
used = alloc = 0;
while (getmntent(mnttab, &entry) == 0) {
/*
* Ignore non-ZFS entries.
*/
if (entry.mnt_fstype == NULL ||
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
/*
* Ignore filesystems not within this pool.
*/
if (entry.mnt_mountp == NULL ||
strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
(entry.mnt_special[namelen] != '/' &&
entry.mnt_special[namelen] != '\0'))
continue;
/*
* At this point we've found a filesystem within our pool. Add
* it to our growing list.
*/
if (used == alloc) {
if (alloc == 0) {
sets = zfs_alloc(hdl,
8 * sizeof (struct sets_s));
alloc = 8;
} else {
sets = zfs_realloc(hdl, sets,
alloc * sizeof (struct sets_s),
alloc * 2 * sizeof (struct sets_s));
alloc *= 2;
}
}
sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
/*
* This is allowed to fail, in case there is some I/O error. It
* is only used to determine if we need to remove the underlying
* mountpoint, so failure is not fatal.
*/
sets[used].dataset = make_dataset_handle(hdl,
entry.mnt_special);
used++;
}
/*
* At this point, we have the entire list of filesystems, so sort it by
* mountpoint.
*/
if (used != 0)
qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
/*
* Walk through and first unshare everything.
*/
for (i = 0; i < used; i++) {
for (enum sa_protocol p = 0; p < SA_PROTOCOL_COUNT; ++p) {
if (sa_is_shared(sets[i].mountpoint, p) &&
unshare_one(hdl, sets[i].mountpoint,
sets[i].mountpoint, p) != 0)
goto out;
}
}
zfs_commit_shares(NULL);
/*
* Now unmount everything, removing the underlying directories as
* appropriate.
*/
for (i = 0; i < used; i++) {
if (unmount_one(sets[i].dataset, sets[i].mountpoint,
flags) != 0)
goto out;
}
for (i = 0; i < used; i++) {
if (sets[i].dataset)
remove_mountpoint(sets[i].dataset);
}
zpool_disable_datasets_os(zhp, force);
ret = 0;
out:
(void) fclose(mnttab);
for (i = 0; i < used; i++) {
if (sets[i].dataset)
zfs_close(sets[i].dataset);
free(sets[i].mountpoint);
}
free(sets);
return (ret);
}
|