1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
#ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
#include <sys/byteorder.h>
#define UNALIGNED_POINTERS_PERMITTED
#endif
/*
* Encrypt multiple blocks of data in CCM mode. Decrypt for CCM mode
* is done in another function.
*/
int
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
size_t remainder = length;
size_t need = 0;
uint8_t *datap = (uint8_t *)data;
uint8_t *blockp;
uint8_t *lastp;
void *iov_or_mp;
offset_t offset;
uint8_t *out_data_1;
uint8_t *out_data_2;
size_t out_data_1_len;
uint64_t counter;
uint8_t *mac_buf;
if (length + ctx->ccm_remainder_len < block_size) {
/* accumulate bytes here and return */
memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
datap,
length);
ctx->ccm_remainder_len += length;
ctx->ccm_copy_to = datap;
return (CRYPTO_SUCCESS);
}
crypto_init_ptrs(out, &iov_or_mp, &offset);
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
do {
/* Unprocessed data from last call. */
if (ctx->ccm_remainder_len > 0) {
need = block_size - ctx->ccm_remainder_len;
if (need > remainder)
return (CRYPTO_DATA_LEN_RANGE);
memcpy(&((uint8_t *)ctx->ccm_remainder)
[ctx->ccm_remainder_len], datap, need);
blockp = (uint8_t *)ctx->ccm_remainder;
} else {
blockp = datap;
}
/*
* do CBC MAC
*
* XOR the previous cipher block current clear block.
* mac_buf always contain previous cipher block.
*/
xor_block(blockp, mac_buf);
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
/* ccm_cb is the counter block */
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
(uint8_t *)ctx->ccm_tmp);
lastp = (uint8_t *)ctx->ccm_tmp;
/*
* Increment counter. Counter bits are confined
* to the bottom 64 bits of the counter block.
*/
#ifdef _ZFS_LITTLE_ENDIAN
counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
counter = htonll(counter + 1);
#else
counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
counter++;
#endif /* _ZFS_LITTLE_ENDIAN */
counter &= ctx->ccm_counter_mask;
ctx->ccm_cb[1] =
(ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
/*
* XOR encrypted counter block with the current clear block.
*/
xor_block(blockp, lastp);
ctx->ccm_processed_data_len += block_size;
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
&out_data_1_len, &out_data_2, block_size);
/* copy block to where it belongs */
if (out_data_1_len == block_size) {
copy_block(lastp, out_data_1);
} else {
memcpy(out_data_1, lastp, out_data_1_len);
if (out_data_2 != NULL) {
memcpy(out_data_2,
lastp + out_data_1_len,
block_size - out_data_1_len);
}
}
/* update offset */
out->cd_offset += block_size;
/* Update pointer to next block of data to be processed. */
if (ctx->ccm_remainder_len != 0) {
datap += need;
ctx->ccm_remainder_len = 0;
} else {
datap += block_size;
}
remainder = (size_t)&data[length] - (size_t)datap;
/* Incomplete last block. */
if (remainder > 0 && remainder < block_size) {
memcpy(ctx->ccm_remainder, datap, remainder);
ctx->ccm_remainder_len = remainder;
ctx->ccm_copy_to = datap;
goto out;
}
ctx->ccm_copy_to = NULL;
} while (remainder > 0);
out:
return (CRYPTO_SUCCESS);
}
void
calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
{
uint64_t counter;
uint8_t *counterp, *mac_buf;
int i;
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
/* first counter block start with index 0 */
counter = 0;
ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
counterp = (uint8_t *)ctx->ccm_tmp;
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
/* calculate XOR of MAC with first counter block */
for (i = 0; i < ctx->ccm_mac_len; i++) {
ccm_mac[i] = mac_buf[i] ^ counterp[i];
}
}
int
ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
void *iov_or_mp;
offset_t offset;
uint8_t *out_data_1;
uint8_t *out_data_2;
size_t out_data_1_len;
int i;
if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
return (CRYPTO_DATA_LEN_RANGE);
}
/*
* When we get here, the number of bytes of payload processed
* plus whatever data remains, if any,
* should be the same as the number of bytes that's being
* passed in the argument during init time.
*/
if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
!= (ctx->ccm_data_len)) {
return (CRYPTO_DATA_LEN_RANGE);
}
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
if (ctx->ccm_remainder_len > 0) {
/* ccm_mac_input_buf is not used for encryption */
macp = (uint8_t *)ctx->ccm_mac_input_buf;
memset(macp, 0, block_size);
/* copy remainder to temporary buffer */
memcpy(macp, ctx->ccm_remainder, ctx->ccm_remainder_len);
/* calculate the CBC MAC */
xor_block(macp, mac_buf);
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
/* calculate the counter mode */
lastp = (uint8_t *)ctx->ccm_tmp;
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
/* XOR with counter block */
for (i = 0; i < ctx->ccm_remainder_len; i++) {
macp[i] ^= lastp[i];
}
ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
}
/* Calculate the CCM MAC */
ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
crypto_init_ptrs(out, &iov_or_mp, &offset);
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
&out_data_1_len, &out_data_2,
ctx->ccm_remainder_len + ctx->ccm_mac_len);
if (ctx->ccm_remainder_len > 0) {
/* copy temporary block to where it belongs */
if (out_data_2 == NULL) {
/* everything will fit in out_data_1 */
memcpy(out_data_1, macp, ctx->ccm_remainder_len);
memcpy(out_data_1 + ctx->ccm_remainder_len, ccm_mac_p,
ctx->ccm_mac_len);
} else {
if (out_data_1_len < ctx->ccm_remainder_len) {
size_t data_2_len_used;
memcpy(out_data_1, macp, out_data_1_len);
data_2_len_used = ctx->ccm_remainder_len
- out_data_1_len;
memcpy(out_data_2,
(uint8_t *)macp + out_data_1_len,
data_2_len_used);
memcpy(out_data_2 + data_2_len_used,
ccm_mac_p,
ctx->ccm_mac_len);
} else {
memcpy(out_data_1, macp, out_data_1_len);
if (out_data_1_len == ctx->ccm_remainder_len) {
/* mac will be in out_data_2 */
memcpy(out_data_2, ccm_mac_p,
ctx->ccm_mac_len);
} else {
size_t len_not_used = out_data_1_len -
ctx->ccm_remainder_len;
/*
* part of mac in will be in
* out_data_1, part of the mac will be
* in out_data_2
*/
memcpy(out_data_1 +
ctx->ccm_remainder_len,
ccm_mac_p, len_not_used);
memcpy(out_data_2,
ccm_mac_p + len_not_used,
ctx->ccm_mac_len - len_not_used);
}
}
}
} else {
/* copy block to where it belongs */
memcpy(out_data_1, ccm_mac_p, out_data_1_len);
if (out_data_2 != NULL) {
memcpy(out_data_2, ccm_mac_p + out_data_1_len,
block_size - out_data_1_len);
}
}
out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
ctx->ccm_remainder_len = 0;
return (CRYPTO_SUCCESS);
}
/*
* This will only deal with decrypting the last block of the input that
* might not be a multiple of block length.
*/
static void
ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
{
uint8_t *datap, *outp, *counterp;
int i;
datap = (uint8_t *)ctx->ccm_remainder;
outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
counterp = (uint8_t *)ctx->ccm_tmp;
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
/* XOR with counter block */
for (i = 0; i < ctx->ccm_remainder_len; i++) {
outp[i] = datap[i] ^ counterp[i];
}
}
/*
* This will decrypt the cipher text. However, the plaintext won't be
* returned to the caller. It will be returned when decrypt_final() is
* called if the MAC matches
*/
int
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
(void) out;
size_t remainder = length;
size_t need = 0;
uint8_t *datap = (uint8_t *)data;
uint8_t *blockp;
uint8_t *cbp;
uint64_t counter;
size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
uint8_t *resultp;
pm_len = ctx->ccm_processed_mac_len;
if (pm_len > 0) {
uint8_t *tmp;
/*
* all ciphertext has been processed, just waiting for
* part of the value of the mac
*/
if ((pm_len + length) > ctx->ccm_mac_len) {
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
}
tmp = (uint8_t *)ctx->ccm_mac_input_buf;
memcpy(tmp + pm_len, datap, length);
ctx->ccm_processed_mac_len += length;
return (CRYPTO_SUCCESS);
}
/*
* If we decrypt the given data, what total amount of data would
* have been decrypted?
*/
pd_len = ctx->ccm_processed_data_len;
total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
if (total_decrypted_len >
(ctx->ccm_data_len + ctx->ccm_mac_len)) {
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
}
pt_len = ctx->ccm_data_len;
if (total_decrypted_len > pt_len) {
/*
* part of the input will be the MAC, need to isolate that
* to be dealt with later. The left-over data in
* ccm_remainder_len from last time will not be part of the
* MAC. Otherwise, it would have already been taken out
* when this call is made last time.
*/
size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
mac_len = length - pt_part;
ctx->ccm_processed_mac_len = mac_len;
memcpy(ctx->ccm_mac_input_buf, data + pt_part, mac_len);
if (pt_part + ctx->ccm_remainder_len < block_size) {
/*
* since this is last of the ciphertext, will
* just decrypt with it here
*/
memcpy(&((uint8_t *)ctx->ccm_remainder)
[ctx->ccm_remainder_len], datap, pt_part);
ctx->ccm_remainder_len += pt_part;
ccm_decrypt_incomplete_block(ctx, encrypt_block);
ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
ctx->ccm_remainder_len = 0;
return (CRYPTO_SUCCESS);
} else {
/* let rest of the code handle this */
length = pt_part;
}
} else if (length + ctx->ccm_remainder_len < block_size) {
/* accumulate bytes here and return */
memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
datap,
length);
ctx->ccm_remainder_len += length;
ctx->ccm_copy_to = datap;
return (CRYPTO_SUCCESS);
}
do {
/* Unprocessed data from last call. */
if (ctx->ccm_remainder_len > 0) {
need = block_size - ctx->ccm_remainder_len;
if (need > remainder)
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
memcpy(&((uint8_t *)ctx->ccm_remainder)
[ctx->ccm_remainder_len], datap, need);
blockp = (uint8_t *)ctx->ccm_remainder;
} else {
blockp = datap;
}
/* Calculate the counter mode, ccm_cb is the counter block */
cbp = (uint8_t *)ctx->ccm_tmp;
encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
/*
* Increment counter.
* Counter bits are confined to the bottom 64 bits
*/
#ifdef _ZFS_LITTLE_ENDIAN
counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
counter = htonll(counter + 1);
#else
counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
counter++;
#endif /* _ZFS_LITTLE_ENDIAN */
counter &= ctx->ccm_counter_mask;
ctx->ccm_cb[1] =
(ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
/* XOR with the ciphertext */
xor_block(blockp, cbp);
/* Copy the plaintext to the "holding buffer" */
resultp = (uint8_t *)ctx->ccm_pt_buf +
ctx->ccm_processed_data_len;
copy_block(cbp, resultp);
ctx->ccm_processed_data_len += block_size;
ctx->ccm_lastp = blockp;
/* Update pointer to next block of data to be processed. */
if (ctx->ccm_remainder_len != 0) {
datap += need;
ctx->ccm_remainder_len = 0;
} else {
datap += block_size;
}
remainder = (size_t)&data[length] - (size_t)datap;
/* Incomplete last block */
if (remainder > 0 && remainder < block_size) {
memcpy(ctx->ccm_remainder, datap, remainder);
ctx->ccm_remainder_len = remainder;
ctx->ccm_copy_to = datap;
if (ctx->ccm_processed_mac_len > 0) {
/*
* not expecting anymore ciphertext, just
* compute plaintext for the remaining input
*/
ccm_decrypt_incomplete_block(ctx,
encrypt_block);
ctx->ccm_processed_data_len += remainder;
ctx->ccm_remainder_len = 0;
}
goto out;
}
ctx->ccm_copy_to = NULL;
} while (remainder > 0);
out:
return (CRYPTO_SUCCESS);
}
int
ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
size_t mac_remain, pt_len;
uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
int rv;
pt_len = ctx->ccm_data_len;
/* Make sure output buffer can fit all of the plaintext */
if (out->cd_length < pt_len) {
return (CRYPTO_DATA_LEN_RANGE);
}
pt = ctx->ccm_pt_buf;
mac_remain = ctx->ccm_processed_data_len;
mac_buf = (uint8_t *)ctx->ccm_mac_buf;
macp = (uint8_t *)ctx->ccm_tmp;
while (mac_remain > 0) {
if (mac_remain < block_size) {
memset(macp, 0, block_size);
memcpy(macp, pt, mac_remain);
mac_remain = 0;
} else {
copy_block(pt, macp);
mac_remain -= block_size;
pt += block_size;
}
/* calculate the CBC MAC */
xor_block(macp, mac_buf);
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
}
/* Calculate the CCM MAC */
ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
/* compare the input CCM MAC value with what we calculated */
if (memcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
/* They don't match */
return (CRYPTO_INVALID_MAC);
} else {
rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
if (rv != CRYPTO_SUCCESS)
return (rv);
out->cd_offset += pt_len;
}
return (CRYPTO_SUCCESS);
}
static int
ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
{
size_t macSize, nonceSize;
uint8_t q;
uint64_t maxValue;
/*
* Check the length of the MAC. The only valid
* lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
*/
macSize = ccm_param->ulMACSize;
if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
/* Check the nonce length. Valid values are 7, 8, 9, 10, 11, 12, 13 */
nonceSize = ccm_param->ulNonceSize;
if ((nonceSize < 7) || (nonceSize > 13)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
/* q is the length of the field storing the length, in bytes */
q = (uint8_t)((15 - nonceSize) & 0xFF);
/*
* If it is decrypt, need to make sure size of ciphertext is at least
* bigger than MAC len
*/
if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
/*
* Check to make sure the length of the payload is within the
* range of values allowed by q
*/
if (q < 8) {
maxValue = (1ULL << (q * 8)) - 1;
} else {
maxValue = ULONG_MAX;
}
if (ccm_param->ulDataSize > maxValue) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
return (CRYPTO_SUCCESS);
}
/*
* Format the first block used in CBC-MAC (B0) and the initial counter
* block based on formatting functions and counter generation functions
* specified in RFC 3610 and NIST publication 800-38C, appendix A
*
* b0 is the first block used in CBC-MAC
* cb0 is the first counter block
*
* It's assumed that the arguments b0 and cb0 are preallocated AES blocks
*
*/
static void
ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
{
uint64_t payloadSize;
uint8_t t, q, have_adata = 0;
size_t limit;
int i, j, k;
uint64_t mask = 0;
uint8_t *cb;
q = (uint8_t)((15 - nonceSize) & 0xFF);
t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
/* Construct the first octet of b0 */
if (authDataSize > 0) {
have_adata = 1;
}
b0[0] = (have_adata << 6) | (((t - 2) / 2) << 3) | (q - 1);
/* copy the nonce value into b0 */
memcpy(&(b0[1]), nonce, nonceSize);
/* store the length of the payload into b0 */
memset(&(b0[1+nonceSize]), 0, q);
payloadSize = aes_ctx->ccm_data_len;
limit = MIN(8, q);
for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
}
/* format the counter block */
cb = (uint8_t *)aes_ctx->ccm_cb;
cb[0] = 0x07 & (q-1); /* first byte */
/* copy the nonce value into the counter block */
memcpy(&(cb[1]), nonce, nonceSize);
memset(&(cb[1+nonceSize]), 0, q);
/* Create the mask for the counter field based on the size of nonce */
q <<= 3;
while (q-- > 0) {
mask |= (1ULL << q);
}
#ifdef _ZFS_LITTLE_ENDIAN
mask = htonll(mask);
#endif
aes_ctx->ccm_counter_mask = mask;
/*
* During calculation, we start using counter block 1, we will
* set it up right here.
* We can just set the last byte to have the value 1, because
* even with the biggest nonce of 13, the last byte of the
* counter block will be used for the counter value.
*/
cb[15] = 0x01;
}
/*
* Encode the length of the associated data as
* specified in RFC 3610 and NIST publication 800-38C, appendix A
*/
static void
encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
{
#ifdef UNALIGNED_POINTERS_PERMITTED
uint32_t *lencoded_ptr;
#ifdef _LP64
uint64_t *llencoded_ptr;
#endif
#endif /* UNALIGNED_POINTERS_PERMITTED */
if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
/* 0 < a < (2^16-2^8) */
*encoded_len = 2;
encoded[0] = (auth_data_len & 0xff00) >> 8;
encoded[1] = auth_data_len & 0xff;
} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
(auth_data_len < (1ULL << 31))) {
/* (2^16-2^8) <= a < 2^32 */
*encoded_len = 6;
encoded[0] = 0xff;
encoded[1] = 0xfe;
#ifdef UNALIGNED_POINTERS_PERMITTED
lencoded_ptr = (uint32_t *)&encoded[2];
*lencoded_ptr = htonl(auth_data_len);
#else
encoded[2] = (auth_data_len & 0xff000000) >> 24;
encoded[3] = (auth_data_len & 0xff0000) >> 16;
encoded[4] = (auth_data_len & 0xff00) >> 8;
encoded[5] = auth_data_len & 0xff;
#endif /* UNALIGNED_POINTERS_PERMITTED */
#ifdef _LP64
} else {
/* 2^32 <= a < 2^64 */
*encoded_len = 10;
encoded[0] = 0xff;
encoded[1] = 0xff;
#ifdef UNALIGNED_POINTERS_PERMITTED
llencoded_ptr = (uint64_t *)&encoded[2];
*llencoded_ptr = htonl(auth_data_len);
#else
encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
encoded[5] = (auth_data_len & 0xff00000000) >> 32;
encoded[6] = (auth_data_len & 0xff000000) >> 24;
encoded[7] = (auth_data_len & 0xff0000) >> 16;
encoded[8] = (auth_data_len & 0xff00) >> 8;
encoded[9] = auth_data_len & 0xff;
#endif /* UNALIGNED_POINTERS_PERMITTED */
#endif /* _LP64 */
}
}
static int
ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
unsigned char *auth_data, size_t auth_data_len, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
uint8_t *mac_buf, *datap, *ivp, *authp;
size_t remainder, processed;
uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
size_t encoded_a_len = 0;
mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
/*
* Format the 1st block for CBC-MAC and construct the
* 1st counter block.
*
* aes_ctx->ccm_iv is used for storing the counter block
* mac_buf will store b0 at this time.
*/
ccm_format_initial_blocks(nonce, nonce_len,
auth_data_len, mac_buf, ctx);
/* The IV for CBC MAC for AES CCM mode is always zero */
ivp = (uint8_t *)ctx->ccm_tmp;
memset(ivp, 0, block_size);
xor_block(ivp, mac_buf);
/* encrypt the nonce */
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
/* take care of the associated data, if any */
if (auth_data_len == 0) {
return (CRYPTO_SUCCESS);
}
encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
remainder = auth_data_len;
/* 1st block: it contains encoded associated data, and some data */
authp = (uint8_t *)ctx->ccm_tmp;
memset(authp, 0, block_size);
memcpy(authp, encoded_a, encoded_a_len);
processed = block_size - encoded_a_len;
if (processed > auth_data_len) {
/* in case auth_data is very small */
processed = auth_data_len;
}
memcpy(authp+encoded_a_len, auth_data, processed);
/* xor with previous buffer */
xor_block(authp, mac_buf);
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
remainder -= processed;
if (remainder == 0) {
/* a small amount of associated data, it's all done now */
return (CRYPTO_SUCCESS);
}
do {
if (remainder < block_size) {
/*
* There's not a block full of data, pad rest of
* buffer with zero
*/
memset(authp, 0, block_size);
memcpy(authp, &(auth_data[processed]), remainder);
datap = (uint8_t *)authp;
remainder = 0;
} else {
datap = (uint8_t *)(&(auth_data[processed]));
processed += block_size;
remainder -= block_size;
}
xor_block(datap, mac_buf);
encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
} while (remainder > 0);
return (CRYPTO_SUCCESS);
}
/*
* The following function should be call at encrypt or decrypt init time
* for AES CCM mode.
*/
int
ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
boolean_t is_encrypt_init, size_t block_size,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *))
{
int rv;
CK_AES_CCM_PARAMS *ccm_param;
if (param != NULL) {
ccm_param = (CK_AES_CCM_PARAMS *)param;
if ((rv = ccm_validate_args(ccm_param,
is_encrypt_init)) != 0) {
return (rv);
}
ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
if (is_encrypt_init) {
ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
} else {
ccm_ctx->ccm_data_len =
ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
ccm_ctx->ccm_processed_mac_len = 0;
}
ccm_ctx->ccm_processed_data_len = 0;
ccm_ctx->ccm_flags |= CCM_MODE;
} else {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
encrypt_block, xor_block) != 0) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
if (!is_encrypt_init) {
/* allocate buffer for storing decrypted plaintext */
ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
kmflag);
if (ccm_ctx->ccm_pt_buf == NULL) {
rv = CRYPTO_HOST_MEMORY;
}
}
return (rv);
}
void *
ccm_alloc_ctx(int kmflag)
{
ccm_ctx_t *ccm_ctx;
if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
return (NULL);
ccm_ctx->ccm_flags = CCM_MODE;
return (ccm_ctx);
}
|