File: test_tree.c

package info (click to toggle)
zix 0.8.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 828 kB
  • sloc: ansic: 9,083; cpp: 479; python: 127; makefile: 6
file content (256 lines) | stat: -rw-r--r-- 6,677 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Copyright 2011-2023 David Robillard <d@drobilla.net>
// SPDX-License-Identifier: ISC

#undef NDEBUG

#include "ensure.h"
#include "failing_allocator.h"
#include "test_args.h"
#include "test_data.h"

#include <zix/allocator.h>
#include <zix/attributes.h>
#include <zix/status.h>
#include <zix/tree.h>

#include <assert.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

static size_t seed = 1;

static int
int_cmp(const void* a, const void* b, const void* ZIX_UNUSED(user_data))
{
  const uintptr_t ia = (uintptr_t)a;
  const uintptr_t ib = (uintptr_t)b;

  return ia < ib ? -1 : ia > ib ? 1 : 0;
}

static uintptr_t
ith_elem(unsigned test_num, size_t n_elems, size_t i)
{
  switch (test_num % 3) {
  case 0:
    return i; // Increasing (worst case)
  case 1:
    return n_elems - i; // Decreasing (worse case)
  case 2:
  default:
    return lcg(seed + i) % 100U; // Random
  }
}

ZIX_LOG_FUNC(2, 3)
static int
test_fail(ZixTree* t, const char* fmt, ...)
{
  zix_tree_free(t);

  va_list args; // NOLINT(cppcoreguidelines-init-variables)
  va_start(args, fmt);
  fprintf(stderr, "error: ");
  vfprintf(stderr, fmt, args);
  va_end(args);

  return EXIT_FAILURE;
}

static void
test_duplicate_insert(void)
{
  const uintptr_t r  = 0xDEADBEEF;
  ZixTreeIter*    ti = NULL;
  ZixTree*        t  = zix_tree_new(NULL, false, int_cmp, NULL, NULL, NULL);

  assert(!zix_tree_begin(t));
  assert(!zix_tree_end(t));
  assert(!zix_tree_rbegin(t));
  assert(!zix_tree_rend(t));

  assert(!zix_tree_insert(t, (void*)r, &ti));
  assert((uintptr_t)zix_tree_get(ti) == r);
  assert(zix_tree_insert(t, (void*)r, &ti) == ZIX_STATUS_EXISTS);

  zix_tree_free(t);
}

static int
check_tree_size(const size_t actual, const size_t expected)
{
  return (expected == actual)
           ? 0
           : test_fail(NULL, // FIXME
                       "Tree size %" PRIuPTR " != %" PRIuPTR "\n",
                       actual,
                       expected);
}

static int
insert_elements(ZixTree* const t, const unsigned test_num, const size_t n_elems)
{
  ZixTreeIter* ti = NULL;

  for (size_t i = 0; i < n_elems; ++i) {
    const uintptr_t r = ith_elem(test_num, n_elems, i);

    const ZixStatus st = zix_tree_insert(t, (void*)r, &ti);
    ENSURE(NULL, !st, "Insert failed\n");

    const uintptr_t value = (uintptr_t)zix_tree_get(ti);
    ENSUREV(
      NULL, value == r, "Insert %" PRIuPTR " != %" PRIuPTR "\n", value, r);
  }

  return 0;
}

static int
stress(ZixAllocator* allocator, unsigned test_num, size_t n_elems)
{
  uintptr_t    r  = 0U;
  ZixTreeIter* ti = NULL;
  ZixTree*     t  = zix_tree_new(allocator, true, int_cmp, NULL, NULL, NULL);

  ENSURE(t, t, "Failed to allocate tree\n");
  ENSURE(t, !zix_tree_begin(t), "Empty tree has begin iterator\n");
  ENSURE(t, !zix_tree_end(t), "Empty tree has end iterator\n");
  ENSURE(t, !zix_tree_rbegin(t), "Empty tree has reverse begin iterator\n");
  ENSURE(t, !zix_tree_rend(t), "Empty tree has reverse end iterator\n");

  // Insert n_elems elements
  ENSURE(t,
         !insert_elements(t, test_num, n_elems),
         "Failed to insert initial elements\n");

  // Ensure tree size is correct
  ENSUREV(t,
          zix_tree_size(t) == n_elems,
          "Tree size %" PRIuPTR " != %" PRIuPTR "\n",
          zix_tree_size(t),
          n_elems);

  // Search for all elements
  for (size_t i = 0; i < n_elems; ++i) {
    r = ith_elem(test_num, n_elems, i);
    ENSURE(t, !zix_tree_find(t, (void*)r, &ti), "Find failed\n");

    const uintptr_t value = (uintptr_t)zix_tree_get(ti);
    ENSUREV(t, value == r, "Value %" PRIuPTR " != %" PRIuPTR "\n", value, r);
  }

  // Iterate over all elements
  size_t    i    = 0;
  uintptr_t last = 0;
  for (ZixTreeIter* iter = zix_tree_begin(t); !zix_tree_iter_is_end(iter);
       iter              = zix_tree_iter_next(iter), ++i) {
    const uintptr_t iter_data = (uintptr_t)zix_tree_get(iter);
    ENSUREV(t,
            iter_data >= last,
            "Iter corrupt (%" PRIuPTR " < %" PRIuPTR ")\n",
            iter_data,
            last);
    last = iter_data;
  }
  ENSUREV(t,
          i == n_elems,
          "Iteration stopped at %" PRIuPTR "/%" PRIuPTR " elements\n",
          i,
          n_elems);

  // Iterate over all elements backwards
  i    = 0;
  last = INTPTR_MAX;
  for (ZixTreeIter* iter = zix_tree_rbegin(t); !zix_tree_iter_is_rend(iter);
       iter              = zix_tree_iter_prev(iter), ++i) {
    const uintptr_t iter_data = (uintptr_t)zix_tree_get(iter);
    ENSUREV(t,
            iter_data <= last,
            "Iter corrupt (%" PRIuPTR " < %" PRIuPTR ")\n",
            iter_data,
            last);
    last = iter_data;
  }

  // Delete all elements
  for (size_t e = 0; e < n_elems; e++) {
    r = ith_elem(test_num, n_elems, e);

    ZixTreeIter* item = NULL;
    ENSURE(t,
           zix_tree_find(t, (void*)r, &item) == ZIX_STATUS_SUCCESS,
           "Failed to find item to remove\n");
    ENSURE(t, !zix_tree_remove(t, item), "Error removing item\n");
  }

  // Ensure the tree is empty
  ENSURE(t, zix_tree_size(t) == 0U, "Tree isn't empty\n");

  // Insert n_elems elements again (to test non-empty destruction)
  ENSURE(t, !insert_elements(t, test_num, n_elems), "Reinsertion failed\n");

  // Ensure tree size is correct
  const int ret = check_tree_size(zix_tree_size(t), n_elems);

  zix_tree_free(t);

  return ret ? EXIT_FAILURE : EXIT_SUCCESS;
}

static void
test_failed_alloc(void)
{
  ZixFailingAllocator allocator = zix_failing_allocator();

  // Successfully stress test the tree to count the number of allocations
  assert(!stress(&allocator.base, 0, 16));

  // Test that each allocation failing is handled gracefully
  const size_t n_new_allocs = zix_failing_allocator_reset(&allocator, 0);
  for (size_t i = 0U; i < n_new_allocs; ++i) {
    zix_failing_allocator_reset(&allocator, i);
    assert(stress(&allocator.base, 0, 16));
  }
}

int
main(int argc, char** argv)
{
  const unsigned n_tests = 3;
  size_t         n_elems = 0;

  assert(!zix_tree_iter_next(NULL));
  assert(!zix_tree_iter_prev(NULL));

  test_duplicate_insert();
  test_failed_alloc();

  if (argc == 1) {
    n_elems = 100000U;
  } else {
    n_elems = zix_test_size_arg(argv[1], 4U, 1U << 20U);
    if (argc > 2) {
      seed = strtoul(argv[2], NULL, 10);
    } else {
      seed = (size_t)time(NULL);
    }
  }

  printf(
    "Running %u tests with %zu elements (seed %zu)", n_tests, n_elems, seed);

  int st = 0;
  for (unsigned i = 0; !st && i < n_tests; ++i) {
    printf(".");
    fflush(stdout);
    st = stress(NULL, i, n_elems);
  }

  printf("\n");
  return EXIT_SUCCESS;
}