1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
|
// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/brt.h>
#include <sys/brt_impl.h>
#include <sys/ddt.h>
#include <sys/bitmap.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_scan.h>
#include <sys/vdev_impl.h>
#include <sys/kstat.h>
#include <sys/wmsum.h>
/*
* Block Cloning design.
*
* Block Cloning allows to manually clone a file (or a subset of its blocks)
* into another (or the same) file by just creating additional references to
* the data blocks without copying the data itself. Those references are kept
* in the Block Reference Tables (BRTs).
*
* In many ways this is similar to the existing deduplication, but there are
* some important differences:
*
* - Deduplication is automatic and Block Cloning is not - one has to use a
* dedicated system call(s) to clone the given file/blocks.
* - Deduplication keeps all data blocks in its table, even those referenced
* just once. Block Cloning creates an entry in its tables only when there
* are at least two references to the given data block. If the block was
* never explicitly cloned or the second to last reference was dropped,
* there will be neither space nor performance overhead.
* - Deduplication needs data to work - one needs to pass real data to the
* write(2) syscall, so hash can be calculated. Block Cloning doesn't require
* data, just block pointers to the data, so it is extremely fast, as we pay
* neither the cost of reading the data, nor the cost of writing the data -
* we operate exclusively on metadata.
* - If the D (dedup) bit is not set in the block pointer, it means that
* the block is not in the dedup table (DDT) and we won't consult the DDT
* when we need to free the block. Block Cloning must be consulted on every
* free, because we cannot modify the source BP (eg. by setting something
* similar to the D bit), thus we have no hint if the block is in the
* Block Reference Table (BRT), so we need to look into the BRT. There is
* an optimization in place that allows us to eliminate the majority of BRT
* lookups which is described below in the "Minimizing free penalty" section.
* - The BRT entry is much smaller than the DDT entry - for BRT we only store
* 64bit offset and 64bit reference counter.
* - Dedup keys are cryptographic hashes, so two blocks that are close to each
* other on disk are most likely in totally different parts of the DDT.
* The BRT entry keys are offsets into a single top-level VDEV, so data blocks
* from one file should have BRT entries close to each other.
* - Scrub will only do a single pass over a block that is referenced multiple
* times in the DDT. Unfortunately it is not currently (if at all) possible
* with Block Cloning and block referenced multiple times will be scrubbed
* multiple times. The new, sorted scrub should be able to eliminate
* duplicated reads given enough memory.
* - Deduplication requires cryptographically strong hash as a checksum or
* additional data verification. Block Cloning works with any checksum
* algorithm or even with checksumming disabled.
*
* As mentioned above, the BRT entries are much smaller than the DDT entries.
* To uniquely identify a block we just need its vdev id and offset. We also
* need to maintain a reference counter. The vdev id will often repeat, as there
* is a small number of top-level VDEVs and a large number of blocks stored in
* each VDEV. We take advantage of that to reduce the BRT entry size further by
* maintaining one BRT for each top-level VDEV, so we can then have only offset
* and counter as the BRT entry.
*
* Minimizing free penalty.
*
* Block Cloning allows creating additional references to any existing block.
* When we free a block there is no hint in the block pointer whether the block
* was cloned or not, so on each free we have to check if there is a
* corresponding entry in the BRT or not. If there is, we need to decrease
* the reference counter. Doing BRT lookup on every free can potentially be
* expensive by requiring additional I/Os if the BRT doesn't fit into memory.
* This is the main problem with deduplication, so we've learned our lesson and
* try not to repeat the same mistake here. How do we do that? We divide each
* top-level VDEV into 16MB regions. For each region we maintain a counter that
* is a sum of all the BRT entries that have offsets within the region. This
* creates the entries count array of 16bit numbers for each top-level VDEV.
* The entries count array is always kept in memory and updated on disk in the
* same transaction group as the BRT updates to keep everything in-sync. We can
* keep the array in memory, because it is very small. With 16MB regions and
* 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
* the region size even further in the future). Now, when we want to free
* a block, we first consult the array. If the counter for the whole region is
* zero, there is no need to look for the BRT entry, as there isn't one for
* sure. If the counter for the region is greater than zero, only then we will
* do a BRT lookup and if an entry is found we will decrease the reference
* counter in the BRT entry and in the entry counters array.
*
* The entry counters array is small, but can potentially be larger for very
* large VDEVs or smaller regions. In this case we don't want to rewrite entire
* array on every change. We then divide the array into 32kB block and keep
* a bitmap of dirty blocks within a transaction group. When we sync the
* transaction group we can only update the parts of the entry counters array
* that were modified. Note: Keeping track of the dirty parts of the entry
* counters array is implemented, but updating only parts of the array on disk
* is not yet implemented - for now we will update entire array if there was
* any change.
*
* The implementation tries to be economic: if BRT is not used, or no longer
* used, there will be no entries in the MOS and no additional memory used (eg.
* the entry counters array is only allocated if needed).
*
* Interaction between Deduplication and Block Cloning.
*
* If both functionalities are in use, we could end up with a block that is
* referenced multiple times in both DDT and BRT. When we free one of the
* references we couldn't tell where it belongs, so we would have to decide
* what table takes the precedence: do we first clear DDT references or BRT
* references? To avoid this dilemma BRT cooperates with DDT - if a given block
* is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
* lookup DDT entry instead and increase the counter there. No BRT entry
* will be created for a block which has the D (dedup) bit set.
* BRT may be more efficient for manual deduplication, but if the block is
* already in the DDT, then creating additional BRT entry would be less
* efficient. This clever idea was proposed by Allan Jude.
*
* Block Cloning across datasets.
*
* Block Cloning is not limited to cloning blocks within the same dataset.
* It is possible (and very useful) to clone blocks between different datasets.
* One use case is recovering files from snapshots. By cloning the files into
* dataset we need no additional storage. Without Block Cloning we would need
* additional space for those files.
* Another interesting use case is moving the files between datasets
* (copying the file content to the new dataset and removing the source file).
* In that case Block Cloning will only be used briefly, because the BRT entries
* will be removed when the source is removed.
* Block Cloning across encrypted datasets is supported as long as both
* datasets share the same master key (e.g. snapshots and clones)
*
* Block Cloning flow through ZFS layers.
*
* Note: Block Cloning can be used both for cloning file system blocks and ZVOL
* blocks. As of this writing no interface is implemented that allows for block
* cloning within a ZVOL.
* FreeBSD and Linux provides copy_file_range(2) system call and we will use it
* for blocking cloning.
*
* ssize_t
* copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
* size_t len, unsigned int flags);
*
* Even though offsets and length represent bytes, they have to be
* block-aligned or we will return an error so the upper layer can
* fallback to the generic mechanism that will just copy the data.
* Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
* This function was implemented based on zfs_write(), but instead of writing
* the given data we first read block pointers using the new dmu_read_l0_bps()
* function from the source file. Once we have BPs from the source file we call
* the dmu_brt_clone() function on the destination file. This function
* allocates BPs for us. We iterate over all source BPs. If the given BP is
* a hole or an embedded block, we just copy BP as-is. If it points to a real
* data we place this BP on a BRT pending list using the brt_pending_add()
* function.
*
* We use this pending list to keep track of all BPs that got new references
* within this transaction group.
*
* Some special cases to consider and how we address them:
* - The block we want to clone may have been created within the same
* transaction group that we are trying to clone. Such block has no BP
* allocated yet, so cannot be immediately cloned. We return EAGAIN.
* - The block we want to clone may have been modified within the same
* transaction group. We return EAGAIN.
* - A block may be cloned multiple times during one transaction group (that's
* why pending list is actually a tree and not an append-only list - this
* way we can figure out faster if this block is cloned for the first time
* in this txg or consecutive time).
* - A block may be cloned and freed within the same transaction group
* (see dbuf_undirty()).
* - A block may be cloned and within the same transaction group the clone
* can be cloned again (see dmu_read_l0_bps()).
* - A file might have been deleted, but the caller still has a file descriptor
* open to this file and clones it.
*
* When we free a block we have an additional step in the ZIO pipeline where we
* call the zio_brt_free() function. We then call the brt_entry_decref()
* that loads the corresponding BRT entry (if one exists) and decreases
* reference counter. If this is not the last reference we will stop ZIO
* pipeline here. If this is the last reference or the block is not in the
* BRT, we continue the pipeline and free the block as usual.
*
* At the beginning of spa_sync() where there can be no more block cloning,
* but before issuing frees we call brt_pending_apply(). This function applies
* all the new clones to the BRT table - we load BRT entries and update
* reference counters. To sync new BRT entries to disk, we use brt_sync()
* function. This function will sync all dirty per-top-level-vdev BRTs,
* the entry counters arrays, etc.
*
* Block Cloning and ZIL.
*
* Every clone operation is divided into chunks (similar to write) and each
* chunk is cloned in a separate transaction. The chunk size is determined by
* how many BPs we can fit into a single ZIL entry.
* Replaying clone operation is different from the regular clone operation,
* as when we log clone operations we cannot use the source object - it may
* reside on a different dataset, so we log BPs we want to clone.
* The ZIL is replayed when we mount the given dataset, not when the pool is
* imported. Taking this into account it is possible that the pool is imported
* without mounting datasets and the source dataset is destroyed before the
* destination dataset is mounted and its ZIL replayed.
* To address this situation we leverage zil_claim() mechanism where ZFS will
* parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
* entries, we will bump reference counters for their BPs in the BRT. Then
* on mount and ZIL replay we bump the reference counters once more, while the
* first references are dropped during ZIL destroy by zil_free_clone_range().
* It is possible that after zil_claim() we never mount the destination, so
* we never replay its ZIL and just destroy it. In this case the only taken
* references will be dropped by zil_free_clone_range(), since the cloning is
* not going to ever take place.
*/
static kmem_cache_t *brt_entry_cache;
/*
* Enable/disable prefetching of BRT entries that we are going to modify.
*/
static int brt_zap_prefetch = 1;
#ifdef ZFS_DEBUG
#define BRT_DEBUG(...) do { \
if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
__dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
} \
} while (0)
#else
#define BRT_DEBUG(...) do { } while (0)
#endif
static int brt_zap_default_bs = 12;
static int brt_zap_default_ibs = 12;
static kstat_t *brt_ksp;
typedef struct brt_stats {
kstat_named_t brt_addref_entry_not_on_disk;
kstat_named_t brt_addref_entry_on_disk;
kstat_named_t brt_decref_entry_in_memory;
kstat_named_t brt_decref_entry_loaded_from_disk;
kstat_named_t brt_decref_entry_not_in_memory;
kstat_named_t brt_decref_entry_read_lost_race;
kstat_named_t brt_decref_entry_still_referenced;
kstat_named_t brt_decref_free_data_later;
kstat_named_t brt_decref_free_data_now;
kstat_named_t brt_decref_no_entry;
} brt_stats_t;
static brt_stats_t brt_stats = {
{ "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
{ "addref_entry_on_disk", KSTAT_DATA_UINT64 },
{ "decref_entry_in_memory", KSTAT_DATA_UINT64 },
{ "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
{ "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
{ "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
{ "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
{ "decref_free_data_later", KSTAT_DATA_UINT64 },
{ "decref_free_data_now", KSTAT_DATA_UINT64 },
{ "decref_no_entry", KSTAT_DATA_UINT64 }
};
struct {
wmsum_t brt_addref_entry_not_on_disk;
wmsum_t brt_addref_entry_on_disk;
wmsum_t brt_decref_entry_in_memory;
wmsum_t brt_decref_entry_loaded_from_disk;
wmsum_t brt_decref_entry_not_in_memory;
wmsum_t brt_decref_entry_read_lost_race;
wmsum_t brt_decref_entry_still_referenced;
wmsum_t brt_decref_free_data_later;
wmsum_t brt_decref_free_data_now;
wmsum_t brt_decref_no_entry;
} brt_sums;
#define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
static int brt_entry_compare(const void *x1, const void *x2);
static void brt_vdevs_expand(spa_t *spa, uint64_t nvdevs);
static void
brt_rlock(spa_t *spa)
{
rw_enter(&spa->spa_brt_lock, RW_READER);
}
static void
brt_wlock(spa_t *spa)
{
rw_enter(&spa->spa_brt_lock, RW_WRITER);
}
static void
brt_unlock(spa_t *spa)
{
rw_exit(&spa->spa_brt_lock);
}
static uint16_t
brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
{
ASSERT3U(idx, <, brtvd->bv_size);
if (unlikely(brtvd->bv_need_byteswap)) {
return (BSWAP_16(brtvd->bv_entcount[idx]));
} else {
return (brtvd->bv_entcount[idx]);
}
}
static void
brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
{
ASSERT3U(idx, <, brtvd->bv_size);
if (unlikely(brtvd->bv_need_byteswap)) {
brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
} else {
brtvd->bv_entcount[idx] = entcnt;
}
}
static void
brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
{
uint16_t entcnt;
ASSERT3U(idx, <, brtvd->bv_size);
entcnt = brt_vdev_entcount_get(brtvd, idx);
ASSERT(entcnt < UINT16_MAX);
brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
}
static void
brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
{
uint16_t entcnt;
ASSERT3U(idx, <, brtvd->bv_size);
entcnt = brt_vdev_entcount_get(brtvd, idx);
ASSERT(entcnt > 0);
brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
}
#ifdef ZFS_DEBUG
static void
brt_vdev_dump(brt_vdev_t *brtvd)
{
uint64_t idx;
uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
"size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu",
(u_longlong_t)brtvd->bv_vdevid,
brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
(u_longlong_t)brtvd->bv_size,
(u_longlong_t)brtvd->bv_totalcount,
(u_longlong_t)nblocks,
(size_t)BT_SIZEOFMAP(nblocks));
if (brtvd->bv_totalcount > 0) {
zfs_dbgmsg(" entcounts:");
for (idx = 0; idx < brtvd->bv_size; idx++) {
uint16_t entcnt = brt_vdev_entcount_get(brtvd, idx);
if (entcnt > 0) {
zfs_dbgmsg(" [%04llu] %hu",
(u_longlong_t)idx, entcnt);
}
}
}
if (brtvd->bv_entcount_dirty) {
char *bitmap;
bitmap = kmem_alloc(nblocks + 1, KM_SLEEP);
for (idx = 0; idx < nblocks; idx++) {
bitmap[idx] =
BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
}
bitmap[idx] = '\0';
zfs_dbgmsg(" dirty: %s", bitmap);
kmem_free(bitmap, nblocks + 1);
}
}
#endif
static brt_vdev_t *
brt_vdev(spa_t *spa, uint64_t vdevid, boolean_t alloc)
{
brt_vdev_t *brtvd = NULL;
brt_rlock(spa);
if (vdevid < spa->spa_brt_nvdevs) {
brtvd = spa->spa_brt_vdevs[vdevid];
} else if (alloc) {
/* New VDEV was added. */
brt_unlock(spa);
brt_wlock(spa);
if (vdevid >= spa->spa_brt_nvdevs)
brt_vdevs_expand(spa, vdevid + 1);
brtvd = spa->spa_brt_vdevs[vdevid];
}
brt_unlock(spa);
return (brtvd);
}
static void
brt_vdev_create(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
{
char name[64];
ASSERT(brtvd->bv_initiated);
ASSERT0(brtvd->bv_mos_brtvdev);
ASSERT0(brtvd->bv_mos_entries);
uint64_t mos_entries = zap_create_flags(spa->spa_meta_objset, 0,
ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
brt_zap_default_bs, brt_zap_default_ibs, DMU_OT_NONE, 0, tx);
VERIFY(mos_entries != 0);
VERIFY0(dnode_hold(spa->spa_meta_objset, mos_entries, brtvd,
&brtvd->bv_mos_entries_dnode));
rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
brtvd->bv_mos_entries = mos_entries;
rw_exit(&brtvd->bv_mos_entries_lock);
BRT_DEBUG("MOS entries created, object=%llu",
(u_longlong_t)brtvd->bv_mos_entries);
/*
* We allocate DMU buffer to store the bv_entcount[] array.
* We will keep array size (bv_size) and cummulative count for all
* bv_entcount[]s (bv_totalcount) in the bonus buffer.
*/
brtvd->bv_mos_brtvdev = dmu_object_alloc(spa->spa_meta_objset,
DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
VERIFY(brtvd->bv_mos_brtvdev != 0);
BRT_DEBUG("MOS BRT VDEV created, object=%llu",
(u_longlong_t)brtvd->bv_mos_brtvdev);
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
(u_longlong_t)brtvd->bv_vdevid);
VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
BRT_DEBUG("Pool directory object created, object=%s", name);
spa_feature_incr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
}
static void
brt_vdev_realloc(spa_t *spa, brt_vdev_t *brtvd)
{
vdev_t *vd;
uint16_t *entcount;
ulong_t *bitmap;
uint64_t nblocks, onblocks, size;
ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
vd = vdev_lookup_top(spa, brtvd->bv_vdevid);
size = (vdev_get_min_asize(vd) - 1) / spa->spa_brt_rangesize + 1;
spa_config_exit(spa, SCL_VDEV, FTAG);
entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
if (!brtvd->bv_initiated) {
ASSERT0(brtvd->bv_size);
ASSERT0P(brtvd->bv_entcount);
ASSERT0P(brtvd->bv_bitmap);
} else {
ASSERT(brtvd->bv_size > 0);
ASSERT(brtvd->bv_entcount != NULL);
ASSERT(brtvd->bv_bitmap != NULL);
/*
* TODO: Allow vdev shrinking. We only need to implement
* shrinking the on-disk BRT VDEV object.
* dmu_free_range(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
* offset, size, tx);
*/
ASSERT3U(brtvd->bv_size, <=, size);
memcpy(entcount, brtvd->bv_entcount,
sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
vmem_free(brtvd->bv_entcount,
sizeof (entcount[0]) * brtvd->bv_size);
onblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
BT_SIZEOFMAP(onblocks)));
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(onblocks));
}
brtvd->bv_size = size;
brtvd->bv_entcount = entcount;
brtvd->bv_bitmap = bitmap;
if (!brtvd->bv_initiated) {
brtvd->bv_need_byteswap = FALSE;
brtvd->bv_initiated = TRUE;
BRT_DEBUG("BRT VDEV %llu initiated.",
(u_longlong_t)brtvd->bv_vdevid);
}
}
static int
brt_vdev_load(spa_t *spa, brt_vdev_t *brtvd)
{
dmu_buf_t *db;
brt_vdev_phys_t *bvphys;
int error;
ASSERT(!brtvd->bv_initiated);
ASSERT(brtvd->bv_mos_brtvdev != 0);
error = dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
FTAG, &db);
if (error != 0)
return (error);
bvphys = db->db_data;
if (spa->spa_brt_rangesize == 0) {
spa->spa_brt_rangesize = bvphys->bvp_rangesize;
} else {
ASSERT3U(spa->spa_brt_rangesize, ==, bvphys->bvp_rangesize);
}
brt_vdev_realloc(spa, brtvd);
/* TODO: We don't support VDEV shrinking. */
ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
/*
* If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
*/
error = dmu_read(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
if (error != 0)
return (error);
ASSERT(bvphys->bvp_mos_entries != 0);
VERIFY0(dnode_hold(spa->spa_meta_objset, bvphys->bvp_mos_entries, brtvd,
&brtvd->bv_mos_entries_dnode));
rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
rw_exit(&brtvd->bv_mos_entries_lock);
brtvd->bv_need_byteswap =
(bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
brtvd->bv_totalcount = bvphys->bvp_totalcount;
brtvd->bv_usedspace = bvphys->bvp_usedspace;
brtvd->bv_savedspace = bvphys->bvp_savedspace;
dmu_buf_rele(db, FTAG);
BRT_DEBUG("BRT VDEV %llu loaded: mos_brtvdev=%llu, mos_entries=%llu",
(u_longlong_t)brtvd->bv_vdevid,
(u_longlong_t)brtvd->bv_mos_brtvdev,
(u_longlong_t)brtvd->bv_mos_entries);
return (0);
}
static void
brt_vdev_dealloc(brt_vdev_t *brtvd)
{
ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
ASSERT(brtvd->bv_initiated);
ASSERT0(avl_numnodes(&brtvd->bv_tree));
vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
brtvd->bv_entcount = NULL;
uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(nblocks));
brtvd->bv_bitmap = NULL;
brtvd->bv_size = 0;
brtvd->bv_initiated = FALSE;
BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
}
static void
brt_vdev_destroy(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
{
char name[64];
uint64_t count;
ASSERT(brtvd->bv_initiated);
ASSERT(brtvd->bv_mos_brtvdev != 0);
ASSERT(brtvd->bv_mos_entries != 0);
ASSERT0(brtvd->bv_totalcount);
ASSERT0(brtvd->bv_usedspace);
ASSERT0(brtvd->bv_savedspace);
uint64_t mos_entries = brtvd->bv_mos_entries;
rw_enter(&brtvd->bv_mos_entries_lock, RW_WRITER);
brtvd->bv_mos_entries = 0;
rw_exit(&brtvd->bv_mos_entries_lock);
dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
brtvd->bv_mos_entries_dnode = NULL;
ASSERT0(zap_count(spa->spa_meta_objset, mos_entries, &count));
ASSERT0(count);
VERIFY0(zap_destroy(spa->spa_meta_objset, mos_entries, tx));
BRT_DEBUG("MOS entries destroyed, object=%llu",
(u_longlong_t)mos_entries);
VERIFY0(dmu_object_free(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
tx));
BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
(u_longlong_t)brtvd->bv_mos_brtvdev);
brtvd->bv_mos_brtvdev = 0;
brtvd->bv_entcount_dirty = FALSE;
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
(u_longlong_t)brtvd->bv_vdevid);
VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
name, tx));
BRT_DEBUG("Pool directory object removed, object=%s", name);
brtvd->bv_meta_dirty = FALSE;
rw_enter(&brtvd->bv_lock, RW_WRITER);
brt_vdev_dealloc(brtvd);
rw_exit(&brtvd->bv_lock);
spa_feature_decr(spa, SPA_FEATURE_BLOCK_CLONING, tx);
}
static void
brt_vdevs_expand(spa_t *spa, uint64_t nvdevs)
{
brt_vdev_t **vdevs;
ASSERT(RW_WRITE_HELD(&spa->spa_brt_lock));
ASSERT3U(nvdevs, >=, spa->spa_brt_nvdevs);
if (nvdevs == spa->spa_brt_nvdevs)
return;
vdevs = kmem_zalloc(sizeof (*spa->spa_brt_vdevs) * nvdevs, KM_SLEEP);
if (spa->spa_brt_nvdevs > 0) {
ASSERT(spa->spa_brt_vdevs != NULL);
memcpy(vdevs, spa->spa_brt_vdevs,
sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
kmem_free(spa->spa_brt_vdevs,
sizeof (*spa->spa_brt_vdevs) * spa->spa_brt_nvdevs);
}
spa->spa_brt_vdevs = vdevs;
for (uint64_t vdevid = spa->spa_brt_nvdevs; vdevid < nvdevs; vdevid++) {
brt_vdev_t *brtvd = kmem_zalloc(sizeof (*brtvd), KM_SLEEP);
rw_init(&brtvd->bv_lock, NULL, RW_DEFAULT, NULL);
brtvd->bv_vdevid = vdevid;
brtvd->bv_initiated = FALSE;
rw_init(&brtvd->bv_mos_entries_lock, NULL, RW_DEFAULT, NULL);
avl_create(&brtvd->bv_tree, brt_entry_compare,
sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
for (int i = 0; i < TXG_SIZE; i++) {
avl_create(&brtvd->bv_pending_tree[i],
brt_entry_compare, sizeof (brt_entry_t),
offsetof(brt_entry_t, bre_node));
}
mutex_init(&brtvd->bv_pending_lock, NULL, MUTEX_DEFAULT, NULL);
spa->spa_brt_vdevs[vdevid] = brtvd;
}
BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
(u_longlong_t)spa->spa_brt_nvdevs, (u_longlong_t)nvdevs);
spa->spa_brt_nvdevs = nvdevs;
}
static boolean_t
brt_vdev_lookup(spa_t *spa, brt_vdev_t *brtvd, uint64_t offset)
{
uint64_t idx = offset / spa->spa_brt_rangesize;
if (idx < brtvd->bv_size) {
/* VDEV wasn't expanded. */
return (brt_vdev_entcount_get(brtvd, idx) > 0);
}
return (FALSE);
}
static void
brt_vdev_addref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
uint64_t dsize, uint64_t count)
{
uint64_t idx;
ASSERT(brtvd->bv_initiated);
brtvd->bv_savedspace += dsize * count;
brtvd->bv_meta_dirty = TRUE;
if (bre->bre_count > 0)
return;
brtvd->bv_usedspace += dsize;
idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
if (idx >= brtvd->bv_size) {
/* VDEV has been expanded. */
rw_enter(&brtvd->bv_lock, RW_WRITER);
brt_vdev_realloc(spa, brtvd);
rw_exit(&brtvd->bv_lock);
}
ASSERT3U(idx, <, brtvd->bv_size);
brtvd->bv_totalcount++;
brt_vdev_entcount_inc(brtvd, idx);
brtvd->bv_entcount_dirty = TRUE;
idx = idx / BRT_BLOCKSIZE / 8;
BT_SET(brtvd->bv_bitmap, idx);
}
static void
brt_vdev_decref(spa_t *spa, brt_vdev_t *brtvd, const brt_entry_t *bre,
uint64_t dsize)
{
uint64_t idx;
ASSERT(RW_WRITE_HELD(&brtvd->bv_lock));
ASSERT(brtvd->bv_initiated);
brtvd->bv_savedspace -= dsize;
brtvd->bv_meta_dirty = TRUE;
if (bre->bre_count > 0)
return;
brtvd->bv_usedspace -= dsize;
idx = BRE_OFFSET(bre) / spa->spa_brt_rangesize;
ASSERT3U(idx, <, brtvd->bv_size);
ASSERT(brtvd->bv_totalcount > 0);
brtvd->bv_totalcount--;
brt_vdev_entcount_dec(brtvd, idx);
brtvd->bv_entcount_dirty = TRUE;
idx = idx / BRT_BLOCKSIZE / 8;
BT_SET(brtvd->bv_bitmap, idx);
}
static void
brt_vdev_sync(spa_t *spa, brt_vdev_t *brtvd, dmu_tx_t *tx)
{
dmu_buf_t *db;
brt_vdev_phys_t *bvphys;
ASSERT(brtvd->bv_meta_dirty);
ASSERT(brtvd->bv_mos_brtvdev != 0);
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, brtvd->bv_mos_brtvdev,
FTAG, &db));
if (brtvd->bv_entcount_dirty) {
/*
* TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
*/
dmu_write(spa->spa_meta_objset, brtvd->bv_mos_brtvdev, 0,
brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
brtvd->bv_entcount, tx);
uint64_t nblocks = BRT_RANGESIZE_TO_NBLOCKS(brtvd->bv_size);
memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(nblocks));
brtvd->bv_entcount_dirty = FALSE;
}
dmu_buf_will_dirty(db, tx);
bvphys = db->db_data;
bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
bvphys->bvp_size = brtvd->bv_size;
if (brtvd->bv_need_byteswap) {
bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
} else {
bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
}
bvphys->bvp_totalcount = brtvd->bv_totalcount;
bvphys->bvp_rangesize = spa->spa_brt_rangesize;
bvphys->bvp_usedspace = brtvd->bv_usedspace;
bvphys->bvp_savedspace = brtvd->bv_savedspace;
dmu_buf_rele(db, FTAG);
brtvd->bv_meta_dirty = FALSE;
}
static void
brt_vdevs_free(spa_t *spa)
{
if (spa->spa_brt_vdevs == 0)
return;
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
rw_enter(&brtvd->bv_lock, RW_WRITER);
if (brtvd->bv_initiated)
brt_vdev_dealloc(brtvd);
rw_exit(&brtvd->bv_lock);
rw_destroy(&brtvd->bv_lock);
if (brtvd->bv_mos_entries != 0)
dnode_rele(brtvd->bv_mos_entries_dnode, brtvd);
rw_destroy(&brtvd->bv_mos_entries_lock);
avl_destroy(&brtvd->bv_tree);
for (int i = 0; i < TXG_SIZE; i++)
avl_destroy(&brtvd->bv_pending_tree[i]);
mutex_destroy(&brtvd->bv_pending_lock);
kmem_free(brtvd, sizeof (*brtvd));
}
kmem_free(spa->spa_brt_vdevs, sizeof (*spa->spa_brt_vdevs) *
spa->spa_brt_nvdevs);
}
static void
brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
{
bre->bre_bp = *bp;
bre->bre_count = 0;
bre->bre_pcount = 0;
*vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
}
static int
brt_entry_lookup(brt_vdev_t *brtvd, brt_entry_t *bre)
{
uint64_t off = BRE_OFFSET(bre);
if (brtvd->bv_mos_entries == 0)
return (SET_ERROR(ENOENT));
return (zap_lookup_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
&off, BRT_KEY_WORDS, 1, sizeof (bre->bre_count), &bre->bre_count));
}
/*
* Return TRUE if we _can_ have BRT entry for this bp. It might be false
* positive, but gives us quick answer if we should look into BRT, which
* may require reads and thus will be more expensive.
*/
boolean_t
brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
{
if (spa->spa_brt_nvdevs == 0)
return (B_FALSE);
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
if (brtvd == NULL || !brtvd->bv_initiated)
return (FALSE);
/*
* We don't need locks here, since bv_entcount pointer must be
* stable at this point, and we don't care about false positive
* races here, while false negative should be impossible, since
* all brt_vdev_addref() have already completed by this point.
*/
uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
return (brt_vdev_lookup(spa, brtvd, off));
}
uint64_t
brt_get_dspace(spa_t *spa)
{
if (spa->spa_brt_nvdevs == 0)
return (0);
brt_rlock(spa);
uint64_t s = 0;
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
s += spa->spa_brt_vdevs[vdevid]->bv_savedspace;
brt_unlock(spa);
return (s);
}
uint64_t
brt_get_used(spa_t *spa)
{
if (spa->spa_brt_nvdevs == 0)
return (0);
brt_rlock(spa);
uint64_t s = 0;
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++)
s += spa->spa_brt_vdevs[vdevid]->bv_usedspace;
brt_unlock(spa);
return (s);
}
uint64_t
brt_get_saved(spa_t *spa)
{
return (brt_get_dspace(spa));
}
uint64_t
brt_get_ratio(spa_t *spa)
{
uint64_t used = brt_get_used(spa);
if (used == 0)
return (100);
return ((used + brt_get_saved(spa)) * 100 / used);
}
static int
brt_kstats_update(kstat_t *ksp, int rw)
{
brt_stats_t *bs = ksp->ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
bs->brt_addref_entry_not_on_disk.value.ui64 =
wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
bs->brt_addref_entry_on_disk.value.ui64 =
wmsum_value(&brt_sums.brt_addref_entry_on_disk);
bs->brt_decref_entry_in_memory.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_in_memory);
bs->brt_decref_entry_loaded_from_disk.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
bs->brt_decref_entry_not_in_memory.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
bs->brt_decref_entry_read_lost_race.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
bs->brt_decref_entry_still_referenced.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
bs->brt_decref_free_data_later.value.ui64 =
wmsum_value(&brt_sums.brt_decref_free_data_later);
bs->brt_decref_free_data_now.value.ui64 =
wmsum_value(&brt_sums.brt_decref_free_data_now);
bs->brt_decref_no_entry.value.ui64 =
wmsum_value(&brt_sums.brt_decref_no_entry);
return (0);
}
static void
brt_stat_init(void)
{
wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
wmsum_init(&brt_sums.brt_decref_no_entry, 0);
brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (brt_ksp != NULL) {
brt_ksp->ks_data = &brt_stats;
brt_ksp->ks_update = brt_kstats_update;
kstat_install(brt_ksp);
}
}
static void
brt_stat_fini(void)
{
if (brt_ksp != NULL) {
kstat_delete(brt_ksp);
brt_ksp = NULL;
}
wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
wmsum_fini(&brt_sums.brt_decref_free_data_later);
wmsum_fini(&brt_sums.brt_decref_free_data_now);
wmsum_fini(&brt_sums.brt_decref_no_entry);
}
void
brt_init(void)
{
brt_entry_cache = kmem_cache_create("brt_entry_cache",
sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
brt_stat_init();
}
void
brt_fini(void)
{
brt_stat_fini();
kmem_cache_destroy(brt_entry_cache);
}
/* Return TRUE if block should be freed immediately. */
boolean_t
brt_entry_decref(spa_t *spa, const blkptr_t *bp)
{
brt_entry_t *bre, *racebre;
brt_entry_t bre_search;
avl_index_t where;
uint64_t vdevid;
int error;
brt_entry_fill(bp, &bre_search, &vdevid);
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
ASSERT(brtvd != NULL);
rw_enter(&brtvd->bv_lock, RW_WRITER);
ASSERT(brtvd->bv_initiated);
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
if (bre != NULL) {
BRTSTAT_BUMP(brt_decref_entry_in_memory);
goto out;
} else {
BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
}
rw_exit(&brtvd->bv_lock);
error = brt_entry_lookup(brtvd, &bre_search);
/* bre_search now contains correct bre_count */
if (error == ENOENT) {
BRTSTAT_BUMP(brt_decref_no_entry);
return (B_TRUE);
}
ASSERT0(error);
rw_enter(&brtvd->bv_lock, RW_WRITER);
racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
if (racebre != NULL) {
/* The entry was added when the lock was dropped. */
BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
bre = racebre;
goto out;
}
BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
bre->bre_bp = bre_search.bre_bp;
bre->bre_count = bre_search.bre_count;
bre->bre_pcount = 0;
avl_insert(&brtvd->bv_tree, bre, where);
out:
if (bre->bre_count == 0) {
rw_exit(&brtvd->bv_lock);
BRTSTAT_BUMP(brt_decref_free_data_now);
return (B_TRUE);
}
bre->bre_pcount--;
ASSERT(bre->bre_count > 0);
bre->bre_count--;
if (bre->bre_count == 0)
BRTSTAT_BUMP(brt_decref_free_data_later);
else
BRTSTAT_BUMP(brt_decref_entry_still_referenced);
brt_vdev_decref(spa, brtvd, bre, bp_get_dsize_sync(spa, bp));
rw_exit(&brtvd->bv_lock);
return (B_FALSE);
}
uint64_t
brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
{
brt_entry_t bre_search, *bre;
uint64_t vdevid, refcnt;
int error;
brt_entry_fill(bp, &bre_search, &vdevid);
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
ASSERT(brtvd != NULL);
rw_enter(&brtvd->bv_lock, RW_READER);
ASSERT(brtvd->bv_initiated);
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
if (bre == NULL) {
rw_exit(&brtvd->bv_lock);
error = brt_entry_lookup(brtvd, &bre_search);
if (error == ENOENT) {
refcnt = 0;
} else {
ASSERT0(error);
refcnt = bre_search.bre_count;
}
} else {
refcnt = bre->bre_count;
rw_exit(&brtvd->bv_lock);
}
return (refcnt);
}
static void
brt_prefetch(brt_vdev_t *brtvd, const blkptr_t *bp)
{
if (!brt_zap_prefetch || brtvd->bv_mos_entries == 0)
return;
uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[0]);
rw_enter(&brtvd->bv_mos_entries_lock, RW_READER);
if (brtvd->bv_mos_entries != 0) {
(void) zap_prefetch_uint64_by_dnode(brtvd->bv_mos_entries_dnode,
&off, BRT_KEY_WORDS);
}
rw_exit(&brtvd->bv_mos_entries_lock);
}
static int
brt_entry_compare(const void *x1, const void *x2)
{
const brt_entry_t *bre1 = x1, *bre2 = x2;
const blkptr_t *bp1 = &bre1->bre_bp, *bp2 = &bre2->bre_bp;
return (TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
DVA_GET_OFFSET(&bp2->blk_dva[0])));
}
void
brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
{
brt_entry_t *bre, *newbre;
avl_index_t where;
uint64_t txg;
txg = dmu_tx_get_txg(tx);
ASSERT3U(txg, !=, 0);
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_TRUE);
avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
newbre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
newbre->bre_bp = *bp;
newbre->bre_count = 0;
newbre->bre_pcount = 1;
mutex_enter(&brtvd->bv_pending_lock);
bre = avl_find(pending_tree, newbre, &where);
if (bre == NULL) {
avl_insert(pending_tree, newbre, where);
newbre = NULL;
} else {
bre->bre_pcount++;
}
mutex_exit(&brtvd->bv_pending_lock);
if (newbre != NULL) {
ASSERT(bre != NULL);
ASSERT(bre != newbre);
kmem_cache_free(brt_entry_cache, newbre);
} else {
ASSERT0P(bre);
/* Prefetch BRT entry for the syncing context. */
brt_prefetch(brtvd, bp);
}
}
void
brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
{
brt_entry_t *bre, bre_search;
uint64_t txg;
txg = dmu_tx_get_txg(tx);
ASSERT3U(txg, !=, 0);
uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[0]);
brt_vdev_t *brtvd = brt_vdev(spa, vdevid, B_FALSE);
ASSERT(brtvd != NULL);
avl_tree_t *pending_tree = &brtvd->bv_pending_tree[txg & TXG_MASK];
bre_search.bre_bp = *bp;
mutex_enter(&brtvd->bv_pending_lock);
bre = avl_find(pending_tree, &bre_search, NULL);
ASSERT(bre != NULL);
ASSERT(bre->bre_pcount > 0);
bre->bre_pcount--;
if (bre->bre_pcount == 0)
avl_remove(pending_tree, bre);
else
bre = NULL;
mutex_exit(&brtvd->bv_pending_lock);
if (bre)
kmem_cache_free(brt_entry_cache, bre);
}
static void
brt_pending_apply_vdev(spa_t *spa, brt_vdev_t *brtvd, uint64_t txg)
{
brt_entry_t *bre, *nbre;
/*
* We are in syncing context, so no other bv_pending_tree accesses
* are possible for the TXG. So we don't need bv_pending_lock.
*/
ASSERT(avl_is_empty(&brtvd->bv_tree));
avl_swap(&brtvd->bv_tree, &brtvd->bv_pending_tree[txg & TXG_MASK]);
for (bre = avl_first(&brtvd->bv_tree); bre; bre = nbre) {
nbre = AVL_NEXT(&brtvd->bv_tree, bre);
/*
* If the block has DEDUP bit set, it means that it
* already exists in the DEDUP table, so we can just
* use that instead of creating new entry in the BRT.
*/
if (BP_GET_DEDUP(&bre->bre_bp)) {
while (bre->bre_pcount > 0) {
if (!ddt_addref(spa, &bre->bre_bp))
break;
bre->bre_pcount--;
}
if (bre->bre_pcount == 0) {
avl_remove(&brtvd->bv_tree, bre);
kmem_cache_free(brt_entry_cache, bre);
continue;
}
}
/*
* Unless we know that the block is definitely not in ZAP,
* try to get its reference count from there.
*/
uint64_t off = BRE_OFFSET(bre);
if (brtvd->bv_mos_entries != 0 &&
brt_vdev_lookup(spa, brtvd, off)) {
int error = zap_lookup_uint64_by_dnode(
brtvd->bv_mos_entries_dnode, &off,
BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
&bre->bre_count);
if (error == 0) {
BRTSTAT_BUMP(brt_addref_entry_on_disk);
} else {
ASSERT3U(error, ==, ENOENT);
BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
}
}
}
/*
* If all the cloned blocks we had were handled by DDT, we don't need
* to initiate the vdev.
*/
if (avl_is_empty(&brtvd->bv_tree))
return;
if (!brtvd->bv_initiated) {
rw_enter(&brtvd->bv_lock, RW_WRITER);
brt_vdev_realloc(spa, brtvd);
rw_exit(&brtvd->bv_lock);
}
/*
* Convert pending references into proper ones. This has to be a
* separate loop, since entcount modifications would cause false
* positives for brt_vdev_lookup() on following iterations.
*/
for (bre = avl_first(&brtvd->bv_tree); bre;
bre = AVL_NEXT(&brtvd->bv_tree, bre)) {
brt_vdev_addref(spa, brtvd, bre,
bp_get_dsize(spa, &bre->bre_bp), bre->bre_pcount);
bre->bre_count += bre->bre_pcount;
}
}
void
brt_pending_apply(spa_t *spa, uint64_t txg)
{
brt_rlock(spa);
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
brt_unlock(spa);
brt_pending_apply_vdev(spa, brtvd, txg);
brt_rlock(spa);
}
brt_unlock(spa);
}
static void
brt_sync_entry(dnode_t *dn, brt_entry_t *bre, dmu_tx_t *tx)
{
uint64_t off = BRE_OFFSET(bre);
if (bre->bre_pcount == 0) {
/* The net change is zero, nothing to do in ZAP. */
} else if (bre->bre_count == 0) {
int error = zap_remove_uint64_by_dnode(dn, &off,
BRT_KEY_WORDS, tx);
VERIFY(error == 0 || error == ENOENT);
} else {
VERIFY0(zap_update_uint64_by_dnode(dn, &off,
BRT_KEY_WORDS, 1, sizeof (bre->bre_count),
&bre->bre_count, tx));
}
}
static void
brt_sync_table(spa_t *spa, dmu_tx_t *tx)
{
brt_entry_t *bre;
brt_rlock(spa);
for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
brt_unlock(spa);
if (!brtvd->bv_meta_dirty) {
ASSERT(!brtvd->bv_entcount_dirty);
ASSERT0(avl_numnodes(&brtvd->bv_tree));
brt_rlock(spa);
continue;
}
ASSERT(!brtvd->bv_entcount_dirty ||
avl_numnodes(&brtvd->bv_tree) != 0);
if (brtvd->bv_mos_brtvdev == 0)
brt_vdev_create(spa, brtvd, tx);
void *c = NULL;
while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
brt_sync_entry(brtvd->bv_mos_entries_dnode, bre, tx);
kmem_cache_free(brt_entry_cache, bre);
}
#ifdef ZFS_DEBUG
if (zfs_flags & ZFS_DEBUG_BRT)
brt_vdev_dump(brtvd);
#endif
if (brtvd->bv_totalcount == 0)
brt_vdev_destroy(spa, brtvd, tx);
else
brt_vdev_sync(spa, brtvd, tx);
brt_rlock(spa);
}
brt_unlock(spa);
}
void
brt_sync(spa_t *spa, uint64_t txg)
{
dmu_tx_t *tx;
uint64_t vdevid;
ASSERT3U(spa_syncing_txg(spa), ==, txg);
brt_rlock(spa);
for (vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
if (spa->spa_brt_vdevs[vdevid]->bv_meta_dirty)
break;
}
if (vdevid >= spa->spa_brt_nvdevs) {
brt_unlock(spa);
return;
}
brt_unlock(spa);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
brt_sync_table(spa, tx);
dmu_tx_commit(tx);
}
static void
brt_alloc(spa_t *spa)
{
rw_init(&spa->spa_brt_lock, NULL, RW_DEFAULT, NULL);
spa->spa_brt_vdevs = NULL;
spa->spa_brt_nvdevs = 0;
spa->spa_brt_rangesize = 0;
}
void
brt_create(spa_t *spa)
{
brt_alloc(spa);
spa->spa_brt_rangesize = BRT_RANGESIZE;
}
int
brt_load(spa_t *spa)
{
int error = 0;
brt_alloc(spa);
brt_wlock(spa);
for (uint64_t vdevid = 0; vdevid < spa->spa_root_vdev->vdev_children;
vdevid++) {
char name[64];
uint64_t mos_brtvdev;
/* Look if this vdev had active block cloning. */
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
(u_longlong_t)vdevid);
error = zap_lookup(spa->spa_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
&mos_brtvdev);
if (error == ENOENT) {
error = 0;
continue;
}
if (error != 0)
break;
/* If it did, then allocate them all and load this one. */
brt_vdevs_expand(spa, spa->spa_root_vdev->vdev_children);
brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
rw_enter(&brtvd->bv_lock, RW_WRITER);
brtvd->bv_mos_brtvdev = mos_brtvdev;
error = brt_vdev_load(spa, brtvd);
rw_exit(&brtvd->bv_lock);
if (error != 0)
break;
}
if (spa->spa_brt_rangesize == 0)
spa->spa_brt_rangesize = BRT_RANGESIZE;
brt_unlock(spa);
return (error);
}
void
brt_unload(spa_t *spa)
{
if (spa->spa_brt_rangesize == 0)
return;
brt_vdevs_free(spa);
rw_destroy(&spa->spa_brt_lock);
spa->spa_brt_rangesize = 0;
}
ZFS_MODULE_PARAM(zfs_brt, , brt_zap_prefetch, INT, ZMOD_RW,
"Enable prefetching of BRT ZAP entries");
ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_bs, UINT, ZMOD_RW,
"BRT ZAP leaf blockshift");
ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_ibs, UINT, ZMOD_RW,
"BRT ZAP indirect blockshift");
|