1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0-only
/*
* Implement fast Fletcher4 using superscalar pipelines.
*
* Use regular C code to compute
* Fletcher4 in four incremental 64-bit parallel accumulator streams,
* and then combine the streams to form the final four checksum words.
* This implementation is a derivative of the AVX SIMD implementation by
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
*
* Copyright (C) 2016 Romain Dolbeau.
*
* Authors:
* Romain Dolbeau <romain.dolbeau@atos.net>
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <sys/param.h>
#include <sys/byteorder.h>
#include <sys/spa_checksum.h>
#include <sys/string.h>
#include <zfs_fletcher.h>
static void
fletcher_4_superscalar4_init(fletcher_4_ctx_t *ctx)
{
memset(ctx->superscalar, 0, 4 * sizeof (zfs_fletcher_superscalar_t));
}
static void
fletcher_4_superscalar4_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
uint64_t A, B, C, D;
A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1] +
ctx->superscalar[0].v[2] + ctx->superscalar[0].v[3];
B = 0 - ctx->superscalar[0].v[1] - 2 * ctx->superscalar[0].v[2] -
3 * ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
4 * ctx->superscalar[1].v[1] + 4 * ctx->superscalar[1].v[2] +
4 * ctx->superscalar[1].v[3];
C = ctx->superscalar[0].v[2] + 3 * ctx->superscalar[0].v[3] -
6 * ctx->superscalar[1].v[0] - 10 * ctx->superscalar[1].v[1] -
14 * ctx->superscalar[1].v[2] - 18 * ctx->superscalar[1].v[3] +
16 * ctx->superscalar[2].v[0] + 16 * ctx->superscalar[2].v[1] +
16 * ctx->superscalar[2].v[2] + 16 * ctx->superscalar[2].v[3];
D = 0 - ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
10 * ctx->superscalar[1].v[1] + 20 * ctx->superscalar[1].v[2] +
34 * ctx->superscalar[1].v[3] - 48 * ctx->superscalar[2].v[0] -
64 * ctx->superscalar[2].v[1] - 80 * ctx->superscalar[2].v[2] -
96 * ctx->superscalar[2].v[3] + 64 * ctx->superscalar[3].v[0] +
64 * ctx->superscalar[3].v[1] + 64 * ctx->superscalar[3].v[2] +
64 * ctx->superscalar[3].v[3];
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
static void
fletcher_4_superscalar4_native(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
uint64_t a2, b2, c2, d2;
uint64_t a3, b3, c3, d3;
uint64_t a4, b4, c4, d4;
a = ctx->superscalar[0].v[0];
b = ctx->superscalar[1].v[0];
c = ctx->superscalar[2].v[0];
d = ctx->superscalar[3].v[0];
a2 = ctx->superscalar[0].v[1];
b2 = ctx->superscalar[1].v[1];
c2 = ctx->superscalar[2].v[1];
d2 = ctx->superscalar[3].v[1];
a3 = ctx->superscalar[0].v[2];
b3 = ctx->superscalar[1].v[2];
c3 = ctx->superscalar[2].v[2];
d3 = ctx->superscalar[3].v[2];
a4 = ctx->superscalar[0].v[3];
b4 = ctx->superscalar[1].v[3];
c4 = ctx->superscalar[2].v[3];
d4 = ctx->superscalar[3].v[3];
do {
a += ip[0];
a2 += ip[1];
a3 += ip[2];
a4 += ip[3];
b += a;
b2 += a2;
b3 += a3;
b4 += a4;
c += b;
c2 += b2;
c3 += b3;
c4 += b4;
d += c;
d2 += c2;
d3 += c3;
d4 += c4;
} while ((ip += 4) < ipend);
ctx->superscalar[0].v[0] = a;
ctx->superscalar[1].v[0] = b;
ctx->superscalar[2].v[0] = c;
ctx->superscalar[3].v[0] = d;
ctx->superscalar[0].v[1] = a2;
ctx->superscalar[1].v[1] = b2;
ctx->superscalar[2].v[1] = c2;
ctx->superscalar[3].v[1] = d2;
ctx->superscalar[0].v[2] = a3;
ctx->superscalar[1].v[2] = b3;
ctx->superscalar[2].v[2] = c3;
ctx->superscalar[3].v[2] = d3;
ctx->superscalar[0].v[3] = a4;
ctx->superscalar[1].v[3] = b4;
ctx->superscalar[2].v[3] = c4;
ctx->superscalar[3].v[3] = d4;
}
static void
fletcher_4_superscalar4_byteswap(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
uint64_t a2, b2, c2, d2;
uint64_t a3, b3, c3, d3;
uint64_t a4, b4, c4, d4;
a = ctx->superscalar[0].v[0];
b = ctx->superscalar[1].v[0];
c = ctx->superscalar[2].v[0];
d = ctx->superscalar[3].v[0];
a2 = ctx->superscalar[0].v[1];
b2 = ctx->superscalar[1].v[1];
c2 = ctx->superscalar[2].v[1];
d2 = ctx->superscalar[3].v[1];
a3 = ctx->superscalar[0].v[2];
b3 = ctx->superscalar[1].v[2];
c3 = ctx->superscalar[2].v[2];
d3 = ctx->superscalar[3].v[2];
a4 = ctx->superscalar[0].v[3];
b4 = ctx->superscalar[1].v[3];
c4 = ctx->superscalar[2].v[3];
d4 = ctx->superscalar[3].v[3];
do {
a += BSWAP_32(ip[0]);
a2 += BSWAP_32(ip[1]);
a3 += BSWAP_32(ip[2]);
a4 += BSWAP_32(ip[3]);
b += a;
b2 += a2;
b3 += a3;
b4 += a4;
c += b;
c2 += b2;
c3 += b3;
c4 += b4;
d += c;
d2 += c2;
d3 += c3;
d4 += c4;
} while ((ip += 4) < ipend);
ctx->superscalar[0].v[0] = a;
ctx->superscalar[1].v[0] = b;
ctx->superscalar[2].v[0] = c;
ctx->superscalar[3].v[0] = d;
ctx->superscalar[0].v[1] = a2;
ctx->superscalar[1].v[1] = b2;
ctx->superscalar[2].v[1] = c2;
ctx->superscalar[3].v[1] = d2;
ctx->superscalar[0].v[2] = a3;
ctx->superscalar[1].v[2] = b3;
ctx->superscalar[2].v[2] = c3;
ctx->superscalar[3].v[2] = d3;
ctx->superscalar[0].v[3] = a4;
ctx->superscalar[1].v[3] = b4;
ctx->superscalar[2].v[3] = c4;
ctx->superscalar[3].v[3] = d4;
}
static boolean_t fletcher_4_superscalar4_valid(void)
{
return (B_TRUE);
}
const fletcher_4_ops_t fletcher_4_superscalar4_ops = {
.init_native = fletcher_4_superscalar4_init,
.compute_native = fletcher_4_superscalar4_native,
.fini_native = fletcher_4_superscalar4_fini,
.init_byteswap = fletcher_4_superscalar4_init,
.compute_byteswap = fletcher_4_superscalar4_byteswap,
.fini_byteswap = fletcher_4_superscalar4_fini,
.valid = fletcher_4_superscalar4_valid,
.uses_fpu = B_FALSE,
.name = "superscalar4"
};
|