1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
# $Id: queens5.zpl,v 1.3 2006/09/18 13:30:35 bzfkocht Exp $
#
# This is a formulation of the n queens problem using binary variables.
# variables. Since the number of queens is maximized, the size of the
# board can be set arbitrarily.
#
# set packing formulation
#
param columns := 8;
set I := { 1 .. columns };
set IxI := I * I;
var x[IxI] binary;
maximize queens: sum <i,j> in IxI : x[i,j];
# one in a row
subto row: forall <i> in I do
sum <i,j> in IxI : x[i,j] <= 1;
# one in a column
subto col: forall <j> in I do
sum <i,j> in IxI : x[i,j] <= 1;
# rowwise down
subto drd: forall <i> in I do
sum <m,n> in IxI with m - i == n - 1: x[m,n] <= 1;
# rowwise up
subto dru: forall <i> in I do
sum <m,n> in IxI with m - i == 1 - n: x[m,n] <= 1;
# colwise down
subto dcd: forall <j> in I do
sum <m,n> in IxI with m - 1 == n - j: x[m,n] <= 1;
# colwise up
subto dcu: forall <j> in I do
sum <m,n> in IxI with columns - m == n - j: x[m,n] <= 1;
|