1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
//
// Zinnia: Online hand recognition system with machine learning
//
// $Id: recognizer.cpp 27 2010-05-09 05:34:05Z taku-ku $;
//
// Copyright(C) 2008 Taku Kudo <taku@chasen.org>
//
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <functional>
#include "common.h"
#include "mmap.h"
#include "zinnia.h"
#include "feature.h"
namespace {
static inline char *read_ptr(char **ptr, size_t size) {
char *r = *ptr;
*ptr += size;
return r;
}
template <typename T>
inline void read_static(char **ptr, T *value) {
char *r = read_ptr(ptr, sizeof(T));
memcpy(value, r, sizeof(T));
}
#ifndef WORDS_LITENDIAN
template <>
inline void read_static<unsigned int>(char **ptr, unsigned int *value) {
unsigned char *buf = reinterpret_cast<unsigned char *>(*ptr);
*value = (buf[0]) | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
*ptr += 4;
}
template <>
inline void read_static<float>(char **ptr, float *value) {
unsigned int x;
read_static<unsigned int>(ptr, &x);
memcpy(value, &x, sizeof(x));
}
#endif
}
namespace zinnia {
class ResultImpl: public Result {
public:
void add(const char *character, float score) {
results_.push_back(std::make_pair(score, character));
}
void clear() { results_.clear(); }
const char *value(size_t i) const {
return (i >= results_.size()) ? 0 : results_[i].second;
}
float score(size_t i) const {
return (i >= results_.size()) ? -1 : results_[i].first;
}
size_t size() const { return results_.size(); }
ResultImpl() {}
virtual ~ResultImpl() {}
private:
std::vector<std::pair<float, const char*> > results_;
};
class RecognizerImpl: public Recognizer {
public:
bool open(const char *filename);
bool open(const char *ptr, size_t size);
bool close();
size_t size() const { return model_.size(); }
const char *value(size_t i) const;
Result* classify(const Character &character,
size_t nbest) const;
const char *what() { return what_.str(); }
explicit RecognizerImpl() {}
virtual ~RecognizerImpl() { close(); }
private:
struct Model {
const char *character;
float bias;
const FeatureNode *x;
};
Mmap<char> mmap_;
std::vector<Model> model_;
whatlog what_;
};
const char *RecognizerImpl::value(size_t i) const {
return (i >= model_.size()) ? 0 : model_[i].character;
}
bool RecognizerImpl::open(const char *filename) {
CHECK_FALSE(mmap_.open(filename))
<< "no such file or directory: " << filename;
model_.clear();
return open(mmap_.begin(), mmap_.file_size());
}
bool RecognizerImpl::open(const char *p, size_t ptr_size) {
char *ptr = const_cast<char *>(p);
const char *begin = ptr;
const char *end = ptr + ptr_size;
unsigned int version = 0;
unsigned int magic = 0;
read_static<unsigned int>(&ptr, &magic);
CHECK_CLOSE_FALSE((magic ^ DIC_MAGIC_ID) == ptr_size)
<< "model file is broken";
read_static<unsigned int>(&ptr, &version);
CHECK_CLOSE_FALSE(version == DIC_VERSION)
<< "incompatible version: " << version;
unsigned int size = 0;
read_static<unsigned int>(&ptr, &size);
model_.resize(size);
for (size_t i = 0; i < size; ++i) {
Model &m = model_[i];
m.character = read_ptr(&ptr, 16);
CHECK_CLOSE_FALSE(ptr < end) << "model file is broken";
float bias = 0.0;
read_static<float>(&ptr, &bias);
m.bias = bias;
m.x = const_cast<const FeatureNode *>
(reinterpret_cast<FeatureNode *>(ptr));
size_t len = 0;
for (const FeatureNode *x = m.x; x->index != -1; ++x) ++len;
CHECK_CLOSE_FALSE(ptr < end) << "model file is broken";
ptr += sizeof(FeatureNode) * (len + 1);
}
CHECK_FALSE(static_cast<size_t>(ptr - begin) == ptr_size)
<< "size of model file is invalid";
return true;
}
bool RecognizerImpl::close() {
mmap_.close();
model_.clear();
return true;
}
Result *RecognizerImpl::classify(const Character &character,
size_t nbest) const {
if (model_.empty() || nbest <= 0) {
return 0;
}
Features feature;
if (!feature.read(character)) {
return 0;
}
const FeatureNode *x = feature.get();
std::vector<std::pair<float, const char*> > results(size());
for (size_t i = 0; i < model_.size(); ++i) {
results[i].first = model_[i].bias + dot(model_[i].x, x);
results[i].second = model_[i].character;
}
nbest = _min(nbest, results.size());
std::partial_sort(results.begin(),
results.begin() + nbest, results.end(),
std::greater<std::pair<float, const char*> >());
ResultImpl *result = new ResultImpl;
for (size_t i = 0; i < nbest; ++i)
result->add(results[i].second, results[i].first);
return result;
}
Recognizer* Recognizer::create() {
return new RecognizerImpl;
}
Recognizer* createRecognizer() {
return new RecognizerImpl;
}
}
|