1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
|
// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2019 by Delphix. All rights reserved.
*/
#include <sys/btree.h>
#include <sys/bitops.h>
#include <sys/zfs_context.h>
kmem_cache_t *zfs_btree_leaf_cache;
/*
* Control the extent of the verification that occurs when zfs_btree_verify is
* called. Primarily used for debugging when extending the btree logic and
* functionality. As the intensity is increased, new verification steps are
* added. These steps are cumulative; intensity = 3 includes the intensity = 1
* and intensity = 2 steps as well.
*
* Intensity 1: Verify that the tree's height is consistent throughout.
* Intensity 2: Verify that a core node's children's parent pointers point
* to the core node.
* Intensity 3: Verify that the total number of elements in the tree matches the
* sum of the number of elements in each node. Also verifies that each node's
* count obeys the invariants (less than or equal to maximum value, greater than
* or equal to half the maximum minus one).
* Intensity 4: Verify that each element compares less than the element
* immediately after it and greater than the one immediately before it using the
* comparator function. For core nodes, also checks that each element is greater
* than the last element in the first of the two nodes it separates, and less
* than the first element in the second of the two nodes.
* Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
* of each node is poisoned appropriately. Note that poisoning always occurs if
* ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
* operation.
*
* Intensity 4 and 5 are particularly expensive to perform; the previous levels
* are a few memory operations per node, while these levels require multiple
* operations per element. In addition, when creating large btrees, these
* operations are called at every step, resulting in extremely slow operation
* (while the asymptotic complexity of the other steps is the same, the
* importance of the constant factors cannot be denied).
*/
uint_t zfs_btree_verify_intensity = 0;
/*
* Convenience functions to silence warnings from memcpy/memmove's
* return values and change argument order to src, dest.
*/
static void
bcpy(const void *src, void *dest, size_t size)
{
(void) memcpy(dest, src, size);
}
static void
bmov(const void *src, void *dest, size_t size)
{
(void) memmove(dest, src, size);
}
static boolean_t
zfs_btree_is_core(struct zfs_btree_hdr *hdr)
{
return (hdr->bth_first == -1);
}
#ifdef _ILP32
#define BTREE_POISON 0xabadb10c
#else
#define BTREE_POISON 0xabadb10cdeadbeef
#endif
static void
zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (zfs_btree_is_core(hdr)) {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
i++) {
node->btc_children[i] =
(zfs_btree_hdr_t *)BTREE_POISON;
}
(void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
(BTREE_CORE_ELEMS - hdr->bth_count) * size);
} else {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
(void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
(void) memset(leaf->btl_elems +
(hdr->bth_first + hdr->bth_count) * size, 0x0f,
tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) -
(hdr->bth_first + hdr->bth_count) * size);
}
#endif
}
static inline void
zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
uint32_t idx, uint32_t count)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (zfs_btree_is_core(hdr)) {
ASSERT3U(idx, >=, hdr->bth_count);
ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = 1; i <= count; i++) {
node->btc_children[idx + i] =
(zfs_btree_hdr_t *)BTREE_POISON;
}
(void) memset(node->btc_elems + idx * size, 0x0f, count * size);
} else {
ASSERT3U(idx, <=, tree->bt_leaf_cap);
ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
(void) memset(leaf->btl_elems +
(hdr->bth_first + idx) * size, 0x0f, count * size);
}
#endif
}
static inline void
zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
uint32_t idx)
{
#ifdef ZFS_DEBUG
size_t size = tree->bt_elem_size;
if (zfs_btree_is_core(hdr)) {
ASSERT3U(idx, <, BTREE_CORE_ELEMS);
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
VERIFY3P(node->btc_children[idx + 1], ==, cval);
for (size_t i = 0; i < size; i++)
VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
} else {
ASSERT3U(idx, <, tree->bt_leaf_cap);
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
if (idx >= tree->bt_leaf_cap - hdr->bth_first)
return;
for (size_t i = 0; i < size; i++) {
VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
* size + i], ==, 0x0f);
}
}
#endif
}
void
zfs_btree_init(void)
{
zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
zfs_btree_fini(void)
{
kmem_cache_destroy(zfs_btree_leaf_cache);
}
static void *
zfs_btree_leaf_alloc(zfs_btree_t *tree)
{
if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP));
else
return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP));
}
static void
zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr)
{
if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
return (kmem_cache_free(zfs_btree_leaf_cache, ptr));
else
return (kmem_free(ptr, tree->bt_leaf_size));
}
void
zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
bt_find_in_buf_f bt_find_in_buf, size_t size)
{
zfs_btree_create_custom(tree, compar, bt_find_in_buf, size,
BTREE_LEAF_SIZE);
}
static void *
zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
const void *value, zfs_btree_index_t *where);
void
zfs_btree_create_custom(zfs_btree_t *tree,
int (*compar) (const void *, const void *),
bt_find_in_buf_f bt_find_in_buf,
size_t size, size_t lsize)
{
size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems);
ASSERT3U(size, <=, esize / 2);
memset(tree, 0, sizeof (*tree));
tree->bt_compar = compar;
tree->bt_find_in_buf = (bt_find_in_buf == NULL) ?
zfs_btree_find_in_buf : bt_find_in_buf;
tree->bt_elem_size = size;
tree->bt_leaf_size = lsize;
tree->bt_leaf_cap = P2ALIGN_TYPED(esize / size, 2, size_t);
tree->bt_height = -1;
tree->bt_bulk = NULL;
}
/*
* Find value in the array of elements provided. Uses a simple binary search.
*/
static void *
zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
const void *value, zfs_btree_index_t *where)
{
uint32_t max = nelems;
uint32_t min = 0;
while (max > min) {
uint32_t idx = (min + max) / 2;
uint8_t *cur = buf + idx * tree->bt_elem_size;
int comp = tree->bt_compar(cur, value);
if (comp < 0) {
min = idx + 1;
} else if (comp > 0) {
max = idx;
} else {
where->bti_offset = idx;
where->bti_before = B_FALSE;
return (cur);
}
}
where->bti_offset = max;
where->bti_before = B_TRUE;
return (NULL);
}
/*
* Find the given value in the tree. where may be passed as null to use as a
* membership test or if the btree is being used as a map.
*/
void *
zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
if (where != NULL) {
where->bti_node = NULL;
where->bti_offset = 0;
}
ASSERT0(tree->bt_num_elems);
return (NULL);
}
/*
* If we're in bulk-insert mode, we check the last spot in the tree
* and the last leaf in the tree before doing the normal search,
* because for most workloads the vast majority of finds in
* bulk-insert mode are to insert new elements.
*/
zfs_btree_index_t idx;
size_t size = tree->bt_elem_size;
if (tree->bt_bulk != NULL) {
zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
int comp = tree->bt_compar(last_leaf->btl_elems +
(last_leaf->btl_hdr.bth_first +
last_leaf->btl_hdr.bth_count - 1) * size, value);
if (comp < 0) {
/*
* If what they're looking for is after the last
* element, it's not in the tree.
*/
if (where != NULL) {
where->bti_node = (zfs_btree_hdr_t *)last_leaf;
where->bti_offset =
last_leaf->btl_hdr.bth_count;
where->bti_before = B_TRUE;
}
return (NULL);
} else if (comp == 0) {
if (where != NULL) {
where->bti_node = (zfs_btree_hdr_t *)last_leaf;
where->bti_offset =
last_leaf->btl_hdr.bth_count - 1;
where->bti_before = B_FALSE;
}
return (last_leaf->btl_elems +
(last_leaf->btl_hdr.bth_first +
last_leaf->btl_hdr.bth_count - 1) * size);
}
if (tree->bt_compar(last_leaf->btl_elems +
last_leaf->btl_hdr.bth_first * size, value) <= 0) {
/*
* If what they're looking for is after the first
* element in the last leaf, it's in the last leaf or
* it's not in the tree.
*/
void *d = tree->bt_find_in_buf(tree,
last_leaf->btl_elems +
last_leaf->btl_hdr.bth_first * size,
last_leaf->btl_hdr.bth_count, value, &idx);
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
*where = idx;
}
return (d);
}
}
zfs_btree_core_t *node = NULL;
uint32_t child = 0;
uint32_t depth = 0;
/*
* Iterate down the tree, finding which child the value should be in
* by comparing with the separators.
*/
for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
ASSERT3P(node, !=, NULL);
void *d = tree->bt_find_in_buf(tree, node->btc_elems,
node->btc_hdr.bth_count, value, &idx);
EQUIV(d != NULL, !idx.bti_before);
if (d != NULL) {
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)node;
*where = idx;
}
return (d);
}
ASSERT(idx.bti_before);
child = idx.bti_offset;
}
/*
* The value is in this leaf, or it would be if it were in the
* tree. Find its proper location and return it.
*/
zfs_btree_leaf_t *leaf = (depth == 0 ?
(zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
void *d = tree->bt_find_in_buf(tree, leaf->btl_elems +
leaf->btl_hdr.bth_first * size,
leaf->btl_hdr.bth_count, value, &idx);
if (where != NULL) {
idx.bti_node = (zfs_btree_hdr_t *)leaf;
*where = idx;
}
return (d);
}
/*
* To explain the following functions, it is useful to understand the four
* kinds of shifts used in btree operation. First, a shift is a movement of
* elements within a node. It is used to create gaps for inserting new
* elements and children, or cover gaps created when things are removed. A
* shift has two fundamental properties, each of which can be one of two
* values, making four types of shifts. There is the direction of the shift
* (left or right) and the shape of the shift (parallelogram or isoceles
* trapezoid (shortened to trapezoid hereafter)). The shape distinction only
* applies to shifts of core nodes.
*
* The names derive from the following imagining of the layout of a node:
*
* Elements: * * * * * * * ... * * *
* Children: * * * * * * * * ... * * *
*
* This layout follows from the fact that the elements act as separators
* between pairs of children, and that children root subtrees "below" the
* current node. A left and right shift are fairly self-explanatory; a left
* shift moves things to the left, while a right shift moves things to the
* right. A parallelogram shift is a shift with the same number of elements
* and children being moved, while a trapezoid shift is a shift that moves one
* more children than elements. An example follows:
*
* A parallelogram shift could contain the following:
* _______________
* \* * * * \ * * * ... * * *
* * \ * * * *\ * * * ... * * *
* ---------------
* A trapezoid shift could contain the following:
* ___________
* * / * * * \ * * * ... * * *
* * / * * * *\ * * * ... * * *
* ---------------
*
* Note that a parallelogram shift is always shaped like a "left-leaning"
* parallelogram, where the starting index of the children being moved is
* always one higher than the starting index of the elements being moved. No
* "right-leaning" parallelogram shifts are needed (shifts where the starting
* element index and starting child index being moved are the same) to achieve
* any btree operations, so we ignore them.
*/
enum bt_shift_shape {
BSS_TRAPEZOID,
BSS_PARALLELOGRAM
};
enum bt_shift_direction {
BSD_LEFT,
BSD_RIGHT
};
/*
* Shift elements and children in the provided core node by off spots. The
* first element moved is idx, and count elements are moved. The shape of the
* shift is determined by shape. The direction is determined by dir.
*/
static inline void
bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
uint32_t count, uint32_t off, enum bt_shift_shape shape,
enum bt_shift_direction dir)
{
size_t size = tree->bt_elem_size;
ASSERT(zfs_btree_is_core(&node->btc_hdr));
uint8_t *e_start = node->btc_elems + idx * size;
uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
e_start + off * size);
bmov(e_start, e_out, count * size);
zfs_btree_hdr_t **c_start = node->btc_children + idx +
(shape == BSS_TRAPEZOID ? 0 : 1);
zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
c_start + off);
uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
bmov(c_start, c_out, c_count * sizeof (*c_start));
}
/*
* Shift elements and children in the provided core node left by one spot.
* The first element moved is idx, and count elements are moved. The
* shape of the shift is determined by trap; true if the shift is a trapezoid,
* false if it is a parallelogram.
*/
static inline void
bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
uint32_t count, enum bt_shift_shape shape)
{
bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
}
/*
* Shift elements and children in the provided core node right by one spot.
* Starts with elements[idx] and children[idx] and one more child than element.
*/
static inline void
bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
uint32_t count, enum bt_shift_shape shape)
{
bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
}
/*
* Shift elements and children in the provided leaf node by off spots.
* The first element moved is idx, and count elements are moved. The direction
* is determined by left.
*/
static inline void
bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
uint32_t count, uint32_t off, enum bt_shift_direction dir)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = &node->btl_hdr;
ASSERT(!zfs_btree_is_core(hdr));
if (count == 0)
return;
uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
uint8_t *out = (dir == BSD_LEFT ? start - off * size :
start + off * size);
bmov(start, out, count * size);
}
/*
* Grow leaf for n new elements before idx.
*/
static void
bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
uint32_t n)
{
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
ASSERT(!zfs_btree_is_core(hdr));
ASSERT3U(idx, <=, hdr->bth_count);
uint32_t capacity = tree->bt_leaf_cap;
ASSERT3U(hdr->bth_count + n, <=, capacity);
boolean_t cl = (hdr->bth_first >= n);
boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
if (cl && (!cr || idx <= hdr->bth_count / 2)) {
/* Grow left. */
hdr->bth_first -= n;
bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
} else if (cr) {
/* Grow right. */
bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
BSD_RIGHT);
} else {
/* Grow both ways. */
uint32_t fn = hdr->bth_first -
(capacity - (hdr->bth_count + n)) / 2;
hdr->bth_first -= fn;
bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
n - fn, BSD_RIGHT);
}
hdr->bth_count += n;
}
/*
* Shrink leaf for count elements starting from idx.
*/
static void
bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
uint32_t n)
{
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
ASSERT(!zfs_btree_is_core(hdr));
ASSERT3U(idx, <=, hdr->bth_count);
ASSERT3U(idx + n, <=, hdr->bth_count);
if (idx <= (hdr->bth_count - n) / 2) {
bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
zfs_btree_poison_node_at(tree, hdr, 0, n);
hdr->bth_first += n;
} else {
bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
BSD_LEFT);
zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
}
hdr->bth_count -= n;
}
/*
* Move children and elements from one core node to another. The shape
* parameter behaves the same as it does in the shift logic.
*/
static inline void
bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
enum bt_shift_shape shape)
{
size_t size = tree->bt_elem_size;
ASSERT(zfs_btree_is_core(&source->btc_hdr));
ASSERT(zfs_btree_is_core(&dest->btc_hdr));
bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
count * size);
uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
c_count * sizeof (*source->btc_children));
}
static inline void
bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
{
size_t size = tree->bt_elem_size;
ASSERT(!zfs_btree_is_core(&source->btl_hdr));
ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
count * size);
}
/*
* Find the first element in the subtree rooted at hdr, return its value and
* put its location in where if non-null.
*/
static void *
zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
zfs_btree_index_t *where)
{
zfs_btree_hdr_t *node;
for (node = hdr; zfs_btree_is_core(node);
node = ((zfs_btree_core_t *)node)->btc_children[0])
;
ASSERT(!zfs_btree_is_core(node));
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
if (where != NULL) {
where->bti_node = node;
where->bti_offset = 0;
where->bti_before = B_FALSE;
}
return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
}
/* Insert an element and a child into a core node at the given offset. */
static void
zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
ASSERT3P(par_hdr, ==, new_node->bth_parent);
ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
if (zfs_btree_verify_intensity >= 5) {
zfs_btree_verify_poison_at(tree, par_hdr,
par_hdr->bth_count);
}
/* Shift existing elements and children */
uint32_t count = par_hdr->bth_count - offset;
bt_shift_core_right(tree, parent, offset, count,
BSS_PARALLELOGRAM);
/* Insert new values */
parent->btc_children[offset + 1] = new_node;
bcpy(buf, parent->btc_elems + offset * size, size);
par_hdr->bth_count++;
}
/*
* Insert new_node into the parent of old_node directly after old_node, with
* buf as the dividing element between the two.
*/
static void
zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
zfs_btree_hdr_t *new_node, void *buf)
{
ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
size_t size = tree->bt_elem_size;
zfs_btree_core_t *parent = old_node->bth_parent;
/*
* If this is the root node we were splitting, we create a new root
* and increase the height of the tree.
*/
if (parent == NULL) {
ASSERT3P(old_node, ==, tree->bt_root);
tree->bt_num_nodes++;
zfs_btree_core_t *new_root =
kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
size, KM_SLEEP);
zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
new_root_hdr->bth_parent = NULL;
new_root_hdr->bth_first = -1;
new_root_hdr->bth_count = 1;
old_node->bth_parent = new_node->bth_parent = new_root;
new_root->btc_children[0] = old_node;
new_root->btc_children[1] = new_node;
bcpy(buf, new_root->btc_elems, size);
tree->bt_height++;
tree->bt_root = new_root_hdr;
zfs_btree_poison_node(tree, new_root_hdr);
return;
}
/*
* Since we have the new separator, binary search for where to put
* new_node.
*/
zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
zfs_btree_index_t idx;
ASSERT(zfs_btree_is_core(par_hdr));
VERIFY3P(tree->bt_find_in_buf(tree, parent->btc_elems,
par_hdr->bth_count, buf, &idx), ==, NULL);
ASSERT(idx.bti_before);
uint32_t offset = idx.bti_offset;
ASSERT3U(offset, <=, par_hdr->bth_count);
ASSERT3P(parent->btc_children[offset], ==, old_node);
/*
* If the parent isn't full, shift things to accommodate our insertions
* and return.
*/
if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
return;
}
/*
* We need to split this core node into two. Currently there are
* BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
* BTREE_CORE_ELEMS + 2. Some of the children will be part of the
* current node, and the others will be moved to the new core node.
* There are BTREE_CORE_ELEMS + 1 elements including the new one. One
* will be used as the new separator in our parent, and the others
* will be split among the two core nodes.
*
* Usually we will split the node in half evenly, with
* BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
* instead move only about a quarter of the elements (and children) to
* the new node. Since the average state after a long time is a 3/4
* full node, shortcutting directly to that state improves efficiency.
*
* We do this in two stages: first we split into two nodes, and then we
* reuse our existing logic to insert the new element and child.
*/
uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
2 : 4)) - 1, 2);
uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
tree->bt_num_nodes++;
zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
BTREE_CORE_ELEMS * size, KM_SLEEP);
zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
new_par_hdr->bth_parent = par_hdr->bth_parent;
new_par_hdr->bth_first = -1;
new_par_hdr->bth_count = move_count;
zfs_btree_poison_node(tree, new_par_hdr);
par_hdr->bth_count = keep_count;
bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
0, BSS_TRAPEZOID);
/* Store the new separator in a buffer. */
uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
bcpy(parent->btc_elems + keep_count * size, tmp_buf,
size);
zfs_btree_poison_node(tree, par_hdr);
if (offset < keep_count) {
/* Insert the new node into the left half */
zfs_btree_insert_core_impl(tree, parent, offset, new_node,
buf);
/*
* Move the new separator to the existing buffer.
*/
bcpy(tmp_buf, buf, size);
} else if (offset > keep_count) {
/* Insert the new node into the right half */
new_node->bth_parent = new_parent;
zfs_btree_insert_core_impl(tree, new_parent,
offset - keep_count - 1, new_node, buf);
/*
* Move the new separator to the existing buffer.
*/
bcpy(tmp_buf, buf, size);
} else {
/*
* Move the new separator into the right half, and replace it
* with buf. We also need to shift back the elements in the
* right half to accommodate new_node.
*/
bt_shift_core_right(tree, new_parent, 0, move_count,
BSS_TRAPEZOID);
new_parent->btc_children[0] = new_node;
bcpy(tmp_buf, new_parent->btc_elems, size);
new_par_hdr->bth_count++;
}
kmem_free(tmp_buf, size);
zfs_btree_poison_node(tree, par_hdr);
for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
new_parent->btc_children[i]->bth_parent = new_parent;
for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
/*
* Now that the node is split, we need to insert the new node into its
* parent. This may cause further splitting.
*/
zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
&new_parent->btc_hdr, buf);
}
/* Insert an element into a leaf node at the given offset. */
static void
zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
uint32_t idx, const void *value)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
if (zfs_btree_verify_intensity >= 5) {
zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
leaf->btl_hdr.bth_count);
}
bt_grow_leaf(tree, leaf, idx, 1);
uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
bcpy(value, start, size);
}
static void
zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
/* Helper function for inserting a new value into leaf at the given index. */
static void
zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
const void *value, uint32_t idx)
{
size_t size = tree->bt_elem_size;
uint32_t capacity = tree->bt_leaf_cap;
/*
* If the leaf isn't full, shift the elements after idx and insert
* value.
*/
if (leaf->btl_hdr.bth_count != capacity) {
zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
return;
}
/*
* Otherwise, we split the leaf node into two nodes. If we're not bulk
* inserting, each is of size (capacity / 2). If we are bulk
* inserting, we move a quarter of the elements to the new node so
* inserts into the old node don't cause immediate splitting but the
* tree stays relatively dense. Since the average state after a long
* time is a 3/4 full node, shortcutting directly to that state
* improves efficiency. At the end of the bulk insertion process
* we'll need to go through and fix up any nodes (the last leaf and
* its ancestors, potentially) that are below the minimum.
*
* In either case, we're left with one extra element. The leftover
* element will become the new dividing element between the two nodes.
*/
uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
uint32_t keep_count = capacity - move_count - 1;
ASSERT3U(keep_count, >=, 1);
/* If we insert on left. move one more to keep leaves balanced. */
if (idx < keep_count) {
keep_count--;
move_count++;
}
tree->bt_num_nodes++;
zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree);
zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
(idx >= keep_count && idx <= keep_count + move_count / 2);
new_hdr->bth_count = move_count;
zfs_btree_poison_node(tree, new_hdr);
if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
tree->bt_bulk = new_leaf;
/* Copy the back part to the new leaf. */
bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
/* We store the new separator in a buffer we control for simplicity. */
uint8_t *buf = kmem_alloc(size, KM_SLEEP);
bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
buf, size);
bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
if (idx < keep_count) {
/* Insert into the existing leaf. */
zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
} else if (idx > keep_count) {
/* Insert into the new leaf. */
zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
1, value);
} else {
/*
* Insert planned separator into the new leaf, and use
* the new value as the new separator.
*/
zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
bcpy(value, buf, size);
}
/*
* Now that the node is split, we need to insert the new node into its
* parent. This may cause further splitting, bur only of core nodes.
*/
zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
buf);
kmem_free(buf, size);
}
static uint32_t
zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
void *buf;
if (zfs_btree_is_core(hdr)) {
buf = ((zfs_btree_core_t *)hdr)->btc_elems;
} else {
buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
hdr->bth_first * tree->bt_elem_size;
}
zfs_btree_index_t idx;
zfs_btree_core_t *parent = hdr->bth_parent;
VERIFY3P(tree->bt_find_in_buf(tree, parent->btc_elems,
parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
ASSERT(idx.bti_before);
ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
return (idx.bti_offset);
}
/*
* Take the b-tree out of bulk insert mode. During bulk-insert mode, some
* nodes may violate the invariant that non-root nodes must be at least half
* full. All nodes violating this invariant should be the last node in their
* particular level. To correct the invariant, we take values from their left
* neighbor until they are half full. They must have a left neighbor at their
* level because the last node at a level is not the first node unless it's
* the root.
*/
static void
zfs_btree_bulk_finish(zfs_btree_t *tree)
{
ASSERT3P(tree->bt_bulk, !=, NULL);
ASSERT3P(tree->bt_root, !=, NULL);
zfs_btree_leaf_t *leaf = tree->bt_bulk;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
zfs_btree_core_t *parent = hdr->bth_parent;
size_t size = tree->bt_elem_size;
uint32_t capacity = tree->bt_leaf_cap;
/*
* The invariant doesn't apply to the root node, if that's the only
* node in the tree we're done.
*/
if (parent == NULL) {
tree->bt_bulk = NULL;
return;
}
/* First, take elements to rebalance the leaf node. */
if (hdr->bth_count < capacity / 2) {
/*
* First, find the left neighbor. The simplest way to do this
* is to call zfs_btree_prev twice; the first time finds some
* ancestor of this node, and the second time finds the left
* neighbor. The ancestor found is the lowest common ancestor
* of leaf and the neighbor.
*/
zfs_btree_index_t idx = {
.bti_node = hdr,
.bti_offset = 0
};
VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
ASSERT(zfs_btree_is_core(idx.bti_node));
zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
uint32_t common_idx = idx.bti_offset;
VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
ASSERT(!zfs_btree_is_core(idx.bti_node));
zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
zfs_btree_hdr_t *l_hdr = idx.bti_node;
uint32_t move_count = (capacity / 2) - hdr->bth_count;
ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
capacity / 2);
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < move_count; i++) {
zfs_btree_verify_poison_at(tree, hdr,
leaf->btl_hdr.bth_count + i);
}
}
/* First, shift elements in leaf back. */
bt_grow_leaf(tree, leaf, 0, move_count);
/* Next, move the separator from the common ancestor to leaf. */
uint8_t *separator = common->btc_elems + common_idx * size;
uint8_t *out = leaf->btl_elems +
(hdr->bth_first + move_count - 1) * size;
bcpy(separator, out, size);
/*
* Now we move elements from the tail of the left neighbor to
* fill the remaining spots in leaf.
*/
bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
(move_count - 1), move_count - 1, leaf, 0);
/*
* Finally, move the new last element in the left neighbor to
* the separator.
*/
bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
l_hdr->bth_count - move_count) * size, separator, size);
/* Adjust the node's counts, and we're done. */
bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
move_count);
ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
ASSERT3U(hdr->bth_count, >=, capacity / 2);
}
/*
* Now we have to rebalance any ancestors of leaf that may also
* violate the invariant.
*/
capacity = BTREE_CORE_ELEMS;
while (parent->btc_hdr.bth_parent != NULL) {
zfs_btree_core_t *cur = parent;
zfs_btree_hdr_t *hdr = &cur->btc_hdr;
parent = hdr->bth_parent;
/*
* If the invariant isn't violated, move on to the next
* ancestor.
*/
if (hdr->bth_count >= capacity / 2)
continue;
/*
* Because the smallest number of nodes we can move when
* splitting is 2, we never need to worry about not having a
* left sibling (a sibling is a neighbor with the same parent).
*/
uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
ASSERT3U(parent_idx, >, 0);
zfs_btree_core_t *l_neighbor =
(zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
uint32_t move_count = (capacity / 2) - hdr->bth_count;
ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
capacity / 2);
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < move_count; i++) {
zfs_btree_verify_poison_at(tree, hdr,
hdr->bth_count + i);
}
}
/* First, shift things in the right node back. */
bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
BSS_TRAPEZOID, BSD_RIGHT);
/* Next, move the separator to the right node. */
uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
size);
uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
bcpy(separator, e_out, size);
/*
* Now, move elements and children from the left node to the
* right. We move one more child than elements.
*/
move_count--;
uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
BSS_TRAPEZOID);
/*
* Finally, move the last element in the left node to the
* separator's position.
*/
move_idx--;
bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
l_neighbor->btc_hdr.bth_count -= move_count + 1;
hdr->bth_count += move_count + 1;
ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
ASSERT3U(hdr->bth_count, >=, capacity / 2);
zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
for (uint32_t i = 0; i <= hdr->bth_count; i++)
cur->btc_children[i]->bth_parent = cur;
}
tree->bt_bulk = NULL;
zfs_btree_verify(tree);
}
/*
* Insert value into tree at the location specified by where.
*/
void
zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
const zfs_btree_index_t *where)
{
zfs_btree_index_t idx = {0};
/* If we're not inserting in the last leaf, end bulk insert mode. */
if (tree->bt_bulk != NULL) {
if (where->bti_node != &tree->bt_bulk->btl_hdr) {
zfs_btree_bulk_finish(tree);
VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
where = &idx;
}
}
tree->bt_num_elems++;
/*
* If this is the first element in the tree, create a leaf root node
* and add the value to it.
*/
if (where->bti_node == NULL) {
ASSERT3U(tree->bt_num_elems, ==, 1);
ASSERT3S(tree->bt_height, ==, -1);
ASSERT3P(tree->bt_root, ==, NULL);
ASSERT0(where->bti_offset);
tree->bt_num_nodes++;
zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree);
tree->bt_root = &leaf->btl_hdr;
tree->bt_height++;
zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
hdr->bth_parent = NULL;
hdr->bth_first = 0;
hdr->bth_count = 0;
zfs_btree_poison_node(tree, hdr);
zfs_btree_insert_into_leaf(tree, leaf, value, 0);
tree->bt_bulk = leaf;
} else if (!zfs_btree_is_core(where->bti_node)) {
/*
* If we're inserting into a leaf, go directly to the helper
* function.
*/
zfs_btree_insert_into_leaf(tree,
(zfs_btree_leaf_t *)where->bti_node, value,
where->bti_offset);
} else {
/*
* If we're inserting into a core node, we can't just shift
* the existing element in that slot in the same node without
* breaking our ordering invariants. Instead we place the new
* value in the node at that spot and then insert the old
* separator into the first slot in the subtree to the right.
*/
zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
/*
* We can ignore bti_before, because either way the value
* should end up in bti_offset.
*/
uint32_t off = where->bti_offset;
zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
size_t size = tree->bt_elem_size;
uint8_t *buf = kmem_alloc(size, KM_SLEEP);
bcpy(node->btc_elems + off * size, buf, size);
bcpy(value, node->btc_elems + off * size, size);
/*
* Find the first slot in the subtree to the right, insert
* there.
*/
zfs_btree_index_t new_idx;
VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
NULL);
ASSERT0(new_idx.bti_offset);
ASSERT(!zfs_btree_is_core(new_idx.bti_node));
zfs_btree_insert_into_leaf(tree,
(zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
kmem_free(buf, size);
}
zfs_btree_verify(tree);
}
/*
* Return the first element in the tree, and put its location in where if
* non-null.
*/
void *
zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
ASSERT0(tree->bt_num_elems);
return (NULL);
}
return (zfs_btree_first_helper(tree, tree->bt_root, where));
}
/*
* Find the last element in the subtree rooted at hdr, return its value and
* put its location in where if non-null.
*/
static void *
zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
zfs_btree_index_t *where)
{
zfs_btree_hdr_t *node;
for (node = hdr; zfs_btree_is_core(node); node =
((zfs_btree_core_t *)node)->btc_children[node->bth_count])
;
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
if (where != NULL) {
where->bti_node = node;
where->bti_offset = node->bth_count - 1;
where->bti_before = B_FALSE;
}
return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
btree->bt_elem_size);
}
/*
* Return the last element in the tree, and put its location in where if
* non-null.
*/
void *
zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
{
if (tree->bt_height == -1) {
ASSERT0(tree->bt_num_elems);
return (NULL);
}
return (zfs_btree_last_helper(tree, tree->bt_root, where));
}
/*
* This function contains the logic to find the next node in the tree. A
* helper function is used because there are multiple internal consumemrs of
* this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
* node after we've finished with it.
*/
static void *
zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx,
void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
{
if (idx->bti_node == NULL) {
ASSERT3S(tree->bt_height, ==, -1);
return (NULL);
}
uint32_t offset = idx->bti_offset;
if (!zfs_btree_is_core(idx->bti_node)) {
/*
* When finding the next element of an element in a leaf,
* there are two cases. If the element isn't the last one in
* the leaf, in which case we just return the next element in
* the leaf. Otherwise, we need to traverse up our parents
* until we find one where our ancestor isn't the last child
* of its parent. Once we do, the next element is the
* separator after our ancestor in its parent.
*/
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
if (leaf->btl_hdr.bth_count > new_off) {
out_idx->bti_node = &leaf->btl_hdr;
out_idx->bti_offset = new_off;
out_idx->bti_before = B_FALSE;
return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
new_off) * tree->bt_elem_size);
}
zfs_btree_hdr_t *prev = &leaf->btl_hdr;
for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
node != NULL; node = node->btc_hdr.bth_parent) {
zfs_btree_hdr_t *hdr = &node->btc_hdr;
ASSERT(zfs_btree_is_core(hdr));
uint32_t i = zfs_btree_find_parent_idx(tree, prev);
if (done_func != NULL)
done_func(tree, prev);
if (i == hdr->bth_count) {
prev = hdr;
continue;
}
out_idx->bti_node = hdr;
out_idx->bti_offset = i;
out_idx->bti_before = B_FALSE;
return (node->btc_elems + i * tree->bt_elem_size);
}
if (done_func != NULL)
done_func(tree, prev);
/*
* We've traversed all the way up and been at the end of the
* node every time, so this was the last element in the tree.
*/
return (NULL);
}
/* If we were before an element in a core node, return that element. */
ASSERT(zfs_btree_is_core(idx->bti_node));
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
if (idx->bti_before) {
out_idx->bti_before = B_FALSE;
return (node->btc_elems + offset * tree->bt_elem_size);
}
/*
* The next element from one in a core node is the first element in
* the subtree just to the right of the separator.
*/
zfs_btree_hdr_t *child = node->btc_children[offset + 1];
return (zfs_btree_first_helper(tree, child, out_idx));
}
/*
* Return the next valued node in the tree. The same address can be safely
* passed for idx and out_idx.
*/
void *
zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx)
{
return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
}
/*
* Return the previous valued node in the tree. The same value can be safely
* passed for idx and out_idx.
*/
void *
zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
zfs_btree_index_t *out_idx)
{
if (idx->bti_node == NULL) {
ASSERT3S(tree->bt_height, ==, -1);
return (NULL);
}
uint32_t offset = idx->bti_offset;
if (!zfs_btree_is_core(idx->bti_node)) {
/*
* When finding the previous element of an element in a leaf,
* there are two cases. If the element isn't the first one in
* the leaf, in which case we just return the previous element
* in the leaf. Otherwise, we need to traverse up our parents
* until we find one where our previous ancestor isn't the
* first child. Once we do, the previous element is the
* separator after our previous ancestor.
*/
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
if (offset != 0) {
out_idx->bti_node = &leaf->btl_hdr;
out_idx->bti_offset = offset - 1;
out_idx->bti_before = B_FALSE;
return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
offset - 1) * tree->bt_elem_size);
}
zfs_btree_hdr_t *prev = &leaf->btl_hdr;
for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
node != NULL; node = node->btc_hdr.bth_parent) {
zfs_btree_hdr_t *hdr = &node->btc_hdr;
ASSERT(zfs_btree_is_core(hdr));
uint32_t i = zfs_btree_find_parent_idx(tree, prev);
if (i == 0) {
prev = hdr;
continue;
}
out_idx->bti_node = hdr;
out_idx->bti_offset = i - 1;
out_idx->bti_before = B_FALSE;
return (node->btc_elems + (i - 1) * tree->bt_elem_size);
}
/*
* We've traversed all the way up and been at the start of the
* node every time, so this was the first node in the tree.
*/
return (NULL);
}
/*
* The previous element from one in a core node is the last element in
* the subtree just to the left of the separator.
*/
ASSERT(zfs_btree_is_core(idx->bti_node));
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
zfs_btree_hdr_t *child = node->btc_children[offset];
return (zfs_btree_last_helper(tree, child, out_idx));
}
/*
* Get the value at the provided index in the tree.
*
* Note that the value returned from this function can be mutated, but only
* if it will not change the ordering of the element with respect to any other
* elements that could be in the tree.
*/
void *
zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
{
ASSERT(!idx->bti_before);
size_t size = tree->bt_elem_size;
if (!zfs_btree_is_core(idx->bti_node)) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
idx->bti_offset) * size);
}
zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
return (node->btc_elems + idx->bti_offset * size);
}
/* Add the given value to the tree. Must not already be in the tree. */
void
zfs_btree_add(zfs_btree_t *tree, const void *node)
{
zfs_btree_index_t where = {0};
VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
zfs_btree_add_idx(tree, node, &where);
}
/* Helper function to free a tree node. */
static void
zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
{
tree->bt_num_nodes--;
if (!zfs_btree_is_core(node)) {
zfs_btree_leaf_free(tree, node);
} else {
kmem_free(node, sizeof (zfs_btree_core_t) +
BTREE_CORE_ELEMS * tree->bt_elem_size);
}
}
/*
* Remove the rm_hdr and the separator to its left from the parent node. The
* buffer that rm_hdr was stored in may already be freed, so its contents
* cannot be accessed.
*/
static void
zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
zfs_btree_hdr_t *rm_hdr)
{
size_t size = tree->bt_elem_size;
uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
zfs_btree_hdr_t *hdr = &node->btc_hdr;
/*
* If the node is the root node and rm_hdr is one of two children,
* promote the other child to the root.
*/
if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
ASSERT3U(hdr->bth_count, ==, 1);
ASSERT3P(tree->bt_root, ==, node);
ASSERT3P(node->btc_children[1], ==, rm_hdr);
tree->bt_root = node->btc_children[0];
node->btc_children[0]->bth_parent = NULL;
zfs_btree_node_destroy(tree, hdr);
tree->bt_height--;
return;
}
uint32_t idx;
for (idx = 0; idx <= hdr->bth_count; idx++) {
if (node->btc_children[idx] == rm_hdr)
break;
}
ASSERT3U(idx, <=, hdr->bth_count);
/*
* If the node is the root or it has more than the minimum number of
* children, just remove the child and separator, and return.
*/
if (hdr->bth_parent == NULL ||
hdr->bth_count > min_count) {
/*
* Shift the element and children to the right of rm_hdr to
* the left by one spot.
*/
bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
BSS_PARALLELOGRAM);
hdr->bth_count--;
zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
return;
}
ASSERT3U(hdr->bth_count, ==, min_count);
/*
* Now we try to take a node from a neighbor. We check left, then
* right. If the neighbor exists and has more than the minimum number
* of elements, we move the separator between us and them to our
* node, move their closest element (last for left, first for right)
* to the separator, and move their closest child to our node. Along
* the way we need to collapse the gap made by idx, and (for our right
* neighbor) the gap made by removing their first element and child.
*
* Note: this logic currently doesn't support taking from a neighbor
* that isn't a sibling (i.e. a neighbor with a different
* parent). This isn't critical functionality, but may be worth
* implementing in the future for completeness' sake.
*/
zfs_btree_core_t *parent = hdr->bth_parent;
uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
parent->btc_children[parent_idx - 1]);
if (l_hdr != NULL && l_hdr->bth_count > min_count) {
/* We can take a node from the left neighbor. */
ASSERT(zfs_btree_is_core(l_hdr));
zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
/*
* Start by shifting the elements and children in the current
* node to the right by one spot.
*/
bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
/*
* Move the separator between node and neighbor to the first
* element slot in the current node.
*/
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bcpy(separator, node->btc_elems, size);
/* Move the last child of neighbor to our first child slot. */
node->btc_children[0] =
neighbor->btc_children[l_hdr->bth_count];
node->btc_children[0]->bth_parent = node;
/* Move the last element of neighbor to the separator spot. */
uint8_t *take_elem = neighbor->btc_elems +
(l_hdr->bth_count - 1) * size;
bcpy(take_elem, separator, size);
l_hdr->bth_count--;
zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
return;
}
zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
NULL : parent->btc_children[parent_idx + 1]);
if (r_hdr != NULL && r_hdr->bth_count > min_count) {
/* We can take a node from the right neighbor. */
ASSERT(zfs_btree_is_core(r_hdr));
zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
/*
* Shift elements in node left by one spot to overwrite rm_hdr
* and the separator before it.
*/
bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
BSS_PARALLELOGRAM);
/*
* Move the separator between node and neighbor to the last
* element spot in node.
*/
uint8_t *separator = parent->btc_elems + parent_idx * size;
bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
size);
/*
* Move the first child of neighbor to the last child spot in
* node.
*/
node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
node->btc_children[hdr->bth_count]->bth_parent = node;
/* Move the first element of neighbor to the separator spot. */
uint8_t *take_elem = neighbor->btc_elems;
bcpy(take_elem, separator, size);
r_hdr->bth_count--;
/*
* Shift the elements and children of neighbor to cover the
* stolen elements.
*/
bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
BSS_TRAPEZOID);
zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
return;
}
/*
* In this case, neither of our neighbors can spare an element, so we
* need to merge with one of them. We prefer the left one,
* arbitrarily. Move the separator into the leftmost merging node
* (which may be us or the left neighbor), and then move the right
* merging node's elements. Once that's done, we go back and delete
* the element we're removing. Finally, go into the parent and delete
* the right merging node and the separator. This may cause further
* merging.
*/
zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
uint32_t new_idx = idx;
if (l_hdr != NULL) {
keep_hdr = l_hdr;
new_rm_hdr = hdr;
new_idx += keep_hdr->bth_count + 1;
} else {
ASSERT3P(r_hdr, !=, NULL);
keep_hdr = hdr;
new_rm_hdr = r_hdr;
parent_idx++;
}
ASSERT(zfs_btree_is_core(keep_hdr));
ASSERT(zfs_btree_is_core(new_rm_hdr));
zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
zfs_btree_verify_poison_at(tree, keep_hdr,
keep_hdr->bth_count + i);
}
}
/* Move the separator into the left node. */
uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bcpy(separator, e_out, size);
keep_hdr->bth_count++;
/* Move all our elements and children into the left node. */
bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
keep_hdr->bth_count, BSS_TRAPEZOID);
uint32_t old_count = keep_hdr->bth_count;
/* Update bookkeeping */
keep_hdr->bth_count += new_rm_hdr->bth_count;
ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
/*
* Shift the element and children to the right of rm_hdr to
* the left by one spot.
*/
ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
BSS_PARALLELOGRAM);
keep_hdr->bth_count--;
/* Reparent all our children to point to the left node. */
zfs_btree_hdr_t **new_start = keep->btc_children +
old_count - 1;
for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
new_start[i]->bth_parent = keep;
for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
ASSERT3P(keep->btc_children[i], !=, rm_hdr);
}
zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
new_rm_hdr->bth_count = 0;
zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
zfs_btree_node_destroy(tree, new_rm_hdr);
}
/* Remove the element at the specific location. */
void
zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
{
size_t size = tree->bt_elem_size;
zfs_btree_hdr_t *hdr = where->bti_node;
uint32_t idx = where->bti_offset;
ASSERT(!where->bti_before);
if (tree->bt_bulk != NULL) {
/*
* Leave bulk insert mode. Note that our index would be
* invalid after we correct the tree, so we copy the value
* we're planning to remove and find it again after
* bulk_finish.
*/
uint8_t *value = zfs_btree_get(tree, where);
uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
bcpy(value, tmp, size);
zfs_btree_bulk_finish(tree);
VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
kmem_free(tmp, size);
hdr = where->bti_node;
idx = where->bti_offset;
}
tree->bt_num_elems--;
/*
* If the element happens to be in a core node, we move a leaf node's
* element into its place and then remove the leaf node element. This
* makes the rebalance logic not need to be recursive both upwards and
* downwards.
*/
if (zfs_btree_is_core(hdr)) {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
void *new_value = zfs_btree_last_helper(tree, left_subtree,
where);
ASSERT3P(new_value, !=, NULL);
bcpy(new_value, node->btc_elems + idx * size, size);
hdr = where->bti_node;
idx = where->bti_offset;
ASSERT(!where->bti_before);
}
/*
* First, we'll update the leaf's metadata. Then, we shift any
* elements after the idx to the left. After that, we rebalance if
* needed.
*/
ASSERT(!zfs_btree_is_core(hdr));
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
ASSERT3U(hdr->bth_count, >, 0);
uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
/*
* If we're over the minimum size or this is the root, just overwrite
* the value and return.
*/
if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
bt_shrink_leaf(tree, leaf, idx, 1);
if (hdr->bth_parent == NULL) {
ASSERT0(tree->bt_height);
if (hdr->bth_count == 0) {
tree->bt_root = NULL;
tree->bt_height--;
zfs_btree_node_destroy(tree, &leaf->btl_hdr);
}
}
zfs_btree_verify(tree);
return;
}
ASSERT3U(hdr->bth_count, ==, min_count);
/*
* Now we try to take a node from a sibling. We check left, then
* right. If they exist and have more than the minimum number of
* elements, we move the separator between us and them to our node
* and move their closest element (last for left, first for right) to
* the separator. Along the way we need to collapse the gap made by
* idx, and (for our right neighbor) the gap made by removing their
* first element.
*
* Note: this logic currently doesn't support taking from a neighbor
* that isn't a sibling. This isn't critical functionality, but may be
* worth implementing in the future for completeness' sake.
*/
zfs_btree_core_t *parent = hdr->bth_parent;
uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
parent->btc_children[parent_idx - 1]);
if (l_hdr != NULL && l_hdr->bth_count > min_count) {
/* We can take a node from the left neighbor. */
ASSERT(!zfs_btree_is_core(l_hdr));
zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
/*
* Move our elements back by one spot to make room for the
* stolen element and overwrite the element being removed.
*/
bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
/* Move the separator to our first spot. */
uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
size;
bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
/* Move our neighbor's last element to the separator. */
uint8_t *take_elem = neighbor->btl_elems +
(l_hdr->bth_first + l_hdr->bth_count - 1) * size;
bcpy(take_elem, separator, size);
/* Delete our neighbor's last element. */
bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
zfs_btree_verify(tree);
return;
}
zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
NULL : parent->btc_children[parent_idx + 1]);
if (r_hdr != NULL && r_hdr->bth_count > min_count) {
/* We can take a node from the right neighbor. */
ASSERT(!zfs_btree_is_core(r_hdr));
zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
/*
* Move our elements after the element being removed forwards
* by one spot to make room for the stolen element and
* overwrite the element being removed.
*/
bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
1, BSD_LEFT);
/* Move the separator between us to our last spot. */
uint8_t *separator = parent->btc_elems + parent_idx * size;
bcpy(separator, leaf->btl_elems + (hdr->bth_first +
hdr->bth_count - 1) * size, size);
/* Move our neighbor's first element to the separator. */
uint8_t *take_elem = neighbor->btl_elems +
r_hdr->bth_first * size;
bcpy(take_elem, separator, size);
/* Delete our neighbor's first element. */
bt_shrink_leaf(tree, neighbor, 0, 1);
zfs_btree_verify(tree);
return;
}
/*
* In this case, neither of our neighbors can spare an element, so we
* need to merge with one of them. We prefer the left one, arbitrarily.
* After remove we move the separator into the leftmost merging node
* (which may be us or the left neighbor), and then move the right
* merging node's elements. Once that's done, we go back and delete
* the element we're removing. Finally, go into the parent and delete
* the right merging node and the separator. This may cause further
* merging.
*/
zfs_btree_hdr_t *rm_hdr, *k_hdr;
if (l_hdr != NULL) {
k_hdr = l_hdr;
rm_hdr = hdr;
} else {
ASSERT3P(r_hdr, !=, NULL);
k_hdr = hdr;
rm_hdr = r_hdr;
parent_idx++;
}
ASSERT(!zfs_btree_is_core(k_hdr));
ASSERT(!zfs_btree_is_core(rm_hdr));
ASSERT3U(k_hdr->bth_count, ==, min_count);
ASSERT3U(rm_hdr->bth_count, ==, min_count);
zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
if (zfs_btree_verify_intensity >= 5) {
for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
zfs_btree_verify_poison_at(tree, k_hdr,
k_hdr->bth_count + i);
}
}
/*
* Remove the value from the node. It will go below the minimum,
* but we'll fix it in no time.
*/
bt_shrink_leaf(tree, leaf, idx, 1);
/* Prepare space for elements to be moved from the right. */
uint32_t k_count = k_hdr->bth_count;
bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
/* Move the separator into the first open spot. */
uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
bcpy(separator, out, size);
/* Move our elements to the left neighbor. */
bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
/* Remove the emptied node from the parent. */
zfs_btree_remove_from_node(tree, parent, rm_hdr);
zfs_btree_node_destroy(tree, rm_hdr);
zfs_btree_verify(tree);
}
/* Remove the given value from the tree. */
void
zfs_btree_remove(zfs_btree_t *tree, const void *value)
{
zfs_btree_index_t where = {0};
VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
zfs_btree_remove_idx(tree, &where);
}
/* Return the number of elements in the tree. */
ulong_t
zfs_btree_numnodes(zfs_btree_t *tree)
{
return (tree->bt_num_elems);
}
/*
* This function is used to visit all the elements in the tree before
* destroying the tree. This allows the calling code to perform any cleanup it
* needs to do. This is more efficient than just removing the first element
* over and over, because it removes all rebalancing. Once the destroy_nodes()
* function has been called, no other btree operations are valid until it
* returns NULL, which point the only valid operation is zfs_btree_destroy().
*
* example:
*
* zfs_btree_index_t *cookie = NULL;
* my_data_t *node;
*
* while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
* free(node->ptr);
* zfs_btree_destroy(tree);
*
*/
void *
zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
{
if (*cookie == NULL) {
if (tree->bt_height == -1)
return (NULL);
*cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
return (zfs_btree_first(tree, *cookie));
}
void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
zfs_btree_node_destroy);
if (rval == NULL) {
tree->bt_root = NULL;
tree->bt_height = -1;
tree->bt_num_elems = 0;
kmem_free(*cookie, sizeof (**cookie));
tree->bt_bulk = NULL;
}
return (rval);
}
static void
zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (zfs_btree_is_core(hdr)) {
zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
for (uint32_t i = 0; i <= hdr->bth_count; i++)
zfs_btree_clear_helper(tree, btc->btc_children[i]);
}
zfs_btree_node_destroy(tree, hdr);
}
void
zfs_btree_clear(zfs_btree_t *tree)
{
if (tree->bt_root == NULL) {
ASSERT0(tree->bt_num_elems);
return;
}
zfs_btree_clear_helper(tree, tree->bt_root);
tree->bt_num_elems = 0;
tree->bt_root = NULL;
tree->bt_num_nodes = 0;
tree->bt_height = -1;
tree->bt_bulk = NULL;
}
void
zfs_btree_destroy(zfs_btree_t *tree)
{
ASSERT0(tree->bt_num_elems);
ASSERT3P(tree->bt_root, ==, NULL);
}
/* Verify that every child of this node has the correct parent pointer. */
static void
zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (!zfs_btree_is_core(hdr))
return;
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
}
}
/* Verify that every node has the correct parent pointer. */
static void
zfs_btree_verify_pointers(zfs_btree_t *tree)
{
if (tree->bt_height == -1) {
VERIFY3P(tree->bt_root, ==, NULL);
return;
}
VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
zfs_btree_verify_pointers_helper(tree, tree->bt_root);
}
/*
* Verify that all the current node and its children satisfy the count
* invariants, and return the total count in the subtree rooted in this node.
*/
static uint64_t
zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
if (!zfs_btree_is_core(hdr)) {
if (tree->bt_root != hdr && tree->bt_bulk &&
hdr != &tree->bt_bulk->btl_hdr) {
VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
}
return (hdr->bth_count);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint64_t ret = hdr->bth_count;
if (tree->bt_root != hdr && tree->bt_bulk == NULL)
VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
ret += zfs_btree_verify_counts_helper(tree,
node->btc_children[i]);
}
return (ret);
}
}
/*
* Verify that all nodes satisfy the invariants and that the total number of
* elements is correct.
*/
static void
zfs_btree_verify_counts(zfs_btree_t *tree)
{
EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
if (tree->bt_height == -1) {
return;
}
VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
tree->bt_num_elems);
}
/*
* Check that the subtree rooted at this node has a uniform height. Returns
* the number of nodes under this node, to help verify bt_num_nodes.
*/
static uint64_t
zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
int32_t height)
{
if (!zfs_btree_is_core(hdr)) {
VERIFY0(height);
return (1);
}
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
uint64_t ret = 1;
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
ret += zfs_btree_verify_height_helper(tree,
node->btc_children[i], height - 1);
}
return (ret);
}
/*
* Check that the tree rooted at this node has a uniform height, and that the
* bt_height in the tree is correct.
*/
static void
zfs_btree_verify_height(zfs_btree_t *tree)
{
EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
if (tree->bt_height == -1) {
return;
}
VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
tree->bt_height), ==, tree->bt_num_nodes);
}
/*
* Check that the elements in this node are sorted, and that if this is a core
* node, the separators are properly between the subtrees they separaate and
* that the children also satisfy this requirement.
*/
static void
zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
size_t size = tree->bt_elem_size;
if (!zfs_btree_is_core(hdr)) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
for (uint32_t i = 1; i < hdr->bth_count; i++) {
VERIFY3S(tree->bt_compar(leaf->btl_elems +
(hdr->bth_first + i - 1) * size,
leaf->btl_elems +
(hdr->bth_first + i) * size), ==, -1);
}
return;
}
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (uint32_t i = 1; i < hdr->bth_count; i++) {
VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
node->btc_elems + i * size), ==, -1);
}
for (uint32_t i = 0; i < hdr->bth_count; i++) {
uint8_t *left_child_last = NULL;
zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
if (zfs_btree_is_core(left_child_hdr)) {
zfs_btree_core_t *left_child =
(zfs_btree_core_t *)left_child_hdr;
left_child_last = left_child->btc_elems +
(left_child_hdr->bth_count - 1) * size;
} else {
zfs_btree_leaf_t *left_child =
(zfs_btree_leaf_t *)left_child_hdr;
left_child_last = left_child->btl_elems +
(left_child_hdr->bth_first +
left_child_hdr->bth_count - 1) * size;
}
int comp = tree->bt_compar(node->btc_elems + i * size,
left_child_last);
if (comp <= 0) {
panic("btree: compar returned %d (expected 1) at "
"%px %d: compar(%px, %px)", comp, node, i,
node->btc_elems + i * size, left_child_last);
}
uint8_t *right_child_first = NULL;
zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
if (zfs_btree_is_core(right_child_hdr)) {
zfs_btree_core_t *right_child =
(zfs_btree_core_t *)right_child_hdr;
right_child_first = right_child->btc_elems;
} else {
zfs_btree_leaf_t *right_child =
(zfs_btree_leaf_t *)right_child_hdr;
right_child_first = right_child->btl_elems +
right_child_hdr->bth_first * size;
}
comp = tree->bt_compar(node->btc_elems + i * size,
right_child_first);
if (comp >= 0) {
panic("btree: compar returned %d (expected -1) at "
"%px %d: compar(%px, %px)", comp, node, i,
node->btc_elems + i * size, right_child_first);
}
}
for (uint32_t i = 0; i <= hdr->bth_count; i++)
zfs_btree_verify_order_helper(tree, node->btc_children[i]);
}
/* Check that all elements in the tree are in sorted order. */
static void
zfs_btree_verify_order(zfs_btree_t *tree)
{
EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
if (tree->bt_height == -1) {
return;
}
zfs_btree_verify_order_helper(tree, tree->bt_root);
}
#ifdef ZFS_DEBUG
/* Check that all unused memory is poisoned correctly. */
static void
zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
{
size_t size = tree->bt_elem_size;
if (!zfs_btree_is_core(hdr)) {
zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
for (size_t i = 0; i < hdr->bth_first * size; i++)
VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
size_t esize = tree->bt_leaf_size -
offsetof(zfs_btree_leaf_t, btl_elems);
for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
i < esize; i++)
VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
} else {
zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
for (size_t i = hdr->bth_count * size;
i < BTREE_CORE_ELEMS * size; i++)
VERIFY3U(node->btc_elems[i], ==, 0x0f);
for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
i++) {
VERIFY3P(node->btc_children[i], ==,
(zfs_btree_hdr_t *)BTREE_POISON);
}
for (uint32_t i = 0; i <= hdr->bth_count; i++) {
zfs_btree_verify_poison_helper(tree,
node->btc_children[i]);
}
}
}
#endif
/* Check that unused memory in the tree is still poisoned. */
static void
zfs_btree_verify_poison(zfs_btree_t *tree)
{
#ifdef ZFS_DEBUG
if (tree->bt_height == -1)
return;
zfs_btree_verify_poison_helper(tree, tree->bt_root);
#endif
}
void
zfs_btree_verify(zfs_btree_t *tree)
{
if (zfs_btree_verify_intensity == 0)
return;
zfs_btree_verify_height(tree);
if (zfs_btree_verify_intensity == 1)
return;
zfs_btree_verify_pointers(tree);
if (zfs_btree_verify_intensity == 2)
return;
zfs_btree_verify_counts(tree);
if (zfs_btree_verify_intensity == 3)
return;
zfs_btree_verify_order(tree);
if (zfs_btree_verify_intensity == 4)
return;
zfs_btree_verify_poison(tree);
}
ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW,
"Enable btree verification. Levels above 4 require ZFS be built "
"with debugging");
|