File: zfs_vnops.c

package info (click to toggle)
zfs-linux 2.3.4~git20250812.3b64a96-1
  • links: PTS, VCS
  • area: contrib
  • in suites: experimental
  • size: 70,688 kB
  • sloc: ansic: 393,668; sh: 68,068; asm: 47,734; python: 8,160; makefile: 5,125; perl: 859; sed: 41
file content (2029 lines) | stat: -rw-r--r-- 54,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
// SPDX-License-Identifier: CDDL-1.0
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 * Copyright 2017 Nexenta Systems, Inc.
 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
 * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
 */

/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/sysmacros.h>
#include <sys/vfs.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_crypt.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/policy.h>
#include <sys/zfeature.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_quota.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_znode.h>

/*
 * Enables access to the block cloning feature. If this setting is 0, then even
 * if feature@block_cloning is enabled, using functions and system calls that
 * attempt to clone blocks will act as though the feature is disabled.
 */
int zfs_bclone_enabled = 1;

/*
 * When set to 1 the FICLONE and FICLONERANGE ioctls will wait for any dirty
 * data to be written to disk before proceeding. This ensures that the clone
 * operation reliably succeeds, even if a file is modified and then immediately
 * cloned. Note that for small files this may be slower than simply copying
 * the file. When set to 0 the clone operation will immediately fail if it
 * encounters any dirty blocks. By default waiting is enabled.
 */
int zfs_bclone_wait_dirty = 1;

/*
 * Enable Direct I/O. If this setting is 0, then all I/O requests will be
 * directed through the ARC acting as though the dataset property direct was
 * set to disabled.
 *
 * Disabled by default on FreeBSD until a potential range locking issue in
 * zfs_getpages() can be resolved.
 */
#ifdef __FreeBSD__
static int zfs_dio_enabled = 0;
#else
static int zfs_dio_enabled = 1;
#endif


/*
 * Maximum bytes to read per chunk in zfs_read().
 */
#ifdef _ILP32
static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
#else
static uint64_t zfs_vnops_read_chunk_size = DMU_MAX_ACCESS / 2;
#endif

int
zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
{
	int error = 0;
	zfsvfs_t *zfsvfs = ZTOZSB(zp);

	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
			return (error);
		zil_commit(zfsvfs->z_log, zp->z_id);
		zfs_exit(zfsvfs, FTAG);
	}
	return (error);
}


#if defined(SEEK_HOLE) && defined(SEEK_DATA)
/*
 * Lseek support for finding holes (cmd == SEEK_HOLE) and
 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
 */
static int
zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
{
	zfs_locked_range_t *lr;
	uint64_t noff = (uint64_t)*off; /* new offset */
	uint64_t file_sz;
	int error;
	boolean_t hole;

	file_sz = zp->z_size;
	if (noff >= file_sz)  {
		return (SET_ERROR(ENXIO));
	}

	if (cmd == F_SEEK_HOLE)
		hole = B_TRUE;
	else
		hole = B_FALSE;

	/* Flush any mmap()'d data to disk */
	if (zn_has_cached_data(zp, 0, file_sz - 1))
		zn_flush_cached_data(zp, B_TRUE);

	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
	zfs_rangelock_exit(lr);

	if (error == ESRCH)
		return (SET_ERROR(ENXIO));

	/* File was dirty, so fall back to using generic logic */
	if (error == EBUSY) {
		if (hole)
			*off = file_sz;

		return (0);
	}

	/*
	 * We could find a hole that begins after the logical end-of-file,
	 * because dmu_offset_next() only works on whole blocks.  If the
	 * EOF falls mid-block, then indicate that the "virtual hole"
	 * at the end of the file begins at the logical EOF, rather than
	 * at the end of the last block.
	 */
	if (noff > file_sz) {
		ASSERT(hole);
		noff = file_sz;
	}

	if (noff < *off)
		return (error);
	*off = noff;
	return (error);
}

int
zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;

	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);

	error = zfs_holey_common(zp, cmd, off);

	zfs_exit(zfsvfs, FTAG);
	return (error);
}
#endif /* SEEK_HOLE && SEEK_DATA */

int
zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;

	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);

	if (flag & V_ACE_MASK)
#if defined(__linux__)
		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
		    zfs_init_idmap);
#else
		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
		    NULL);
#endif
	else
#if defined(__linux__)
		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
#else
		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
#endif

	zfs_exit(zfsvfs, FTAG);
	return (error);
}

/*
 * Determine if Direct I/O has been requested (either via the O_DIRECT flag or
 * the "direct" dataset property). When inherited by the property only apply
 * the O_DIRECT flag to correctly aligned IO requests. The rational for this
 * is it allows the property to be safely set on a dataset without forcing
 * all of the applications to be aware of the alignment restrictions. When
 * O_DIRECT is explicitly requested by an application return EINVAL if the
 * request is unaligned.  In all cases, if the range for this request has
 * been mmap'ed then we will perform buffered I/O to keep the mapped region
 * synhronized with the ARC.
 *
 * It is possible that a file's pages could be mmap'ed after it is checked
 * here. If so, that is handled coorarding in zfs_write(). See comments in the
 * following area for how this is handled:
 * zfs_write() -> update_pages()
 */
static int
zfs_setup_direct(struct znode *zp, zfs_uio_t *uio, zfs_uio_rw_t rw,
    int *ioflagp)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	objset_t *os = zfsvfs->z_os;
	int ioflag = *ioflagp;
	int error = 0;

	if (!zfs_dio_enabled || os->os_direct == ZFS_DIRECT_DISABLED ||
	    zn_has_cached_data(zp, zfs_uio_offset(uio),
	    zfs_uio_offset(uio) + zfs_uio_resid(uio) - 1)) {
		/*
		 * Direct I/O is disabled or the region is mmap'ed. In either
		 * case the I/O request will just directed through the ARC.
		 */
		ioflag &= ~O_DIRECT;
		goto out;
	} else if (os->os_direct == ZFS_DIRECT_ALWAYS &&
	    zfs_uio_page_aligned(uio) &&
	    zfs_uio_aligned(uio, PAGE_SIZE)) {
		if ((rw == UIO_WRITE && zfs_uio_resid(uio) >= zp->z_blksz) ||
		    (rw == UIO_READ)) {
			ioflag |= O_DIRECT;
		}
	} else if (os->os_direct == ZFS_DIRECT_ALWAYS && (ioflag & O_DIRECT)) {
		/*
		 * Direct I/O was requested through the direct=always, but it
		 * is not properly PAGE_SIZE aligned. The request will be
		 * directed through the ARC.
		 */
		ioflag &= ~O_DIRECT;
	}

	if (ioflag & O_DIRECT) {
		if (!zfs_uio_page_aligned(uio) ||
		    !zfs_uio_aligned(uio, PAGE_SIZE)) {
			error = SET_ERROR(EINVAL);
			goto out;
		}

		error = zfs_uio_get_dio_pages_alloc(uio, rw);
		if (error) {
			goto out;
		}
	}

	IMPLY(ioflag & O_DIRECT, uio->uio_extflg & UIO_DIRECT);
	ASSERT0(error);

out:
	*ioflagp = ioflag;
	return (error);
}

/*
 * Read bytes from specified file into supplied buffer.
 *
 *	IN:	zp	- inode of file to be read from.
 *		uio	- structure supplying read location, range info,
 *			  and return buffer.
 *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
 *			  O_DIRECT flag; used to bypass page cache.
 *		cr	- credentials of caller.
 *
 *	OUT:	uio	- updated offset and range, buffer filled.
 *
 *	RETURN:	0 on success, error code on failure.
 *
 * Side Effects:
 *	inode - atime updated if byte count > 0
 */
int
zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
{
	(void) cr;
	int error = 0;
	boolean_t frsync = B_FALSE;
	boolean_t dio_checksum_failure = B_FALSE;

	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);

	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EACCES));
	}

	/* We don't copy out anything useful for directories. */
	if (Z_ISDIR(ZTOTYPE(zp))) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EISDIR));
	}

	/*
	 * Validate file offset
	 */
	if (zfs_uio_offset(uio) < (offset_t)0) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Fasttrack empty reads
	 */
	if (zfs_uio_resid(uio) == 0) {
		zfs_exit(zfsvfs, FTAG);
		return (0);
	}

#ifdef FRSYNC
	/*
	 * If we're in FRSYNC mode, sync out this znode before reading it.
	 * Only do this for non-snapshots.
	 *
	 * Some platforms do not support FRSYNC and instead map it
	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
	 * only honor FRSYNC requests on platforms which support it.
	 */
	frsync = !!(ioflag & FRSYNC);
#endif
	if (zfsvfs->z_log &&
	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
		zil_commit(zfsvfs->z_log, zp->z_id);

	/*
	 * Lock the range against changes.
	 */
	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);

	/*
	 * If we are reading past end-of-file we can skip
	 * to the end; but we might still need to set atime.
	 */
	if (zfs_uio_offset(uio) >= zp->z_size) {
		error = 0;
		goto out;
	}
	ASSERT(zfs_uio_offset(uio) < zp->z_size);

	/*
	 * Setting up Direct I/O if requested.
	 */
	error = zfs_setup_direct(zp, uio, UIO_READ, &ioflag);
	if (error) {
		goto out;
	}

#if defined(__linux__)
	ssize_t start_offset = zfs_uio_offset(uio);
#endif
	uint_t blksz = zp->z_blksz;
	ssize_t chunk_size;
	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
	ssize_t start_resid = n;
	ssize_t dio_remaining_resid = 0;

	if (uio->uio_extflg & UIO_DIRECT) {
		/*
		 * All pages for an O_DIRECT request ahve already been mapped
		 * so there's no compelling reason to handle this uio in
		 * smaller chunks.
		 */
		chunk_size = DMU_MAX_ACCESS;

		/*
		 * In the event that the O_DIRECT request is reading the entire
		 * file, it is possible file's length is not page sized
		 * aligned. However, lower layers expect that the Direct I/O
		 * request is page-aligned. In this case, as much of the file
		 * that can be read using Direct I/O happens and the remaining
		 * amount will be read through the ARC.
		 *
		 * This is still consistent with the semantics of Direct I/O in
		 * ZFS as at a minimum the I/O request must be page-aligned.
		 */
		dio_remaining_resid = n - P2ALIGN_TYPED(n, PAGE_SIZE, ssize_t);
		if (dio_remaining_resid != 0)
			n -= dio_remaining_resid;
	} else {
		chunk_size = MIN(MAX(zfs_vnops_read_chunk_size, blksz),
		    DMU_MAX_ACCESS / 2);
	}

	while (n > 0) {
		ssize_t nbytes = MIN(n, chunk_size -
		    P2PHASE(zfs_uio_offset(uio), blksz));
#ifdef UIO_NOCOPY
		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
			error = mappedread_sf(zp, nbytes, uio);
		else
#endif
		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
		    zfs_uio_offset(uio) + nbytes - 1)) {
			error = mappedread(zp, nbytes, uio);
		} else {
			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
			    uio, nbytes);
		}

		if (error) {
			/* convert checksum errors into IO errors */
			if (error == ECKSUM) {
				/*
				 * If a Direct I/O read returned a checksum
				 * verify error, then it must be treated as
				 * suspicious. The contents of the buffer could
				 * have beeen manipulated while the I/O was in
				 * flight. In this case, the remainder of I/O
				 * request will just be reissued through the
				 * ARC.
				 */
				if (uio->uio_extflg & UIO_DIRECT) {
					dio_checksum_failure = B_TRUE;
					uio->uio_extflg &= ~UIO_DIRECT;
					n += dio_remaining_resid;
					dio_remaining_resid = 0;
					continue;
				} else {
					error = SET_ERROR(EIO);
				}
			}

#if defined(__linux__)
			/*
			 * if we actually read some bytes, bubbling EFAULT
			 * up to become EAGAIN isn't what we want here...
			 *
			 * ...on Linux, at least. On FBSD, doing this breaks.
			 */
			if (error == EFAULT &&
			    (zfs_uio_offset(uio) - start_offset) != 0)
				error = 0;
#endif
			break;
		}

		n -= nbytes;
	}

	if (error == 0 && (uio->uio_extflg & UIO_DIRECT) &&
	    dio_remaining_resid != 0) {
		/*
		 * Temporarily remove the UIO_DIRECT flag from the UIO so the
		 * remainder of the file can be read using the ARC.
		 */
		uio->uio_extflg &= ~UIO_DIRECT;

		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
		    zfs_uio_offset(uio) + dio_remaining_resid - 1)) {
			error = mappedread(zp, dio_remaining_resid, uio);
		} else {
			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio,
			    dio_remaining_resid);
		}
		uio->uio_extflg |= UIO_DIRECT;

		if (error != 0)
			n += dio_remaining_resid;
	} else if (error && (uio->uio_extflg & UIO_DIRECT)) {
		n += dio_remaining_resid;
	}
	int64_t nread = start_resid - n;

	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
out:
	zfs_rangelock_exit(lr);

	if (dio_checksum_failure == B_TRUE)
		uio->uio_extflg |= UIO_DIRECT;

	/*
	 * Cleanup for Direct I/O if requested.
	 */
	if (uio->uio_extflg & UIO_DIRECT)
		zfs_uio_free_dio_pages(uio, UIO_READ);

	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
	zfs_exit(zfsvfs, FTAG);
	return (error);
}

static void
zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
    uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
{
	zilog_t *zilog = zfsvfs->z_log;
	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));

	ASSERT(clear_setid_bits_txgp != NULL);
	ASSERT(tx != NULL);

	/*
	 * Clear Set-UID/Set-GID bits on successful write if not
	 * privileged and at least one of the execute bits is set.
	 *
	 * It would be nice to do this after all writes have
	 * been done, but that would still expose the ISUID/ISGID
	 * to another app after the partial write is committed.
	 *
	 * Note: we don't call zfs_fuid_map_id() here because
	 * user 0 is not an ephemeral uid.
	 */
	mutex_enter(&zp->z_acl_lock);
	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
	    secpolicy_vnode_setid_retain(zp, cr,
	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
		uint64_t newmode;

		zp->z_mode &= ~(S_ISUID | S_ISGID);
		newmode = zp->z_mode;
		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
		    (void *)&newmode, sizeof (uint64_t), tx);

		mutex_exit(&zp->z_acl_lock);

		/*
		 * Make sure SUID/SGID bits will be removed when we replay the
		 * log. If the setid bits are keep coming back, don't log more
		 * than one TX_SETATTR per transaction group.
		 */
		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
			vattr_t va = {0};

			va.va_mask = ATTR_MODE;
			va.va_nodeid = zp->z_id;
			va.va_mode = newmode;
			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
			    ATTR_MODE, NULL);
			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
		}
	} else {
		mutex_exit(&zp->z_acl_lock);
	}
}

/*
 * Write the bytes to a file.
 *
 *	IN:	zp	- znode of file to be written to.
 *		uio	- structure supplying write location, range info,
 *			  and data buffer.
 *		ioflag	- O_APPEND flag set if in append mode.
 *			  O_DIRECT flag; used to bypass page cache.
 *		cr	- credentials of caller.
 *
 *	OUT:	uio	- updated offset and range.
 *
 *	RETURN:	0 if success
 *		error code if failure
 *
 * Timestamps:
 *	ip - ctime|mtime updated if byte count > 0
 */
int
zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
{
	int error = 0, error1;
	ssize_t start_resid = zfs_uio_resid(uio);
	uint64_t clear_setid_bits_txg = 0;
	boolean_t o_direct_defer = B_FALSE;

	/*
	 * Fasttrack empty write
	 */
	ssize_t n = start_resid;
	if (n == 0)
		return (0);

	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);

	sa_bulk_attr_t bulk[4];
	int count = 0;
	uint64_t mtime[2], ctime[2];
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
	    &zp->z_size, 8);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
	    &zp->z_pflags, 8);

	/*
	 * Callers might not be able to detect properly that we are read-only,
	 * so check it explicitly here.
	 */
	if (zfs_is_readonly(zfsvfs)) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EROFS));
	}

	/*
	 * If immutable or not appending then return EPERM.
	 * Intentionally allow ZFS_READONLY through here.
	 * See zfs_zaccess_common()
	 */
	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
	    (zfs_uio_offset(uio) < zp->z_size))) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EPERM));
	}

	/*
	 * Validate file offset
	 */
	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
	if (woff < 0) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Setting up Direct I/O if requested.
	 */
	error = zfs_setup_direct(zp, uio, UIO_WRITE, &ioflag);
	if (error) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(error));
	}

	/*
	 * Pre-fault the pages to ensure slow (eg NFS) pages
	 * don't hold up txg.
	 */
	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
	if (zfs_uio_prefaultpages(pfbytes, uio)) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EFAULT));
	}

	/*
	 * If in append mode, set the io offset pointer to eof.
	 */
	zfs_locked_range_t *lr;
	if (ioflag & O_APPEND) {
		/*
		 * Obtain an appending range lock to guarantee file append
		 * semantics.  We reset the write offset once we have the lock.
		 */
		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
		woff = lr->lr_offset;
		if (lr->lr_length == UINT64_MAX) {
			/*
			 * We overlocked the file because this write will cause
			 * the file block size to increase.
			 * Note that zp_size cannot change with this lock held.
			 */
			woff = zp->z_size;
		}
		zfs_uio_setoffset(uio, woff);
		/*
		 * We need to update the starting offset as well because it is
		 * set previously in the ZPL (Linux) and VNOPS (FreeBSD)
		 * layers.
		 */
		zfs_uio_setsoffset(uio, woff);
	} else {
		/*
		 * Note that if the file block size will change as a result of
		 * this write, then this range lock will lock the entire file
		 * so that we can re-write the block safely.
		 */
		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
	}

	if (zn_rlimit_fsize_uio(zp, uio)) {
		zfs_rangelock_exit(lr);
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EFBIG));
	}

	const rlim64_t limit = MAXOFFSET_T;

	if (woff >= limit) {
		zfs_rangelock_exit(lr);
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EFBIG));
	}

	if (n > limit - woff)
		n = limit - woff;

	uint64_t end_size = MAX(zp->z_size, woff + n);
	zilog_t *zilog = zfsvfs->z_log;
	boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
	    (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);

	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
	const uint64_t projid = zp->z_projid;

	/*
	 * In the event we are increasing the file block size
	 * (lr_length == UINT64_MAX), we will direct the write to the ARC.
	 * Because zfs_grow_blocksize() will read from the ARC in order to
	 * grow the dbuf, we avoid doing Direct I/O here as that would cause
	 * data written to disk to be overwritten by data in the ARC during
	 * the sync phase. Besides writing data twice to disk, we also
	 * want to avoid consistency concerns between data in the the ARC and
	 * on disk while growing the file's blocksize.
	 *
	 * We will only temporarily remove Direct I/O and put it back after
	 * we have grown the blocksize. We do this in the event a request
	 * is larger than max_blksz, so further requests to
	 * dmu_write_uio_dbuf() will still issue the requests using Direct
	 * IO.
	 *
	 * As an example:
	 * The first block to file is being written as a 4k request with
	 * a recorsize of 1K. The first 1K issued in the loop below will go
	 * through the ARC; however, the following 3 1K requests will
	 * use Direct I/O.
	 */
	if (uio->uio_extflg & UIO_DIRECT && lr->lr_length == UINT64_MAX) {
		uio->uio_extflg &= ~UIO_DIRECT;
		o_direct_defer = B_TRUE;
	}

	/*
	 * Write the file in reasonable size chunks.  Each chunk is written
	 * in a separate transaction; this keeps the intent log records small
	 * and allows us to do more fine-grained space accounting.
	 */
	while (n > 0) {
		woff = zfs_uio_offset(uio);

		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
		    (projid != ZFS_DEFAULT_PROJID &&
		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
		    projid))) {
			error = SET_ERROR(EDQUOT);
			break;
		}

		uint64_t blksz;
		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
			if (zp->z_blksz > zfsvfs->z_max_blksz &&
			    !ISP2(zp->z_blksz)) {
				/*
				 * File's blocksize is already larger than the
				 * "recordsize" property.  Only let it grow to
				 * the next power of 2.
				 */
				blksz = 1 << highbit64(zp->z_blksz);
			} else {
				blksz = zfsvfs->z_max_blksz;
			}
			blksz = MIN(blksz, P2ROUNDUP(end_size,
			    SPA_MINBLOCKSIZE));
			blksz = MAX(blksz, zp->z_blksz);
		} else {
			blksz = zp->z_blksz;
		}

		arc_buf_t *abuf = NULL;
		ssize_t nbytes = n;
		if (n >= blksz && woff >= zp->z_size &&
		    P2PHASE(woff, blksz) == 0 &&
		    !(uio->uio_extflg & UIO_DIRECT) &&
		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
			/*
			 * This write covers a full block.  "Borrow" a buffer
			 * from the dmu so that we can fill it before we enter
			 * a transaction.  This avoids the possibility of
			 * holding up the transaction if the data copy hangs
			 * up on a pagefault (e.g., from an NFS server mapping).
			 */
			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
			    blksz);
			ASSERT(abuf != NULL);
			ASSERT(arc_buf_size(abuf) == blksz);
			if ((error = zfs_uiocopy(abuf->b_data, blksz,
			    UIO_WRITE, uio, &nbytes))) {
				dmu_return_arcbuf(abuf);
				break;
			}
			ASSERT3S(nbytes, ==, blksz);
		} else {
			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
			    P2PHASE(woff, blksz));
			if (pfbytes < nbytes) {
				if (zfs_uio_prefaultpages(nbytes, uio)) {
					error = SET_ERROR(EFAULT);
					break;
				}
				pfbytes = nbytes;
			}
		}

		/*
		 * Start a transaction.
		 */
		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
		DB_DNODE_ENTER(db);
		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
		DB_DNODE_EXIT(db);
		zfs_sa_upgrade_txholds(tx, zp);
		error = dmu_tx_assign(tx, DMU_TX_WAIT);
		if (error) {
			dmu_tx_abort(tx);
			if (abuf != NULL)
				dmu_return_arcbuf(abuf);
			break;
		}

		/*
		 * NB: We must call zfs_clear_setid_bits_if_necessary before
		 * committing the transaction!
		 */

		/*
		 * If rangelock_enter() over-locked we grow the blocksize
		 * and then reduce the lock range.  This will only happen
		 * on the first iteration since rangelock_reduce() will
		 * shrink down lr_length to the appropriate size.
		 */
		if (lr->lr_length == UINT64_MAX) {
			zfs_grow_blocksize(zp, blksz, tx);
			zfs_rangelock_reduce(lr, woff, n);
		}

		ssize_t tx_bytes;
		if (abuf == NULL) {
			tx_bytes = zfs_uio_resid(uio);
			zfs_uio_fault_disable(uio, B_TRUE);
			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
			    uio, nbytes, tx);
			zfs_uio_fault_disable(uio, B_FALSE);
#ifdef __linux__
			if (error == EFAULT) {
				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
				    cr, &clear_setid_bits_txg, tx);
				dmu_tx_commit(tx);
				/*
				 * Account for partial writes before
				 * continuing the loop.
				 * Update needs to occur before the next
				 * zfs_uio_prefaultpages, or prefaultpages may
				 * error, and we may break the loop early.
				 */
				n -= tx_bytes - zfs_uio_resid(uio);
				pfbytes -= tx_bytes - zfs_uio_resid(uio);
				continue;
			}
#endif
			/*
			 * On FreeBSD, EFAULT should be propagated back to the
			 * VFS, which will handle faulting and will retry.
			 */
			if (error != 0 && error != EFAULT) {
				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
				    cr, &clear_setid_bits_txg, tx);
				dmu_tx_commit(tx);
				break;
			}
			tx_bytes -= zfs_uio_resid(uio);
		} else {
			/*
			 * Thus, we're writing a full block at a block-aligned
			 * offset and extending the file past EOF.
			 *
			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
			 * arc buffer to a dbuf.
			 */
			error = dmu_assign_arcbuf_by_dbuf(
			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
			if (error != 0) {
				/*
				 * XXX This might not be necessary if
				 * dmu_assign_arcbuf_by_dbuf is guaranteed
				 * to be atomic.
				 */
				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
				    cr, &clear_setid_bits_txg, tx);
				dmu_return_arcbuf(abuf);
				dmu_tx_commit(tx);
				break;
			}
			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
			zfs_uioskip(uio, nbytes);
			tx_bytes = nbytes;
		}
		/*
		 * There is a window where a file's pages can be mmap'ed after
		 * zfs_setup_direct() is called. This is due to the fact that
		 * the rangelock in this function is acquired after calling
		 * zfs_setup_direct(). This is done so that
		 * zfs_uio_prefaultpages() does not attempt to fault in pages
		 * on Linux for Direct I/O requests. This is not necessary as
		 * the pages are pinned in memory and can not be faulted out.
		 * Ideally, the rangelock would be held before calling
		 * zfs_setup_direct() and zfs_uio_prefaultpages(); however,
		 * this can lead to a deadlock as zfs_getpage() also acquires
		 * the rangelock as a RL_WRITER and prefaulting the pages can
		 * lead to zfs_getpage() being called.
		 *
		 * In the case of the pages being mapped after
		 * zfs_setup_direct() is called, the call to update_pages()
		 * will still be made to make sure there is consistency between
		 * the ARC and the Linux page cache. This is an ufortunate
		 * situation as the data will be read back into the ARC after
		 * the Direct I/O write has completed, but this is the penality
		 * for writing to a mmap'ed region of a file using Direct I/O.
		 */
		if (tx_bytes &&
		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1)) {
			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
		}

		/*
		 * If we made no progress, we're done.  If we made even
		 * partial progress, update the znode and ZIL accordingly.
		 */
		if (tx_bytes == 0) {
			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
			    (void *)&zp->z_size, sizeof (uint64_t), tx);
			dmu_tx_commit(tx);
			ASSERT(error != 0);
			break;
		}

		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
		    &clear_setid_bits_txg, tx);

		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);

		/*
		 * Update the file size (zp_size) if it has changed;
		 * account for possible concurrent updates.
		 */
		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
			(void) atomic_cas_64(&zp->z_size, end_size,
			    zfs_uio_offset(uio));
			ASSERT(error == 0 || error == EFAULT);
		}
		/*
		 * If we are replaying and eof is non zero then force
		 * the file size to the specified eof. Note, there's no
		 * concurrency during replay.
		 */
		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
			zp->z_size = zfsvfs->z_replay_eof;

		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
		if (error1 != 0)
			/* Avoid clobbering EFAULT. */
			error = error1;

		/*
		 * NB: During replay, the TX_SETATTR record logged by
		 * zfs_clear_setid_bits_if_necessary must precede any of
		 * the TX_WRITE records logged here.
		 */
		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
		    uio->uio_extflg & UIO_DIRECT ? B_TRUE : B_FALSE, NULL,
		    NULL);

		dmu_tx_commit(tx);

		/*
		 * Direct I/O was deferred in order to grow the first block.
		 * At this point it can be re-enabled for subsequent writes.
		 */
		if (o_direct_defer) {
			ASSERT(ioflag & O_DIRECT);
			uio->uio_extflg |= UIO_DIRECT;
			o_direct_defer = B_FALSE;
		}

		if (error != 0)
			break;
		ASSERT3S(tx_bytes, ==, nbytes);
		n -= nbytes;
		pfbytes -= nbytes;
	}

	if (o_direct_defer) {
		ASSERT(ioflag & O_DIRECT);
		uio->uio_extflg |= UIO_DIRECT;
		o_direct_defer = B_FALSE;
	}

	zfs_znode_update_vfs(zp);
	zfs_rangelock_exit(lr);

	/*
	 * Cleanup for Direct I/O if requested.
	 */
	if (uio->uio_extflg & UIO_DIRECT)
		zfs_uio_free_dio_pages(uio, UIO_WRITE);

	/*
	 * If we're in replay mode, or we made no progress, or the
	 * uio data is inaccessible return an error.  Otherwise, it's
	 * at least a partial write, so it's successful.
	 */
	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
	    error == EFAULT) {
		zfs_exit(zfsvfs, FTAG);
		return (error);
	}

	if (commit)
		zil_commit(zilog, zp->z_id);

	int64_t nwritten = start_resid - zfs_uio_resid(uio);
	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);

	zfs_exit(zfsvfs, FTAG);
	return (0);
}

/*
 * Rewrite a range of file as-is without modification.
 *
 *	IN:	zp	- znode of file to be rewritten.
 *		off	- Offset of the range to rewrite.
 *		len	- Length of the range to rewrite.
 *		flags	- Random rewrite parameters.
 *		arg	- flags-specific argument.
 *
 *	RETURN:	0 if success
 *		error code if failure
 */
int
zfs_rewrite(znode_t *zp, uint64_t off, uint64_t len, uint64_t flags,
    uint64_t arg)
{
	int error;

	if (flags != 0 || arg != 0)
		return (SET_ERROR(EINVAL));

	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);

	if (zfs_is_readonly(zfsvfs)) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EROFS));
	}

	if (off >= zp->z_size) {
		zfs_exit(zfsvfs, FTAG);
		return (0);
	}
	if (len == 0 || len > zp->z_size - off)
		len = zp->z_size - off;

	/* Flush any mmap()'d data to disk */
	if (zn_has_cached_data(zp, off, off + len - 1))
		zn_flush_cached_data(zp, B_TRUE);

	zfs_locked_range_t *lr;
	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);

	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
	const uint64_t projid = zp->z_projid;

	dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
	DB_DNODE_ENTER(db);
	dnode_t *dn = DB_DNODE(db);

	uint64_t n, noff = off, nr = 0, nw = 0;
	while (len > 0) {
		/*
		 * Rewrite only actual data, skipping any holes.  This might
		 * be inaccurate for dirty files, but we don't really care.
		 */
		if (noff == off) {
			/* Find next data in the file. */
			error = dnode_next_offset(dn, 0, &noff, 1, 1, 0);
			if (error || noff >= off + len) {
				if (error == ESRCH)	/* No more data. */
					error = 0;
				break;
			}
			ASSERT3U(noff, >=, off);
			len -= noff - off;
			off = noff;

			/* Find where the data end. */
			error = dnode_next_offset(dn, DNODE_FIND_HOLE, &noff,
			    1, 1, 0);
			if (error != 0)
				noff = off + len;
		}
		ASSERT3U(noff, >, off);

		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
		    (projid != ZFS_DEFAULT_PROJID &&
		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
		    projid))) {
			error = SET_ERROR(EDQUOT);
			break;
		}

		n = MIN(MIN(len, noff - off),
		    DMU_MAX_ACCESS / 2 - P2PHASE(off, zp->z_blksz));

		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
		dmu_tx_hold_write_by_dnode(tx, dn, off, n);
		error = dmu_tx_assign(tx, DMU_TX_WAIT);
		if (error) {
			dmu_tx_abort(tx);
			break;
		}

		/* Mark all dbufs within range as dirty to trigger rewrite. */
		dmu_buf_t **dbp;
		int numbufs;
		error = dmu_buf_hold_array_by_dnode(dn, off, n, TRUE, FTAG,
		    &numbufs, &dbp, DMU_READ_PREFETCH);
		if (error) {
			dmu_tx_commit(tx);
			break;
		}
		for (int i = 0; i < numbufs; i++) {
			nr += dbp[i]->db_size;
			if (dmu_buf_is_dirty(dbp[i], tx))
				continue;
			nw += dbp[i]->db_size;
			dmu_buf_will_dirty(dbp[i], tx);
		}
		dmu_buf_rele_array(dbp, numbufs, FTAG);

		dmu_tx_commit(tx);

		len -= n;
		off += n;

		if (issig()) {
			error = SET_ERROR(EINTR);
			break;
		}
	}

	DB_DNODE_EXIT(db);

	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr);
	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nw);

	zfs_rangelock_exit(lr);
	zfs_exit(zfsvfs, FTAG);
	return (error);
}

int
zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;
	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;

	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);
	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
	zfs_exit(zfsvfs, FTAG);

	return (error);
}

int
zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;
	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
	zilog_t	*zilog;

	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);
	zilog = zfsvfs->z_log;
	error = zfs_setacl(zp, vsecp, skipaclchk, cr);

	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
		zil_commit(zilog, 0);

	zfs_exit(zfsvfs, FTAG);
	return (error);
}

/*
 * Get the optimal alignment to ensure direct IO can be performed without
 * incurring any RMW penalty on write. If direct IO is not enabled for this
 * file, returns an error.
 */
int
zfs_get_direct_alignment(znode_t *zp, uint64_t *alignp)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);

	if (!zfs_dio_enabled || zfsvfs->z_os->os_direct == ZFS_DIRECT_DISABLED)
		return (SET_ERROR(EOPNOTSUPP));

	/*
	 * If the file has multiple blocks, then its block size is fixed
	 * forever, and so is the ideal alignment.
	 *
	 * If however it only has a single block, then we want to return the
	 * max block size it could possibly grown to (ie, the dataset
	 * recordsize). We do this so that a program querying alignment
	 * immediately after the file is created gets a value that won't change
	 * once the file has grown into the second block and beyond.
	 *
	 * Because we don't have a count of blocks easily available here, we
	 * check if the apparent file size is smaller than its current block
	 * size (meaning, the file hasn't yet grown into the current block
	 * size) and then, check if the block size is smaller than the dataset
	 * maximum (meaning, if the file grew past the current block size, the
	 * block size could would be increased).
	 */
	if (zp->z_size <= zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz)
		*alignp = MAX(zfsvfs->z_max_blksz, PAGE_SIZE);
	else
		*alignp = MAX(zp->z_blksz, PAGE_SIZE);

	return (0);
}

#ifdef ZFS_DEBUG
static int zil_fault_io = 0;
#endif

static void zfs_get_done(zgd_t *zgd, int error);

/*
 * Get data to generate a TX_WRITE intent log record.
 */
int
zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
    struct lwb *lwb, zio_t *zio)
{
	zfsvfs_t *zfsvfs = arg;
	objset_t *os = zfsvfs->z_os;
	znode_t *zp;
	uint64_t object = lr->lr_foid;
	uint64_t offset = lr->lr_offset;
	uint64_t size = lr->lr_length;
	zgd_t *zgd;
	int error = 0;
	uint64_t zp_gen;

	ASSERT3P(lwb, !=, NULL);
	ASSERT3U(size, !=, 0);

	/*
	 * Nothing to do if the file has been removed
	 */
	if (zfs_zget(zfsvfs, object, &zp) != 0)
		return (SET_ERROR(ENOENT));
	if (zp->z_unlinked) {
		/*
		 * Release the vnode asynchronously as we currently have the
		 * txg stopped from syncing.
		 */
		zfs_zrele_async(zp);
		return (SET_ERROR(ENOENT));
	}
	/* check if generation number matches */
	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
	    sizeof (zp_gen)) != 0) {
		zfs_zrele_async(zp);
		return (SET_ERROR(EIO));
	}
	if (zp_gen != gen) {
		zfs_zrele_async(zp);
		return (SET_ERROR(ENOENT));
	}

	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
	zgd->zgd_lwb = lwb;
	zgd->zgd_private = zp;

	/*
	 * Write records come in two flavors: immediate and indirect.
	 * For small writes it's cheaper to store the data with the
	 * log record (immediate); for large writes it's cheaper to
	 * sync the data and get a pointer to it (indirect) so that
	 * we don't have to write the data twice.
	 */
	if (buf != NULL) { /* immediate write */
		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset,
		    size, RL_READER);
		/* test for truncation needs to be done while range locked */
		if (offset >= zp->z_size) {
			error = SET_ERROR(ENOENT);
		} else {
			error = dmu_read(os, object, offset, size, buf,
			    DMU_READ_NO_PREFETCH);
		}
		ASSERT(error == 0 || error == ENOENT);
	} else { /* indirect write */
		ASSERT3P(zio, !=, NULL);
		/*
		 * Have to lock the whole block to ensure when it's
		 * written out and its checksum is being calculated
		 * that no one can change the data. We need to re-check
		 * blocksize after we get the lock in case it's changed!
		 */
		for (;;) {
			uint64_t blkoff;
			size = zp->z_blksz;
			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
			offset -= blkoff;
			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
			    offset, size, RL_READER);
			if (zp->z_blksz == size)
				break;
			offset += blkoff;
			zfs_rangelock_exit(zgd->zgd_lr);
		}
		/* test for truncation needs to be done while range locked */
		if (lr->lr_offset >= zp->z_size)
			error = SET_ERROR(ENOENT);
#ifdef ZFS_DEBUG
		if (zil_fault_io) {
			error = SET_ERROR(EIO);
			zil_fault_io = 0;
		}
#endif

		dmu_buf_t *dbp;
		if (error == 0)
			error = dmu_buf_hold_noread(os, object, offset, zgd,
			    &dbp);

		if (error == 0) {
			zgd->zgd_db = dbp;
			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp;
			boolean_t direct_write = B_FALSE;
			mutex_enter(&db->db_mtx);
			dbuf_dirty_record_t *dr =
			    dbuf_find_dirty_eq(db, lr->lr_common.lrc_txg);
			if (dr != NULL && dr->dt.dl.dr_diowrite)
				direct_write = B_TRUE;
			mutex_exit(&db->db_mtx);

			/*
			 * All Direct I/O writes will have already completed and
			 * the block pointer can be immediately stored in the
			 * log record.
			 */
			if (direct_write) {
				/*
				 * A Direct I/O write always covers an entire
				 * block.
				 */
				ASSERT3U(dbp->db_size, ==, zp->z_blksz);
				lr->lr_blkptr = dr->dt.dl.dr_overridden_by;
				zfs_get_done(zgd, 0);
				return (0);
			}

			blkptr_t *bp = &lr->lr_blkptr;
			zgd->zgd_bp = bp;

			ASSERT3U(dbp->db_offset, ==, offset);
			ASSERT3U(dbp->db_size, ==, size);

			error = dmu_sync(zio, lr->lr_common.lrc_txg,
			    zfs_get_done, zgd);
			ASSERT(error || lr->lr_length <= size);

			/*
			 * On success, we need to wait for the write I/O
			 * initiated by dmu_sync() to complete before we can
			 * release this dbuf.  We will finish everything up
			 * in the zfs_get_done() callback.
			 */
			if (error == 0)
				return (0);

			if (error == EALREADY) {
				lr->lr_common.lrc_txtype = TX_WRITE2;
				/*
				 * TX_WRITE2 relies on the data previously
				 * written by the TX_WRITE that caused
				 * EALREADY.  We zero out the BP because
				 * it is the old, currently-on-disk BP.
				 */
				zgd->zgd_bp = NULL;
				BP_ZERO(bp);
				error = 0;
			}
		}
	}

	zfs_get_done(zgd, error);

	return (error);
}

static void
zfs_get_done(zgd_t *zgd, int error)
{
	(void) error;
	znode_t *zp = zgd->zgd_private;

	if (zgd->zgd_db)
		dmu_buf_rele(zgd->zgd_db, zgd);

	zfs_rangelock_exit(zgd->zgd_lr);

	/*
	 * Release the vnode asynchronously as we currently have the
	 * txg stopped from syncing.
	 */
	zfs_zrele_async(zp);

	kmem_free(zgd, sizeof (zgd_t));
}

static int
zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
{
	int error;

	/* Swap. Not sure if the order of zfs_enter()s is important. */
	if (zfsvfs1 > zfsvfs2) {
		zfsvfs_t *tmpzfsvfs;

		tmpzfsvfs = zfsvfs2;
		zfsvfs2 = zfsvfs1;
		zfsvfs1 = tmpzfsvfs;
	}

	error = zfs_enter(zfsvfs1, tag);
	if (error != 0)
		return (error);
	if (zfsvfs1 != zfsvfs2) {
		error = zfs_enter(zfsvfs2, tag);
		if (error != 0) {
			zfs_exit(zfsvfs1, tag);
			return (error);
		}
	}

	return (0);
}

static void
zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
{

	zfs_exit(zfsvfs1, tag);
	if (zfsvfs1 != zfsvfs2)
		zfs_exit(zfsvfs2, tag);
}

/*
 * We split each clone request in chunks that can fit into a single ZIL
 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
 * us room for storing 1022 block pointers.
 *
 * On success, the function return the number of bytes copied in *lenp.
 * Note, it doesn't return how much bytes are left to be copied.
 * On errors which are caused by any file system limitations or
 * brt limitations `EINVAL` is returned. In the most cases a user
 * requested bad parameters, it could be possible to clone the file but
 * some parameters don't match the requirements.
 */
int
zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
    uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
{
	zfsvfs_t	*inzfsvfs, *outzfsvfs;
	objset_t	*inos, *outos;
	zfs_locked_range_t *inlr, *outlr;
	dmu_buf_impl_t	*db;
	dmu_tx_t	*tx;
	zilog_t		*zilog;
	uint64_t	inoff, outoff, len, done;
	uint64_t	outsize, size;
	int		error;
	int		count = 0;
	sa_bulk_attr_t	bulk[3];
	uint64_t	mtime[2], ctime[2];
	uint64_t	uid, gid, projid;
	blkptr_t	*bps;
	size_t		maxblocks, nbps;
	uint_t		inblksz;
	uint64_t	clear_setid_bits_txg = 0;
	uint64_t	last_synced_txg = 0;

	inoff = *inoffp;
	outoff = *outoffp;
	len = *lenp;
	done = 0;

	inzfsvfs = ZTOZSB(inzp);
	outzfsvfs = ZTOZSB(outzp);

	/*
	 * We need to call zfs_enter() potentially on two different datasets,
	 * so we need a dedicated function for that.
	 */
	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
	if (error != 0)
		return (error);

	inos = inzfsvfs->z_os;
	outos = outzfsvfs->z_os;

	/*
	 * Both source and destination have to belong to the same storage pool.
	 */
	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EXDEV));
	}

	/*
	 * outos and inos belongs to the same storage pool.
	 * see a few lines above, only one check.
	 */
	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
	    SPA_FEATURE_BLOCK_CLONING)) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EOPNOTSUPP));
	}

	ASSERT(!outzfsvfs->z_replay);

	/*
	 * Block cloning from an unencrypted dataset into an encrypted
	 * dataset and vice versa is not supported.
	 */
	if (inos->os_encrypted != outos->os_encrypted) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EXDEV));
	}

	/*
	 * Cloning across encrypted datasets is possible only if they
	 * share the same master key.
	 */
	if (inos != outos && inos->os_encrypted &&
	    !dmu_objset_crypto_key_equal(inos, outos)) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EXDEV));
	}

	error = zfs_verify_zp(inzp);
	if (error == 0)
		error = zfs_verify_zp(outzp);
	if (error != 0) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (error);
	}

	/*
	 * We don't copy source file's flags that's why we don't allow to clone
	 * files that are in quarantine.
	 */
	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EACCES));
	}

	if (inoff >= inzp->z_size) {
		*lenp = 0;
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (0);
	}
	if (len > inzp->z_size - inoff) {
		len = inzp->z_size - inoff;
	}
	if (len == 0) {
		*lenp = 0;
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (0);
	}

	/*
	 * Callers might not be able to detect properly that we are read-only,
	 * so check it explicitly here.
	 */
	if (zfs_is_readonly(outzfsvfs)) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EROFS));
	}

	/*
	 * If immutable or not appending then return EPERM.
	 * Intentionally allow ZFS_READONLY through here.
	 * See zfs_zaccess_common()
	 */
	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
		return (SET_ERROR(EPERM));
	}

	/*
	 * No overlapping if we are cloning within the same file.
	 */
	if (inzp == outzp) {
		if (inoff < outoff + len && outoff < inoff + len) {
			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
			return (SET_ERROR(EINVAL));
		}
	}

	/* Flush any mmap()'d data to disk */
	if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
		zn_flush_cached_data(inzp, B_TRUE);

	/*
	 * Maintain predictable lock order.
	 */
	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
		    RL_READER);
		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
		    RL_WRITER);
	} else {
		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
		    RL_WRITER);
		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
		    RL_READER);
	}

	inblksz = inzp->z_blksz;

	/*
	 * We cannot clone into a file with different block size if we can't
	 * grow it (block size is already bigger, has more than one block, or
	 * not locked for growth).  There are other possible reasons for the
	 * grow to fail, but we cover what we can before opening transaction
	 * and the rest detect after we try to do it.
	 */
	if (inblksz < outzp->z_blksz) {
		error = SET_ERROR(EINVAL);
		goto unlock;
	}
	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
	    outlr->lr_length != UINT64_MAX)) {
		error = SET_ERROR(EINVAL);
		goto unlock;
	}

	/*
	 * Block size must be power-of-2 if destination offset != 0.
	 * There can be no multiple blocks of non-power-of-2 size.
	 */
	if (outoff != 0 && !ISP2(inblksz)) {
		error = SET_ERROR(EINVAL);
		goto unlock;
	}

	/*
	 * Offsets and len must be at block boundries.
	 */
	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
		error = SET_ERROR(EINVAL);
		goto unlock;
	}
	/*
	 * Length must be multipe of blksz, except for the end of the file.
	 */
	if ((len % inblksz) != 0 &&
	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
		error = SET_ERROR(EINVAL);
		goto unlock;
	}

	/*
	 * If we are copying only one block and it is smaller than recordsize
	 * property, do not allow destination to grow beyond one block if it
	 * is not there yet.  Otherwise the destination will get stuck with
	 * that block size forever, that can be as small as 512 bytes, no
	 * matter how big the destination grow later.
	 */
	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
	    outzp->z_size <= inblksz && outoff + len > inblksz) {
		error = SET_ERROR(EINVAL);
		goto unlock;
	}

	error = zn_rlimit_fsize(outoff + len);
	if (error != 0) {
		goto unlock;
	}

	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
		error = SET_ERROR(EFBIG);
		goto unlock;
	}

	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
	    &mtime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
	    &ctime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
	    &outzp->z_size, 8);

	zilog = outzfsvfs->z_log;
	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
	    sizeof (bps[0]);

	uid = KUID_TO_SUID(ZTOUID(outzp));
	gid = KGID_TO_SGID(ZTOGID(outzp));
	projid = outzp->z_projid;

	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);

	/*
	 * Clone the file in reasonable size chunks.  Each chunk is cloned
	 * in a separate transaction; this keeps the intent log records small
	 * and allows us to do more fine-grained space accounting.
	 */
	while (len > 0) {
		size = MIN(inblksz * maxblocks, len);

		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
		    uid) ||
		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
		    gid) ||
		    (projid != ZFS_DEFAULT_PROJID &&
		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
		    projid))) {
			error = SET_ERROR(EDQUOT);
			break;
		}

		nbps = maxblocks;
		last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
		    &nbps);
		if (error != 0) {
			/*
			 * If we are trying to clone a block that was created
			 * in the current transaction group, the error will be
			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
			 * return a shortened range to the caller so it can
			 * fallback, or wait for the next TXG and check again.
			 */
			if (error == EAGAIN && zfs_bclone_wait_dirty) {
				txg_wait_synced(dmu_objset_pool(inos),
				    last_synced_txg + 1);
				continue;
			}

			break;
		}

		/*
		 * Start a transaction.
		 */
		tx = dmu_tx_create(outos);
		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
		DB_DNODE_ENTER(db);
		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size,
		    inblksz);
		DB_DNODE_EXIT(db);
		zfs_sa_upgrade_txholds(tx, outzp);
		error = dmu_tx_assign(tx, DMU_TX_WAIT);
		if (error != 0) {
			dmu_tx_abort(tx);
			break;
		}

		/*
		 * Copy source znode's block size. This is done only if the
		 * whole znode is locked (see zfs_rangelock_cb()) and only
		 * on the first iteration since zfs_rangelock_reduce() will
		 * shrink down lr_length to the appropriate size.
		 */
		if (outlr->lr_length == UINT64_MAX) {
			zfs_grow_blocksize(outzp, inblksz, tx);

			/*
			 * Block growth may fail for many reasons we can not
			 * predict here.  If it happen the cloning is doomed.
			 */
			if (inblksz != outzp->z_blksz) {
				error = SET_ERROR(EINVAL);
				dmu_tx_commit(tx);
				break;
			}

			/*
			 * Round range lock up to the block boundary, so we
			 * prevent appends until we are done.
			 */
			zfs_rangelock_reduce(outlr, outoff,
			    ((len - 1) / inblksz + 1) * inblksz);
		}

		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
		    bps, nbps);
		if (error != 0) {
			dmu_tx_commit(tx);
			break;
		}

		if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
			update_pages(outzp, outoff, size, outos);
		}

		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
		    &clear_setid_bits_txg, tx);

		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);

		/*
		 * Update the file size (zp_size) if it has changed;
		 * account for possible concurrent updates.
		 */
		while ((outsize = outzp->z_size) < outoff + size) {
			(void) atomic_cas_64(&outzp->z_size, outsize,
			    outoff + size);
		}

		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);

		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
		    size, inblksz, bps, nbps);

		dmu_tx_commit(tx);

		if (error != 0)
			break;

		inoff += size;
		outoff += size;
		len -= size;
		done += size;

		if (issig()) {
			error = SET_ERROR(EINTR);
			break;
		}
	}

	vmem_free(bps, sizeof (bps[0]) * maxblocks);
	zfs_znode_update_vfs(outzp);

unlock:
	zfs_rangelock_exit(outlr);
	zfs_rangelock_exit(inlr);

	if (done > 0) {
		/*
		 * If we have made at least partial progress, reset the error.
		 */
		error = 0;

		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);

		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
			zil_commit(zilog, outzp->z_id);
		}

		*inoffp += done;
		*outoffp += done;
		*lenp = done;
	} else {
		/*
		 * If we made no progress, there must be a good reason.
		 * EOF is handled explicitly above, before the loop.
		 */
		ASSERT3S(error, !=, 0);
	}

	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);

	return (error);
}

/*
 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
 * but we cannot do that, because when replaying we don't have source znode
 * available. This is why we need a dedicated replay function.
 */
int
zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
    const blkptr_t *bps, size_t nbps)
{
	zfsvfs_t	*zfsvfs;
	dmu_buf_impl_t	*db;
	dmu_tx_t	*tx;
	int		error;
	int		count = 0;
	sa_bulk_attr_t	bulk[3];
	uint64_t	mtime[2], ctime[2];

	ASSERT3U(off, <, MAXOFFSET_T);
	ASSERT3U(len, >, 0);
	ASSERT3U(nbps, >, 0);

	zfsvfs = ZTOZSB(zp);

	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
	    SPA_FEATURE_BLOCK_CLONING));

	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
		return (error);

	ASSERT(zfsvfs->z_replay);
	ASSERT(!zfs_is_readonly(zfsvfs));

	if ((off % blksz) != 0) {
		zfs_exit(zfsvfs, FTAG);
		return (SET_ERROR(EINVAL));
	}

	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
	    &zp->z_size, 8);

	/*
	 * Start a transaction.
	 */
	tx = dmu_tx_create(zfsvfs->z_os);

	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
	DB_DNODE_ENTER(db);
	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len, blksz);
	DB_DNODE_EXIT(db);
	zfs_sa_upgrade_txholds(tx, zp);
	error = dmu_tx_assign(tx, DMU_TX_WAIT);
	if (error != 0) {
		dmu_tx_abort(tx);
		zfs_exit(zfsvfs, FTAG);
		return (error);
	}

	if (zp->z_blksz < blksz)
		zfs_grow_blocksize(zp, blksz, tx);

	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);

	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);

	if (zp->z_size < off + len)
		zp->z_size = off + len;

	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);

	/*
	 * zil_replaying() not only check if we are replaying ZIL, but also
	 * updates the ZIL header to record replay progress.
	 */
	VERIFY(zil_replaying(zfsvfs->z_log, tx));

	dmu_tx_commit(tx);

	zfs_znode_update_vfs(zp);

	zfs_exit(zfsvfs, FTAG);

	return (error);
}

EXPORT_SYMBOL(zfs_access);
EXPORT_SYMBOL(zfs_fsync);
EXPORT_SYMBOL(zfs_holey);
EXPORT_SYMBOL(zfs_read);
EXPORT_SYMBOL(zfs_write);
EXPORT_SYMBOL(zfs_getsecattr);
EXPORT_SYMBOL(zfs_setsecattr);
EXPORT_SYMBOL(zfs_clone_range);
EXPORT_SYMBOL(zfs_clone_range_replay);

ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
	"Bytes to read per chunk");

ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
	"Enable block cloning");

ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
	"Wait for dirty blocks when cloning");

ZFS_MODULE_PARAM(zfs, zfs_, dio_enabled, INT, ZMOD_RW,
	"Enable Direct I/O");