1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
// SPDX-License-Identifier: CDDL-1.0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, 2019 by Delphix. All rights reserved.
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zio.h>
#include <sys/range_tree.h>
/*
* Range trees are tree-based data structures that can be used to
* track free space or generally any space allocation information.
* A range tree keeps track of individual segments and automatically
* provides facilities such as adjacent extent merging and extent
* splitting in response to range add/remove requests.
*
* A range tree starts out completely empty, with no segments in it.
* Adding an allocation via zfs_range_tree_add to the range tree can either:
* 1) create a new extent
* 2) extend an adjacent extent
* 3) merge two adjacent extents
* Conversely, removing an allocation via zfs_range_tree_remove can:
* 1) completely remove an extent
* 2) shorten an extent (if the allocation was near one of its ends)
* 3) split an extent into two extents, in effect punching a hole
*
* A range tree is also capable of 'bridging' gaps when adding
* allocations. This is useful for cases when close proximity of
* allocations is an important detail that needs to be represented
* in the range tree. See zfs_range_tree_set_gap(). The default behavior
* is not to bridge gaps (i.e. the maximum allowed gap size is 0).
*
* In order to traverse a range tree, use either the zfs_range_tree_walk()
* or zfs_range_tree_vacate() functions.
*
* To obtain more accurate information on individual segment
* operations that the range tree performs "under the hood", you can
* specify a set of callbacks by passing a zfs_range_tree_ops_t structure
* to the zfs_range_tree_create function. Any callbacks that are non-NULL
* are then called at the appropriate times.
*
* The range tree code also supports a special variant of range trees
* that can bridge small gaps between segments. This kind of tree is used
* by the dsl scanning code to group I/Os into mostly sequential chunks to
* optimize disk performance. The code here attempts to do this with as
* little memory and computational overhead as possible. One limitation of
* this implementation is that segments of range trees with gaps can only
* support removing complete segments.
*/
static inline void
zfs_rs_copy(zfs_range_seg_t *src, zfs_range_seg_t *dest, zfs_range_tree_t *rt)
{
ASSERT3U(rt->rt_type, <, ZFS_RANGE_SEG_NUM_TYPES);
size_t size = 0;
switch (rt->rt_type) {
case ZFS_RANGE_SEG32:
size = sizeof (zfs_range_seg32_t);
break;
case ZFS_RANGE_SEG64:
size = sizeof (zfs_range_seg64_t);
break;
case ZFS_RANGE_SEG_GAP:
size = sizeof (zfs_range_seg_gap_t);
break;
default:
__builtin_unreachable();
}
memcpy(dest, src, size);
}
void
zfs_range_tree_stat_verify(zfs_range_tree_t *rt)
{
zfs_range_seg_t *rs;
zfs_btree_index_t where;
uint64_t hist[ZFS_RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
int i;
for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
uint64_t size = zfs_rs_get_end(rs, rt) -
zfs_rs_get_start(rs, rt);
int idx = highbit64(size) - 1;
hist[idx]++;
ASSERT3U(hist[idx], !=, 0);
}
for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
if (hist[i] != rt->rt_histogram[i]) {
zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
i, hist, (u_longlong_t)hist[i],
(u_longlong_t)rt->rt_histogram[i]);
}
VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
}
}
static void
zfs_range_tree_stat_incr(zfs_range_tree_t *rt, zfs_range_seg_t *rs)
{
uint64_t size = zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt);
int idx = highbit64(size) - 1;
ASSERT(size != 0);
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
rt->rt_histogram[idx]++;
ASSERT3U(rt->rt_histogram[idx], !=, 0);
}
static void
zfs_range_tree_stat_decr(zfs_range_tree_t *rt, zfs_range_seg_t *rs)
{
uint64_t size = zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt);
int idx = highbit64(size) - 1;
ASSERT(size != 0);
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
ASSERT3U(rt->rt_histogram[idx], !=, 0);
rt->rt_histogram[idx]--;
}
__attribute__((always_inline)) inline
static int
zfs_range_tree_seg32_compare(const void *x1, const void *x2)
{
const zfs_range_seg32_t *r1 = x1;
const zfs_range_seg32_t *r2 = x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
__attribute__((always_inline)) inline
static int
zfs_range_tree_seg64_compare(const void *x1, const void *x2)
{
const zfs_range_seg64_t *r1 = x1;
const zfs_range_seg64_t *r2 = x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
__attribute__((always_inline)) inline
static int
zfs_range_tree_seg_gap_compare(const void *x1, const void *x2)
{
const zfs_range_seg_gap_t *r1 = x1;
const zfs_range_seg_gap_t *r2 = x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
ZFS_BTREE_FIND_IN_BUF_FUNC(zfs_range_tree_seg32_find_in_buf, zfs_range_seg32_t,
zfs_range_tree_seg32_compare)
ZFS_BTREE_FIND_IN_BUF_FUNC(zfs_range_tree_seg64_find_in_buf, zfs_range_seg64_t,
zfs_range_tree_seg64_compare)
ZFS_BTREE_FIND_IN_BUF_FUNC(zfs_range_tree_seg_gap_find_in_buf,
zfs_range_seg_gap_t, zfs_range_tree_seg_gap_compare)
static zfs_range_tree_t *
zfs_range_tree_create_impl(const zfs_range_tree_ops_t *ops,
zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift,
uint64_t gap, uint64_t flags, const char *name)
{
zfs_range_tree_t *rt = kmem_zalloc(sizeof (zfs_range_tree_t), KM_SLEEP);
ASSERT3U(shift, <, 64);
ASSERT3U(type, <=, ZFS_RANGE_SEG_NUM_TYPES);
size_t size;
int (*compare) (const void *, const void *);
bt_find_in_buf_f bt_find;
switch (type) {
case ZFS_RANGE_SEG32:
size = sizeof (zfs_range_seg32_t);
compare = zfs_range_tree_seg32_compare;
bt_find = zfs_range_tree_seg32_find_in_buf;
break;
case ZFS_RANGE_SEG64:
size = sizeof (zfs_range_seg64_t);
compare = zfs_range_tree_seg64_compare;
bt_find = zfs_range_tree_seg64_find_in_buf;
break;
case ZFS_RANGE_SEG_GAP:
size = sizeof (zfs_range_seg_gap_t);
compare = zfs_range_tree_seg_gap_compare;
bt_find = zfs_range_tree_seg_gap_find_in_buf;
break;
default:
panic("Invalid range seg type %d", type);
}
zfs_btree_create(&rt->rt_root, compare, bt_find, size);
rt->rt_ops = ops;
rt->rt_gap = gap;
rt->rt_flags = flags;
rt->rt_name = name;
rt->rt_arg = arg;
rt->rt_type = type;
rt->rt_start = start;
rt->rt_shift = shift;
if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
rt->rt_ops->rtop_create(rt, rt->rt_arg);
return (rt);
}
zfs_range_tree_t *
zfs_range_tree_create_gap(const zfs_range_tree_ops_t *ops,
zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift,
uint64_t gap)
{
return (zfs_range_tree_create_impl(ops, type, arg, start, shift, gap,
0, NULL));
}
zfs_range_tree_t *
zfs_range_tree_create(const zfs_range_tree_ops_t *ops,
zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift)
{
return (zfs_range_tree_create_impl(ops, type, arg, start, shift, 0,
0, NULL));
}
zfs_range_tree_t *
zfs_range_tree_create_flags(const zfs_range_tree_ops_t *ops,
zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift,
uint64_t flags, const char *name)
{
return (zfs_range_tree_create_impl(ops, type, arg, start, shift, 0,
flags, name));
}
void
zfs_range_tree_destroy(zfs_range_tree_t *rt)
{
VERIFY0(rt->rt_space);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
if (rt->rt_name != NULL && (rt->rt_flags & ZFS_RT_F_DYN_NAME))
kmem_strfree((char *)(uintptr_t)rt->rt_name);
zfs_btree_destroy(&rt->rt_root);
kmem_free(rt, sizeof (*rt));
}
void
zfs_range_tree_adjust_fill(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
int64_t delta)
{
if (delta < 0 && delta * -1 >= zfs_rs_get_fill(rs, rt)) {
zfs_panic_recover("zfs: rt=%s: attempting to decrease fill to "
"or below 0; probable double remove in segment [%llx:%llx]",
ZFS_RT_NAME(rt),
(longlong_t)zfs_rs_get_start(rs, rt),
(longlong_t)zfs_rs_get_end(rs, rt));
}
if (zfs_rs_get_fill(rs, rt) + delta > zfs_rs_get_end(rs, rt) -
zfs_rs_get_start(rs, rt)) {
zfs_panic_recover("zfs: rt=%s: attempting to increase fill "
"beyond max; probable double add in segment [%llx:%llx]",
ZFS_RT_NAME(rt),
(longlong_t)zfs_rs_get_start(rs, rt),
(longlong_t)zfs_rs_get_end(rs, rt));
}
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
zfs_rs_set_fill(rs, rt, zfs_rs_get_fill(rs, rt) + delta);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
}
static void
zfs_range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
{
zfs_range_tree_t *rt = arg;
zfs_btree_index_t where;
zfs_range_seg_t *rs_before, *rs_after, *rs;
zfs_range_seg_max_t tmp, rsearch;
uint64_t end = start + size, gap = rt->rt_gap;
uint64_t bridge_size = 0;
boolean_t merge_before, merge_after;
ASSERT3U(size, !=, 0);
ASSERT3U(fill, <=, size);
ASSERT3U(start + size, >, start);
zfs_rs_set_start(&rsearch, rt, start);
zfs_rs_set_end(&rsearch, rt, end);
rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
/*
* If this is a gap-supporting range tree, it is possible that we
* are inserting into an existing segment. In this case simply
* bump the fill count and call the remove / add callbacks. If the
* new range will extend an existing segment, we remove the
* existing one, apply the new extent to it and re-insert it using
* the normal code paths.
*/
if (rs != NULL) {
uint64_t rstart = zfs_rs_get_start(rs, rt);
uint64_t rend = zfs_rs_get_end(rs, rt);
if (gap == 0) {
zfs_panic_recover("zfs: rt=%s: adding segment "
"(offset=%llx size=%llx) overlapping with existing "
"one (offset=%llx size=%llx)",
ZFS_RT_NAME(rt),
(longlong_t)start, (longlong_t)size,
(longlong_t)rstart, (longlong_t)(rend - rstart));
return;
}
if (rstart <= start && rend >= end) {
zfs_range_tree_adjust_fill(rt, rs, fill);
return;
}
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
zfs_range_tree_stat_decr(rt, rs);
rt->rt_space -= rend - rstart;
fill += zfs_rs_get_fill(rs, rt);
start = MIN(start, rstart);
end = MAX(end, rend);
size = end - start;
zfs_btree_remove(&rt->rt_root, rs);
zfs_range_tree_add_impl(rt, start, size, fill);
return;
}
ASSERT3P(rs, ==, NULL);
/*
* Determine whether or not we will have to merge with our neighbors.
* If gap != 0, we might need to merge with our neighbors even if we
* aren't directly touching.
*/
zfs_btree_index_t where_before, where_after;
rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
merge_before = (rs_before != NULL && zfs_rs_get_end(rs_before, rt) >=
start - gap);
merge_after = (rs_after != NULL && zfs_rs_get_start(rs_after, rt) <=
end + gap);
if (merge_before && gap != 0)
bridge_size += start - zfs_rs_get_end(rs_before, rt);
if (merge_after && gap != 0)
bridge_size += zfs_rs_get_start(rs_after, rt) - end;
if (merge_before && merge_after) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
}
zfs_range_tree_stat_decr(rt, rs_before);
zfs_range_tree_stat_decr(rt, rs_after);
zfs_rs_copy(rs_after, &tmp, rt);
uint64_t before_start = zfs_rs_get_start_raw(rs_before, rt);
uint64_t before_fill = zfs_rs_get_fill(rs_before, rt);
uint64_t after_fill = zfs_rs_get_fill(rs_after, rt);
zfs_btree_remove_idx(&rt->rt_root, &where_before);
/*
* We have to re-find the node because our old reference is
* invalid as soon as we do any mutating btree operations.
*/
rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
ASSERT3P(rs_after, !=, NULL);
zfs_rs_set_start_raw(rs_after, rt, before_start);
zfs_rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
rs = rs_after;
} else if (merge_before) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
zfs_range_tree_stat_decr(rt, rs_before);
uint64_t before_fill = zfs_rs_get_fill(rs_before, rt);
zfs_rs_set_end(rs_before, rt, end);
zfs_rs_set_fill(rs_before, rt, before_fill + fill);
rs = rs_before;
} else if (merge_after) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
zfs_range_tree_stat_decr(rt, rs_after);
uint64_t after_fill = zfs_rs_get_fill(rs_after, rt);
zfs_rs_set_start(rs_after, rt, start);
zfs_rs_set_fill(rs_after, rt, after_fill + fill);
rs = rs_after;
} else {
rs = &tmp;
zfs_rs_set_start(rs, rt, start);
zfs_rs_set_end(rs, rt, end);
zfs_rs_set_fill(rs, rt, fill);
zfs_btree_add_idx(&rt->rt_root, rs, &where);
}
if (gap != 0) {
ASSERT3U(zfs_rs_get_fill(rs, rt), <=, zfs_rs_get_end(rs, rt) -
zfs_rs_get_start(rs, rt));
} else {
ASSERT3U(zfs_rs_get_fill(rs, rt), ==, zfs_rs_get_end(rs, rt) -
zfs_rs_get_start(rs, rt));
}
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
zfs_range_tree_stat_incr(rt, rs);
rt->rt_space += size + bridge_size;
}
void
zfs_range_tree_add(void *arg, uint64_t start, uint64_t size)
{
zfs_range_tree_add_impl(arg, start, size, size);
}
static void
zfs_range_tree_remove_impl(zfs_range_tree_t *rt, uint64_t start, uint64_t size,
boolean_t do_fill)
{
zfs_btree_index_t where;
zfs_range_seg_t *rs;
zfs_range_seg_max_t rsearch, rs_tmp;
uint64_t end = start + size;
uint64_t rstart, rend;
boolean_t left_over, right_over;
VERIFY3U(size, !=, 0);
VERIFY3U(size, <=, rt->rt_space);
if (rt->rt_type == ZFS_RANGE_SEG64)
ASSERT3U(start + size, >, start);
zfs_rs_set_start(&rsearch, rt, start);
zfs_rs_set_end(&rsearch, rt, end);
rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
/* Make sure we completely overlap with someone */
if (rs == NULL) {
zfs_panic_recover("zfs: rt=%s: removing nonexistent segment "
"from range tree (offset=%llx size=%llx)",
ZFS_RT_NAME(rt), (longlong_t)start, (longlong_t)size);
return;
}
rstart = zfs_rs_get_start(rs, rt);
rend = zfs_rs_get_end(rs, rt);
/*
* Range trees with gap support must only remove complete segments
* from the tree. This allows us to maintain accurate fill accounting
* and to ensure that bridged sections are not leaked. If we need to
* remove less than the full segment, we can only adjust the fill count.
*/
if (rt->rt_gap != 0) {
if (do_fill) {
if (zfs_rs_get_fill(rs, rt) == size) {
start = rstart;
end = rend;
size = end - start;
} else {
zfs_range_tree_adjust_fill(rt, rs, -size);
return;
}
} else if (rstart != start || rend != end) {
zfs_panic_recover("zfs: rt=%s: freeing partial segment "
"of gap tree (offset=%llx size=%llx) of "
"(offset=%llx size=%llx)",
ZFS_RT_NAME(rt),
(longlong_t)start, (longlong_t)size,
(longlong_t)rstart, (longlong_t)(rend - rstart));
return;
}
}
if (!(rstart <= start && rend >= end)) {
panic("zfs: rt=%s: removing segment "
"(offset=%llx size=%llx) not completely overlapped by "
"existing one (offset=%llx size=%llx)",
ZFS_RT_NAME(rt),
(longlong_t)start, (longlong_t)size,
(longlong_t)rstart, (longlong_t)(rend - rstart));
return;
}
left_over = (rstart != start);
right_over = (rend != end);
zfs_range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
if (left_over && right_over) {
zfs_range_seg_max_t newseg;
zfs_rs_set_start(&newseg, rt, end);
zfs_rs_set_end_raw(&newseg, rt, zfs_rs_get_end_raw(rs, rt));
zfs_rs_set_fill(&newseg, rt, zfs_rs_get_end(rs, rt) - end);
zfs_range_tree_stat_incr(rt, &newseg);
// This modifies the buffer already inside the range tree
zfs_rs_set_end(rs, rt, start);
zfs_rs_copy(rs, &rs_tmp, rt);
if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
else
zfs_btree_add(&rt->rt_root, &newseg);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
} else if (left_over) {
// This modifies the buffer already inside the range tree
zfs_rs_set_end(rs, rt, start);
zfs_rs_copy(rs, &rs_tmp, rt);
} else if (right_over) {
// This modifies the buffer already inside the range tree
zfs_rs_set_start(rs, rt, end);
zfs_rs_copy(rs, &rs_tmp, rt);
} else {
zfs_btree_remove_idx(&rt->rt_root, &where);
rs = NULL;
}
if (rs != NULL) {
/*
* The fill of the leftover segment will always be equal to
* the size, since we do not support removing partial segments
* of range trees with gaps.
*/
zfs_zfs_rs_set_fill_raw(rs, rt, zfs_rs_get_end_raw(rs, rt) -
zfs_rs_get_start_raw(rs, rt));
zfs_range_tree_stat_incr(rt, &rs_tmp);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
}
rt->rt_space -= size;
}
void
zfs_range_tree_remove(void *arg, uint64_t start, uint64_t size)
{
zfs_range_tree_remove_impl(arg, start, size, B_FALSE);
}
void
zfs_range_tree_remove_fill(zfs_range_tree_t *rt, uint64_t start, uint64_t size)
{
zfs_range_tree_remove_impl(rt, start, size, B_TRUE);
}
void
zfs_range_tree_resize_segment(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
uint64_t newstart, uint64_t newsize)
{
int64_t delta = newsize - (zfs_rs_get_end(rs, rt) -
zfs_rs_get_start(rs, rt));
zfs_range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
zfs_rs_set_start(rs, rt, newstart);
zfs_rs_set_end(rs, rt, newstart + newsize);
zfs_range_tree_stat_incr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
rt->rt_space += delta;
}
static zfs_range_seg_t *
zfs_range_tree_find_impl(zfs_range_tree_t *rt, uint64_t start, uint64_t size)
{
zfs_range_seg_max_t rsearch;
uint64_t end = start + size;
VERIFY(size != 0);
zfs_rs_set_start(&rsearch, rt, start);
zfs_rs_set_end(&rsearch, rt, end);
return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
}
zfs_range_seg_t *
zfs_range_tree_find(zfs_range_tree_t *rt, uint64_t start, uint64_t size)
{
if (rt->rt_type == ZFS_RANGE_SEG64)
ASSERT3U(start + size, >, start);
zfs_range_seg_t *rs = zfs_range_tree_find_impl(rt, start, size);
if (rs != NULL && zfs_rs_get_start(rs, rt) <= start &&
zfs_rs_get_end(rs, rt) >= start + size) {
return (rs);
}
return (NULL);
}
void
zfs_range_tree_verify_not_present(zfs_range_tree_t *rt, uint64_t off,
uint64_t size)
{
zfs_range_seg_t *rs = zfs_range_tree_find(rt, off, size);
if (rs != NULL)
panic("segment already in tree; rs=%p", (void *)rs);
}
boolean_t
zfs_range_tree_contains(zfs_range_tree_t *rt, uint64_t start, uint64_t size)
{
return (zfs_range_tree_find(rt, start, size) != NULL);
}
/*
* Returns the first subset of the given range which overlaps with the range
* tree. Returns true if there is a segment in the range, and false if there
* isn't.
*/
boolean_t
zfs_range_tree_find_in(zfs_range_tree_t *rt, uint64_t start, uint64_t size,
uint64_t *ostart, uint64_t *osize)
{
if (rt->rt_type == ZFS_RANGE_SEG64)
ASSERT3U(start + size, >, start);
zfs_range_seg_max_t rsearch;
zfs_rs_set_start(&rsearch, rt, start);
zfs_rs_set_end_raw(&rsearch, rt, zfs_rs_get_start_raw(&rsearch, rt) +
1);
zfs_btree_index_t where;
zfs_range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
if (rs != NULL) {
*ostart = start;
*osize = MIN(size, zfs_rs_get_end(rs, rt) - start);
return (B_TRUE);
}
rs = zfs_btree_next(&rt->rt_root, &where, &where);
if (rs == NULL || zfs_rs_get_start(rs, rt) >= start + size)
return (B_FALSE);
*ostart = zfs_rs_get_start(rs, rt);
*osize = MIN(start + size, zfs_rs_get_end(rs, rt)) -
zfs_rs_get_start(rs, rt);
return (B_TRUE);
}
/*
* Ensure that this range is not in the tree, regardless of whether
* it is currently in the tree.
*/
void
zfs_range_tree_clear(zfs_range_tree_t *rt, uint64_t start, uint64_t size)
{
zfs_range_seg_t *rs;
if (size == 0)
return;
if (rt->rt_type == ZFS_RANGE_SEG64)
ASSERT3U(start + size, >, start);
while ((rs = zfs_range_tree_find_impl(rt, start, size)) != NULL) {
uint64_t free_start = MAX(zfs_rs_get_start(rs, rt), start);
uint64_t free_end = MIN(zfs_rs_get_end(rs, rt), start + size);
zfs_range_tree_remove(rt, free_start, free_end - free_start);
}
}
void
zfs_range_tree_swap(zfs_range_tree_t **rtsrc, zfs_range_tree_t **rtdst)
{
zfs_range_tree_t *rt;
ASSERT0(zfs_range_tree_space(*rtdst));
ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
rt = *rtsrc;
*rtsrc = *rtdst;
*rtdst = rt;
}
void
zfs_range_tree_vacate(zfs_range_tree_t *rt, zfs_range_tree_func_t *func,
void *arg)
{
if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
if (func != NULL) {
zfs_range_seg_t *rs;
zfs_btree_index_t *cookie = NULL;
while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
NULL) {
func(arg, zfs_rs_get_start(rs, rt),
zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt));
}
} else {
zfs_btree_clear(&rt->rt_root);
}
memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram));
rt->rt_space = 0;
}
void
zfs_range_tree_walk(zfs_range_tree_t *rt, zfs_range_tree_func_t *func,
void *arg)
{
zfs_btree_index_t where;
for (zfs_range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
func(arg, zfs_rs_get_start(rs, rt), zfs_rs_get_end(rs, rt) -
zfs_rs_get_start(rs, rt));
}
}
zfs_range_seg_t *
zfs_range_tree_first(zfs_range_tree_t *rt)
{
return (zfs_btree_first(&rt->rt_root, NULL));
}
uint64_t
zfs_range_tree_space(zfs_range_tree_t *rt)
{
return (rt->rt_space);
}
uint64_t
zfs_range_tree_numsegs(zfs_range_tree_t *rt)
{
return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
}
boolean_t
zfs_range_tree_is_empty(zfs_range_tree_t *rt)
{
ASSERT(rt != NULL);
return (zfs_range_tree_space(rt) == 0);
}
/*
* Remove any overlapping ranges between the given segment [start, end)
* from removefrom. Add non-overlapping leftovers to addto.
*/
void
zfs_range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
zfs_range_tree_t *removefrom, zfs_range_tree_t *addto)
{
zfs_btree_index_t where;
zfs_range_seg_max_t starting_rs;
zfs_rs_set_start(&starting_rs, removefrom, start);
zfs_rs_set_end_raw(&starting_rs, removefrom,
zfs_rs_get_start_raw(&starting_rs, removefrom) + 1);
zfs_range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
&starting_rs, &where);
if (curr == NULL)
curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
zfs_range_seg_t *next;
for (; curr != NULL; curr = next) {
if (start == end)
return;
VERIFY3U(start, <, end);
/* there is no overlap */
if (end <= zfs_rs_get_start(curr, removefrom)) {
zfs_range_tree_add(addto, start, end - start);
return;
}
uint64_t overlap_start = MAX(zfs_rs_get_start(curr, removefrom),
start);
uint64_t overlap_end = MIN(zfs_rs_get_end(curr, removefrom),
end);
uint64_t overlap_size = overlap_end - overlap_start;
ASSERT3S(overlap_size, >, 0);
zfs_range_seg_max_t rs;
zfs_rs_copy(curr, &rs, removefrom);
zfs_range_tree_remove(removefrom, overlap_start, overlap_size);
if (start < overlap_start)
zfs_range_tree_add(addto, start, overlap_start - start);
start = overlap_end;
next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
/*
* If we find something here, we only removed part of the
* curr segment. Either there's some left at the end
* because we've reached the end of the range we're removing,
* or there's some left at the start because we started
* partway through the range. Either way, we continue with
* the loop. If it's the former, we'll return at the start of
* the loop, and if it's the latter we'll see if there is more
* area to process.
*/
if (next != NULL) {
ASSERT(start == end || start == zfs_rs_get_end(&rs,
removefrom));
}
next = zfs_btree_next(&removefrom->rt_root, &where, &where);
}
VERIFY3P(curr, ==, NULL);
if (start != end) {
VERIFY3U(start, <, end);
zfs_range_tree_add(addto, start, end - start);
} else {
VERIFY3U(start, ==, end);
}
}
/*
* For each entry in rt, if it exists in removefrom, remove it
* from removefrom. Otherwise, add it to addto.
*/
void
zfs_range_tree_remove_xor_add(zfs_range_tree_t *rt,
zfs_range_tree_t *removefrom, zfs_range_tree_t *addto)
{
zfs_btree_index_t where;
for (zfs_range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
zfs_range_tree_remove_xor_add_segment(zfs_rs_get_start(rs, rt),
zfs_rs_get_end(rs, rt), removefrom, addto);
}
}
uint64_t
zfs_range_tree_min(zfs_range_tree_t *rt)
{
zfs_range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
return (rs != NULL ? zfs_rs_get_start(rs, rt) : 0);
}
uint64_t
zfs_range_tree_max(zfs_range_tree_t *rt)
{
zfs_range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
return (rs != NULL ? zfs_rs_get_end(rs, rt) : 0);
}
uint64_t
zfs_range_tree_span(zfs_range_tree_t *rt)
{
return (zfs_range_tree_max(rt) - zfs_range_tree_min(rt));
}
|