1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2023, Klara Inc.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/ddt.h>
#include <sys/dmu_tx.h>
#include <sys/dmu.h>
#include <sys/ddt_impl.h>
#include <sys/dnode.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
/*
* No more than this many txgs before swapping logs.
*/
uint_t zfs_dedup_log_txg_max = 8;
/*
* Max memory for the log AVL trees. If zfs_dedup_log_mem_max is zero at module
* load, it will be set to zfs_dedup_log_mem_max_percent% of total memory.
*/
uint64_t zfs_dedup_log_mem_max = 0;
uint_t zfs_dedup_log_mem_max_percent = 1;
static kmem_cache_t *ddt_log_entry_flat_cache;
static kmem_cache_t *ddt_log_entry_trad_cache;
#define DDT_LOG_ENTRY_FLAT_SIZE \
(sizeof (ddt_log_entry_t) + DDT_FLAT_PHYS_SIZE)
#define DDT_LOG_ENTRY_TRAD_SIZE \
(sizeof (ddt_log_entry_t) + DDT_TRAD_PHYS_SIZE)
#define DDT_LOG_ENTRY_SIZE(ddt) \
_DDT_PHYS_SWITCH(ddt, DDT_LOG_ENTRY_FLAT_SIZE, DDT_LOG_ENTRY_TRAD_SIZE)
void
ddt_log_init(void)
{
ddt_log_entry_flat_cache = kmem_cache_create("ddt_log_entry_flat_cache",
DDT_LOG_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
ddt_log_entry_trad_cache = kmem_cache_create("ddt_log_entry_trad_cache",
DDT_LOG_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
/*
* Max memory for log AVL entries. At least 1M, because we need
* something (that's ~3800 entries per tree). They can say 100% if they
* want; it just means they're at the mercy of the the txg flush limit.
*/
if (zfs_dedup_log_mem_max == 0) {
zfs_dedup_log_mem_max_percent =
MIN(zfs_dedup_log_mem_max_percent, 100);
zfs_dedup_log_mem_max = (physmem * PAGESIZE) *
zfs_dedup_log_mem_max_percent / 100;
}
zfs_dedup_log_mem_max = MAX(zfs_dedup_log_mem_max, 1*1024*1024);
}
void
ddt_log_fini(void)
{
kmem_cache_destroy(ddt_log_entry_trad_cache);
kmem_cache_destroy(ddt_log_entry_flat_cache);
}
static void
ddt_log_name(ddt_t *ddt, char *name, uint_t n)
{
snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_LOG,
zio_checksum_table[ddt->ddt_checksum].ci_name, n);
}
static void
ddt_log_update_header(ddt_t *ddt, ddt_log_t *ddl, dmu_tx_t *tx)
{
dmu_buf_t *db;
VERIFY0(dmu_bonus_hold(ddt->ddt_os, ddl->ddl_object, FTAG, &db));
dmu_buf_will_dirty(db, tx);
ddt_log_header_t *hdr = (ddt_log_header_t *)db->db_data;
DLH_SET_VERSION(hdr, 1);
DLH_SET_FLAGS(hdr, ddl->ddl_flags);
hdr->dlh_length = ddl->ddl_length;
hdr->dlh_first_txg = ddl->ddl_first_txg;
hdr->dlh_checkpoint = ddl->ddl_checkpoint;
dmu_buf_rele(db, FTAG);
}
static void
ddt_log_create_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx)
{
ASSERT3U(ddt->ddt_dir_object, >, 0);
ASSERT3U(ddl->ddl_object, ==, 0);
char name[DDT_NAMELEN];
ddt_log_name(ddt, name, n);
ddl->ddl_object = dmu_object_alloc(ddt->ddt_os,
DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE,
DMU_OTN_UINT64_METADATA, sizeof (ddt_log_header_t), tx);
VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, name,
sizeof (uint64_t), 1, &ddl->ddl_object, tx));
ddl->ddl_length = 0;
ddl->ddl_first_txg = tx->tx_txg;
ddt_log_update_header(ddt, ddl, tx);
}
static void
ddt_log_create(ddt_t *ddt, dmu_tx_t *tx)
{
ddt_log_create_one(ddt, ddt->ddt_log_active, 0, tx);
ddt_log_create_one(ddt, ddt->ddt_log_flushing, 1, tx);
}
static void
ddt_log_destroy_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx)
{
ASSERT3U(ddt->ddt_dir_object, >, 0);
if (ddl->ddl_object == 0)
return;
ASSERT0(ddl->ddl_length);
char name[DDT_NAMELEN];
ddt_log_name(ddt, name, n);
VERIFY0(zap_remove(ddt->ddt_os, ddt->ddt_dir_object, name, tx));
VERIFY0(dmu_object_free(ddt->ddt_os, ddl->ddl_object, tx));
ddl->ddl_object = 0;
}
void
ddt_log_destroy(ddt_t *ddt, dmu_tx_t *tx)
{
ddt_log_destroy_one(ddt, ddt->ddt_log_active, 0, tx);
ddt_log_destroy_one(ddt, ddt->ddt_log_flushing, 1, tx);
}
static void
ddt_log_update_stats(ddt_t *ddt)
{
/*
* Log object stats. We count the number of live entries in the log
* tree, even if there are more than on disk, and even if the same
* entry is on both append and flush trees, because that's more what
* the user expects to see. This does mean the on-disk size is not
* really correlated with the number of entries, but I don't think
* that's reasonable to expect anyway.
*/
dmu_object_info_t doi;
uint64_t nblocks;
dmu_object_info(ddt->ddt_os, ddt->ddt_log_active->ddl_object, &doi);
nblocks = doi.doi_physical_blocks_512;
dmu_object_info(ddt->ddt_os, ddt->ddt_log_flushing->ddl_object, &doi);
nblocks += doi.doi_physical_blocks_512;
ddt_object_t *ddo = &ddt->ddt_log_stats;
ddo->ddo_count =
avl_numnodes(&ddt->ddt_log_active->ddl_tree) +
avl_numnodes(&ddt->ddt_log_flushing->ddl_tree);
ddo->ddo_mspace = ddo->ddo_count * DDT_LOG_ENTRY_SIZE(ddt);
ddo->ddo_dspace = nblocks << 9;
}
void
ddt_log_begin(ddt_t *ddt, size_t nentries, dmu_tx_t *tx, ddt_log_update_t *dlu)
{
ASSERT3U(nentries, >, 0);
ASSERT3P(dlu->dlu_dbp, ==, NULL);
if (ddt->ddt_log_active->ddl_object == 0)
ddt_log_create(ddt, tx);
/*
* We want to store as many entries as we can in a block, but never
* split an entry across block boundaries.
*/
size_t reclen = P2ALIGN_TYPED(
sizeof (ddt_log_record_t) + sizeof (ddt_log_record_entry_t) +
DDT_PHYS_SIZE(ddt), sizeof (uint64_t), size_t);
ASSERT3U(reclen, <=, UINT16_MAX);
dlu->dlu_reclen = reclen;
VERIFY0(dnode_hold(ddt->ddt_os, ddt->ddt_log_active->ddl_object, FTAG,
&dlu->dlu_dn));
dnode_set_storage_type(dlu->dlu_dn, DMU_OT_DDT_ZAP);
uint64_t nblocks = howmany(nentries,
dlu->dlu_dn->dn_datablksz / dlu->dlu_reclen);
uint64_t offset = ddt->ddt_log_active->ddl_length;
uint64_t length = nblocks * dlu->dlu_dn->dn_datablksz;
VERIFY0(dmu_buf_hold_array_by_dnode(dlu->dlu_dn, offset, length,
B_FALSE, FTAG, &dlu->dlu_ndbp, &dlu->dlu_dbp,
DMU_READ_NO_PREFETCH));
dlu->dlu_tx = tx;
dlu->dlu_block = dlu->dlu_offset = 0;
}
static ddt_log_entry_t *
ddt_log_alloc_entry(ddt_t *ddt)
{
ddt_log_entry_t *ddle;
if (ddt->ddt_flags & DDT_FLAG_FLAT) {
ddle = kmem_cache_alloc(ddt_log_entry_flat_cache, KM_SLEEP);
memset(ddle, 0, DDT_LOG_ENTRY_FLAT_SIZE);
} else {
ddle = kmem_cache_alloc(ddt_log_entry_trad_cache, KM_SLEEP);
memset(ddle, 0, DDT_LOG_ENTRY_TRAD_SIZE);
}
return (ddle);
}
static void
ddt_log_update_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe)
{
/* Create the log tree entry from a live or stored entry */
avl_index_t where;
ddt_log_entry_t *ddle =
avl_find(&ddl->ddl_tree, &ddlwe->ddlwe_key, &where);
if (ddle == NULL) {
ddle = ddt_log_alloc_entry(ddt);
ddle->ddle_key = ddlwe->ddlwe_key;
avl_insert(&ddl->ddl_tree, ddle, where);
}
ddle->ddle_type = ddlwe->ddlwe_type;
ddle->ddle_class = ddlwe->ddlwe_class;
memcpy(ddle->ddle_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
}
void
ddt_log_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, ddt_log_update_t *dlu)
{
ASSERT3U(dlu->dlu_dbp, !=, NULL);
ddt_log_update_entry(ddt, ddt->ddt_log_active, ddlwe);
ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, ddlwe);
/* Get our block */
ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp);
dmu_buf_t *db = dlu->dlu_dbp[dlu->dlu_block];
/*
* If this would take us past the end of the block, finish it and
* move to the next one.
*/
if (db->db_size < (dlu->dlu_offset + dlu->dlu_reclen)) {
ASSERT3U(dlu->dlu_offset, >, 0);
dmu_buf_fill_done(db, dlu->dlu_tx, B_FALSE);
dlu->dlu_block++;
dlu->dlu_offset = 0;
ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp);
db = dlu->dlu_dbp[dlu->dlu_block];
}
/*
* If this is the first time touching the block, inform the DMU that
* we will fill it, and zero it out.
*/
if (dlu->dlu_offset == 0) {
dmu_buf_will_fill(db, dlu->dlu_tx, B_FALSE);
memset(db->db_data, 0, db->db_size);
}
/* Create the log record directly in the buffer */
ddt_log_record_t *dlr = (db->db_data + dlu->dlu_offset);
DLR_SET_TYPE(dlr, DLR_ENTRY);
DLR_SET_RECLEN(dlr, dlu->dlu_reclen);
DLR_SET_ENTRY_TYPE(dlr, ddlwe->ddlwe_type);
DLR_SET_ENTRY_CLASS(dlr, ddlwe->ddlwe_class);
ddt_log_record_entry_t *dlre =
(ddt_log_record_entry_t *)&dlr->dlr_payload;
dlre->dlre_key = ddlwe->ddlwe_key;
memcpy(dlre->dlre_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
/* Advance offset for next record. */
dlu->dlu_offset += dlu->dlu_reclen;
}
void
ddt_log_commit(ddt_t *ddt, ddt_log_update_t *dlu)
{
ASSERT3U(dlu->dlu_dbp, !=, NULL);
ASSERT3U(dlu->dlu_block+1, ==, dlu->dlu_ndbp);
ASSERT3U(dlu->dlu_offset, >, 0);
/*
* Close out the last block. Whatever we haven't used will be zeroed,
* which matches DLR_INVALID, so we can detect this during load.
*/
dmu_buf_fill_done(dlu->dlu_dbp[dlu->dlu_block], dlu->dlu_tx, B_FALSE);
dmu_buf_rele_array(dlu->dlu_dbp, dlu->dlu_ndbp, FTAG);
ddt->ddt_log_active->ddl_length +=
dlu->dlu_ndbp * (uint64_t)dlu->dlu_dn->dn_datablksz;
dnode_rele(dlu->dlu_dn, FTAG);
ddt_log_update_header(ddt, ddt->ddt_log_active, dlu->dlu_tx);
memset(dlu, 0, sizeof (ddt_log_update_t));
ddt_log_update_stats(ddt);
}
boolean_t
ddt_log_take_first(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe)
{
ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
if (ddle == NULL)
return (B_FALSE);
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe);
ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, ddlwe);
avl_remove(&ddl->ddl_tree, ddle);
kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle);
return (B_TRUE);
}
boolean_t
ddt_log_remove_key(ddt_t *ddt, ddt_log_t *ddl, const ddt_key_t *ddk)
{
ddt_log_entry_t *ddle = avl_find(&ddl->ddl_tree, ddk, NULL);
if (ddle == NULL)
return (B_FALSE);
ddt_lightweight_entry_t ddlwe;
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
avl_remove(&ddl->ddl_tree, ddle);
kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle);
return (B_TRUE);
}
boolean_t
ddt_log_find_key(ddt_t *ddt, const ddt_key_t *ddk,
ddt_lightweight_entry_t *ddlwe)
{
ddt_log_entry_t *ddle =
avl_find(&ddt->ddt_log_active->ddl_tree, ddk, NULL);
if (!ddle)
ddle = avl_find(&ddt->ddt_log_flushing->ddl_tree, ddk, NULL);
if (!ddle)
return (B_FALSE);
if (ddlwe)
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe);
return (B_TRUE);
}
void
ddt_log_checkpoint(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
{
ddt_log_t *ddl = ddt->ddt_log_flushing;
ASSERT3U(ddl->ddl_object, !=, 0);
#ifdef ZFS_DEBUG
/*
* There should not be any entries on the log tree before the given
* checkpoint. Assert that this is the case.
*/
ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
if (ddle != NULL)
VERIFY3U(ddt_key_compare(&ddle->ddle_key, &ddlwe->ddlwe_key),
>, 0);
#endif
ddl->ddl_flags |= DDL_FLAG_CHECKPOINT;
ddl->ddl_checkpoint = ddlwe->ddlwe_key;
ddt_log_update_header(ddt, ddl, tx);
ddt_log_update_stats(ddt);
}
void
ddt_log_truncate(ddt_t *ddt, dmu_tx_t *tx)
{
ddt_log_t *ddl = ddt->ddt_log_flushing;
if (ddl->ddl_object == 0)
return;
ASSERT(avl_is_empty(&ddl->ddl_tree));
/* Eject the entire object */
dmu_free_range(ddt->ddt_os, ddl->ddl_object, 0, DMU_OBJECT_END, tx);
ddl->ddl_length = 0;
ddl->ddl_flags &= ~DDL_FLAG_CHECKPOINT;
memset(&ddl->ddl_checkpoint, 0, sizeof (ddt_key_t));
ddt_log_update_header(ddt, ddl, tx);
ddt_log_update_stats(ddt);
}
boolean_t
ddt_log_swap(ddt_t *ddt, dmu_tx_t *tx)
{
/* Swap the logs. The old flushing one must be empty */
VERIFY(avl_is_empty(&ddt->ddt_log_flushing->ddl_tree));
/*
* If there are still blocks on the flushing log, truncate it first.
* This can happen if there were entries on the flushing log that were
* removed in memory via ddt_lookup(); their vestigal remains are
* on disk.
*/
if (ddt->ddt_log_flushing->ddl_length > 0)
ddt_log_truncate(ddt, tx);
/*
* Swap policy. We swap the logs (and so begin flushing) when the
* active tree grows too large, or when we haven't swapped it in
* some amount of time, or if something has requested the logs be
* flushed ASAP (see ddt_walk_init()).
*/
/*
* The log tree is too large if the memory usage of its entries is over
* half of the memory limit. This effectively gives each log tree half
* the available memory.
*/
const boolean_t too_large =
(avl_numnodes(&ddt->ddt_log_active->ddl_tree) *
DDT_LOG_ENTRY_SIZE(ddt)) >= (zfs_dedup_log_mem_max >> 1);
const boolean_t too_old =
tx->tx_txg >=
(ddt->ddt_log_active->ddl_first_txg +
MAX(1, zfs_dedup_log_txg_max));
const boolean_t force =
ddt->ddt_log_active->ddl_first_txg <= ddt->ddt_flush_force_txg;
if (!(too_large || too_old || force))
return (B_FALSE);
ddt_log_t *swap = ddt->ddt_log_active;
ddt->ddt_log_active = ddt->ddt_log_flushing;
ddt->ddt_log_flushing = swap;
ASSERT(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING);
ddt->ddt_log_active->ddl_flags &=
~(DDL_FLAG_FLUSHING | DDL_FLAG_CHECKPOINT);
ASSERT(!(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING));
ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING;
ddt->ddt_log_active->ddl_first_txg = tx->tx_txg;
ddt_log_update_header(ddt, ddt->ddt_log_active, tx);
ddt_log_update_header(ddt, ddt->ddt_log_flushing, tx);
ddt_log_update_stats(ddt);
return (B_TRUE);
}
static inline void
ddt_log_load_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_log_record_t *dlr,
const ddt_key_t *checkpoint)
{
ASSERT3U(DLR_GET_TYPE(dlr), ==, DLR_ENTRY);
ddt_log_record_entry_t *dlre =
(ddt_log_record_entry_t *)dlr->dlr_payload;
if (checkpoint != NULL &&
ddt_key_compare(&dlre->dlre_key, checkpoint) <= 0) {
/* Skip pre-checkpoint entries; they're already flushed. */
return;
}
ddt_lightweight_entry_t ddlwe;
ddlwe.ddlwe_type = DLR_GET_ENTRY_TYPE(dlr);
ddlwe.ddlwe_class = DLR_GET_ENTRY_CLASS(dlr);
ddlwe.ddlwe_key = dlre->dlre_key;
memcpy(&ddlwe.ddlwe_phys, dlre->dlre_phys, DDT_PHYS_SIZE(ddt));
ddt_log_update_entry(ddt, ddl, &ddlwe);
}
static void
ddt_log_empty(ddt_t *ddt, ddt_log_t *ddl)
{
void *cookie = NULL;
ddt_log_entry_t *ddle;
IMPLY(ddt->ddt_version == UINT64_MAX, avl_is_empty(&ddl->ddl_tree));
while ((ddle =
avl_destroy_nodes(&ddl->ddl_tree, &cookie)) != NULL) {
kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle);
}
ASSERT(avl_is_empty(&ddl->ddl_tree));
}
static int
ddt_log_load_one(ddt_t *ddt, uint_t n)
{
ASSERT3U(n, <, 2);
ddt_log_t *ddl = &ddt->ddt_log[n];
char name[DDT_NAMELEN];
ddt_log_name(ddt, name, n);
uint64_t obj;
int err = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name,
sizeof (uint64_t), 1, &obj);
if (err == ENOENT)
return (0);
if (err != 0)
return (err);
dnode_t *dn;
err = dnode_hold(ddt->ddt_os, obj, FTAG, &dn);
if (err != 0)
return (err);
ddt_log_header_t hdr;
dmu_buf_t *db;
err = dmu_bonus_hold_by_dnode(dn, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err != 0) {
dnode_rele(dn, FTAG);
return (err);
}
memcpy(&hdr, db->db_data, sizeof (ddt_log_header_t));
dmu_buf_rele(db, FTAG);
if (DLH_GET_VERSION(&hdr) != 1) {
dnode_rele(dn, FTAG);
zfs_dbgmsg("ddt_log_load: spa=%s ddt_log=%s "
"unknown version=%llu", spa_name(ddt->ddt_spa), name,
(u_longlong_t)DLH_GET_VERSION(&hdr));
return (SET_ERROR(EINVAL));
}
ddt_key_t *checkpoint = NULL;
if (DLH_GET_FLAGS(&hdr) & DDL_FLAG_CHECKPOINT) {
/*
* If the log has a checkpoint, then we can ignore any entries
* that have already been flushed.
*/
ASSERT(DLH_GET_FLAGS(&hdr) & DDL_FLAG_FLUSHING);
checkpoint = &hdr.dlh_checkpoint;
}
if (hdr.dlh_length > 0) {
dmu_prefetch_by_dnode(dn, 0, 0, hdr.dlh_length,
ZIO_PRIORITY_SYNC_READ);
for (uint64_t offset = 0; offset < hdr.dlh_length;
offset += dn->dn_datablksz) {
err = dmu_buf_hold_by_dnode(dn, offset, FTAG, &db,
DMU_READ_PREFETCH);
if (err != 0) {
dnode_rele(dn, FTAG);
ddt_log_empty(ddt, ddl);
return (err);
}
uint64_t boffset = 0;
while (boffset < db->db_size) {
ddt_log_record_t *dlr =
(ddt_log_record_t *)(db->db_data + boffset);
/* Partially-filled block, skip the rest */
if (DLR_GET_TYPE(dlr) == DLR_INVALID)
break;
switch (DLR_GET_TYPE(dlr)) {
case DLR_ENTRY:
ddt_log_load_entry(ddt, ddl, dlr,
checkpoint);
break;
default:
dmu_buf_rele(db, FTAG);
dnode_rele(dn, FTAG);
ddt_log_empty(ddt, ddl);
return (SET_ERROR(EINVAL));
}
boffset += DLR_GET_RECLEN(dlr);
}
dmu_buf_rele(db, FTAG);
}
}
dnode_rele(dn, FTAG);
ddl->ddl_object = obj;
ddl->ddl_flags = DLH_GET_FLAGS(&hdr);
ddl->ddl_length = hdr.dlh_length;
ddl->ddl_first_txg = hdr.dlh_first_txg;
if (ddl->ddl_flags & DDL_FLAG_FLUSHING)
ddt->ddt_log_flushing = ddl;
else
ddt->ddt_log_active = ddl;
return (0);
}
int
ddt_log_load(ddt_t *ddt)
{
int err;
if (spa_load_state(ddt->ddt_spa) == SPA_LOAD_TRYIMPORT) {
/*
* The DDT is going to be freed again in a moment, so there's
* no point loading the log; it'll just slow down import.
*/
return (0);
}
ASSERT0(ddt->ddt_log[0].ddl_object);
ASSERT0(ddt->ddt_log[1].ddl_object);
if (ddt->ddt_dir_object == 0) {
/*
* If we're configured but the containing dir doesn't exist
* yet, then the log object can't possibly exist either.
*/
ASSERT3U(ddt->ddt_version, !=, UINT64_MAX);
return (SET_ERROR(ENOENT));
}
if ((err = ddt_log_load_one(ddt, 0)) != 0)
return (err);
if ((err = ddt_log_load_one(ddt, 1)) != 0)
return (err);
VERIFY3P(ddt->ddt_log_active, !=, ddt->ddt_log_flushing);
VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING));
VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_CHECKPOINT));
VERIFY(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING);
/*
* We have two finalisation tasks:
*
* - rebuild the histogram. We do this at the end rather than while
* we're loading so we don't need to uncount and recount entries that
* appear multiple times in the log.
*
* - remove entries from the flushing tree that are on both trees. This
* happens when ddt_lookup() rehydrates an entry from the flushing
* tree, as ddt_log_take_key() removes the entry from the in-memory
* tree but doesn't remove it from disk.
*/
/*
* We don't technically need a config lock here, since there shouldn't
* be pool config changes during DDT load. dva_get_dsize_sync() via
* ddt_stat_generate() is expecting it though, and it won't hurt
* anything, so we take it.
*/
spa_config_enter(ddt->ddt_spa, SCL_STATE, FTAG, RW_READER);
avl_tree_t *al = &ddt->ddt_log_active->ddl_tree;
avl_tree_t *fl = &ddt->ddt_log_flushing->ddl_tree;
ddt_log_entry_t *ae = avl_first(al);
ddt_log_entry_t *fe = avl_first(fl);
while (ae != NULL || fe != NULL) {
ddt_log_entry_t *ddle;
if (ae == NULL) {
/* active exhausted, take flushing */
ddle = fe;
fe = AVL_NEXT(fl, fe);
} else if (fe == NULL) {
/* flushing exuhausted, take active */
ddle = ae;
ae = AVL_NEXT(al, ae);
} else {
/* compare active and flushing */
int c = ddt_key_compare(&ae->ddle_key, &fe->ddle_key);
if (c < 0) {
/* active behind, take and advance */
ddle = ae;
ae = AVL_NEXT(al, ae);
} else if (c > 0) {
/* flushing behind, take and advance */
ddle = fe;
fe = AVL_NEXT(fl, fe);
} else {
/* match. remove from flushing, take active */
ddle = fe;
fe = AVL_NEXT(fl, fe);
avl_remove(fl, ddle);
ddle = ae;
ae = AVL_NEXT(al, ae);
}
}
ddt_lightweight_entry_t ddlwe;
DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
}
spa_config_exit(ddt->ddt_spa, SCL_STATE, FTAG);
ddt_log_update_stats(ddt);
return (0);
}
void
ddt_log_alloc(ddt_t *ddt)
{
ASSERT3P(ddt->ddt_log_active, ==, NULL);
ASSERT3P(ddt->ddt_log_flushing, ==, NULL);
avl_create(&ddt->ddt_log[0].ddl_tree, ddt_key_compare,
sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node));
avl_create(&ddt->ddt_log[1].ddl_tree, ddt_key_compare,
sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node));
ddt->ddt_log_active = &ddt->ddt_log[0];
ddt->ddt_log_flushing = &ddt->ddt_log[1];
ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING;
}
void
ddt_log_free(ddt_t *ddt)
{
ddt_log_empty(ddt, &ddt->ddt_log[0]);
ddt_log_empty(ddt, &ddt->ddt_log[1]);
avl_destroy(&ddt->ddt_log[0].ddl_tree);
avl_destroy(&ddt->ddt_log[1].ddl_tree);
}
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_txg_max, UINT, ZMOD_RW,
"Max transactions before starting to flush dedup logs");
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max, U64, ZMOD_RD,
"Max memory for dedup logs");
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max_percent, UINT, ZMOD_RD,
"Max memory for dedup logs, as % of total memory");
|