1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
/* zran.c -- example of deflate stream indexing and random access
* Copyright (C) 2005, 2012, 2018, 2023 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
* Version 1.4 13 Apr 2023 Mark Adler */
/* Version History:
1.0 29 May 2005 First version
1.1 29 Sep 2012 Fix memory reallocation error
1.2 14 Oct 2018 Handle gzip streams with multiple members
Add a header file to facilitate usage in applications
1.3 18 Feb 2023 Permit raw deflate streams as well as zlib and gzip
Permit crossing gzip member boundaries when extracting
Support a size_t size when extracting (was an int)
Do a binary search over the index for an access point
Expose the access point type to enable save and load
1.4 13 Apr 2023 Add a NOPRIME define to not use inflatePrime()
*/
// Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
// for random access of a compressed file. A file containing a raw deflate
// stream is provided on the command line. The compressed stream is decoded in
// its entirety, and an index built with access points about every SPAN bytes
// in the uncompressed output. The compressed file is left open, and can then
// be read randomly, having to decompress on the average SPAN/2 uncompressed
// bytes before getting to the desired block of data.
//
// An access point can be created at the start of any deflate block, by saving
// the starting file offset and bit of that block, and the 32K bytes of
// uncompressed data that precede that block. Also the uncompressed offset of
// that block is saved to provide a reference for locating a desired starting
// point in the uncompressed stream. deflate_index_build() decompresses the
// input raw deflate stream a block at a time, and at the end of each block
// decides if enough uncompressed data has gone by to justify the creation of a
// new access point. If so, that point is saved in a data structure that grows
// as needed to accommodate the points.
//
// To use the index, an offset in the uncompressed data is provided, for which
// the latest access point at or preceding that offset is located in the index.
// The input file is positioned to the specified location in the index, and if
// necessary the first few bits of the compressed data is read from the file.
// inflate is initialized with those bits and the 32K of uncompressed data, and
// decompression then proceeds until the desired offset in the file is reached.
// Then decompression continues to read the requested uncompressed data from
// the file.
//
// There is some fair bit of overhead to starting inflation for the random
// access, mainly copying the 32K byte dictionary. If small pieces of the file
// are being accessed, it would make sense to implement a cache to hold some
// lookahead to avoid many calls to deflate_index_extract() for small lengths.
//
// Another way to build an index would be to use inflateCopy(). That would not
// be constrained to have access points at block boundaries, but would require
// more memory per access point, and could not be saved to a file due to the
// use of pointers in the state. The approach here allows for storage of the
// index in a file.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "zlib.h"
#include "zran.h"
#define WINSIZE 32768U // sliding window size
#define CHUNK 16384 // file input buffer size
// See comments in zran.h.
void deflate_index_free(struct deflate_index *index) {
if (index != NULL) {
free(index->list);
free(index);
}
}
// Add an access point to the list. If out of memory, deallocate the existing
// list and return NULL. index->mode is temporarily the allocated number of
// access points, until it is time for deflate_index_build() to return. Then
// index->mode is set to the mode of inflation.
static struct deflate_index *add_point(struct deflate_index *index, int bits,
off_t in, off_t out, unsigned left,
unsigned char *window) {
if (index == NULL) {
// The list is empty. Create it, starting with eight access points.
index = malloc(sizeof(struct deflate_index));
if (index == NULL)
return NULL;
index->have = 0;
index->mode = 8;
index->list = malloc(sizeof(point_t) * index->mode);
if (index->list == NULL) {
free(index);
return NULL;
}
}
else if (index->have == index->mode) {
// The list is full. Make it bigger.
index->mode <<= 1;
point_t *next = realloc(index->list, sizeof(point_t) * index->mode);
if (next == NULL) {
deflate_index_free(index);
return NULL;
}
index->list = next;
}
// Fill in the access point and increment how many we have.
point_t *next = (point_t *)(index->list) + index->have++;
if (index->have < 0) {
// Overflowed the int!
deflate_index_free(index);
return NULL;
}
next->out = out;
next->in = in;
next->bits = bits;
if (left)
memcpy(next->window, window + WINSIZE - left, left);
if (left < WINSIZE)
memcpy(next->window + left, window, WINSIZE - left);
// Return the index, which may have been newly allocated or destroyed.
return index;
}
// Decompression modes. These are the inflateInit2() windowBits parameter.
#define RAW -15
#define ZLIB 15
#define GZIP 31
// See comments in zran.h.
int deflate_index_build(FILE *in, off_t span, struct deflate_index **built) {
// Set up inflation state.
z_stream strm = {0}; // inflate engine (gets fired up later)
unsigned char buf[CHUNK]; // input buffer
unsigned char win[WINSIZE] = {0}; // output sliding window
off_t totin = 0; // total bytes read from input
off_t totout = 0; // total bytes uncompressed
int mode = 0; // mode: RAW, ZLIB, or GZIP (0 => not set yet)
// Decompress from in, generating access points along the way.
int ret; // the return value from zlib, or Z_ERRNO
off_t last; // last access point uncompressed offset
struct deflate_index *index = NULL; // list of access points
do {
// Assure available input, at least until reaching EOF.
if (strm.avail_in == 0) {
strm.avail_in = fread(buf, 1, sizeof(buf), in);
totin += strm.avail_in;
strm.next_in = buf;
if (strm.avail_in < sizeof(buf) && ferror(in)) {
ret = Z_ERRNO;
break;
}
if (mode == 0) {
// At the start of the input -- determine the type. Assume raw
// if it is neither zlib nor gzip. This could in theory result
// in a false positive for zlib, but in practice the fill bits
// after a stored block are always zeros, so a raw stream won't
// start with an 8 in the low nybble.
mode = strm.avail_in == 0 ? RAW : // empty -- will fail
(strm.next_in[0] & 0xf) == 8 ? ZLIB :
strm.next_in[0] == 0x1f ? GZIP :
/* else */ RAW;
ret = inflateInit2(&strm, mode);
if (ret != Z_OK)
break;
}
}
// Assure available output. This rotates the output through, for use as
// a sliding window on the uncompressed data.
if (strm.avail_out == 0) {
strm.avail_out = sizeof(win);
strm.next_out = win;
}
if (mode == RAW && index == NULL)
// We skip the inflate() call at the start of raw deflate data in
// order generate an access point there. Set data_type to imitate
// the end of a header.
strm.data_type = 0x80;
else {
// Inflate and update the number of uncompressed bytes.
unsigned before = strm.avail_out;
ret = inflate(&strm, Z_BLOCK);
totout += before - strm.avail_out;
}
if ((strm.data_type & 0xc0) == 0x80 &&
(index == NULL || totout - last >= span)) {
// We are at the end of a header or a non-last deflate block, so we
// can add an access point here. Furthermore, we are either at the
// very start for the first access point, or there has been span or
// more uncompressed bytes since the last access point, so we want
// to add an access point here.
index = add_point(index, strm.data_type & 7, totin - strm.avail_in,
totout, strm.avail_out, win);
if (index == NULL) {
ret = Z_MEM_ERROR;
break;
}
last = totout;
}
if (ret == Z_STREAM_END && mode == GZIP &&
(strm.avail_in || ungetc(getc(in), in) != EOF))
// There is more input after the end of a gzip member. Reset the
// inflate state to read another gzip member. On success, this will
// set ret to Z_OK to continue decompressing.
ret = inflateReset2(&strm, GZIP);
// Keep going until Z_STREAM_END or error. If the compressed data ends
// prematurely without a file read error, Z_BUF_ERROR is returned.
} while (ret == Z_OK);
inflateEnd(&strm);
if (ret != Z_STREAM_END) {
// An error was encountered. Discard the index and return a negative
// error code.
deflate_index_free(index);
return ret == Z_NEED_DICT ? Z_DATA_ERROR : ret;
}
// Shrink the index to only the occupied access points and return it.
index->mode = mode;
index->length = totout;
point_t *list = realloc(index->list, sizeof(point_t) * index->have);
if (list == NULL) {
// Seems like a realloc() to make something smaller should always work,
// but just in case.
deflate_index_free(index);
return Z_MEM_ERROR;
}
index->list = list;
*built = index;
return index->have;
}
#ifdef NOPRIME
// Support zlib versions before 1.2.3 (July 2005), or incomplete zlib clones
// that do not have inflatePrime().
# define INFLATEPRIME inflatePreface
// Append the low bits bits of value to in[] at bit position *have, updating
// *have. value must be zero above its low bits bits. bits must be positive.
// This assumes that any bits above the *have bits in the last byte are zeros.
// That assumption is preserved on return, as any bits above *have + bits in
// the last byte written will be set to zeros.
static inline void append_bits(unsigned value, int bits,
unsigned char *in, int *have) {
in += *have >> 3; // where the first bits from value will go
int k = *have & 7; // the number of bits already there
*have += bits;
if (k)
*in |= value << k; // write value above the low k bits
else
*in = value;
k = 8 - k; // the number of bits just appended
while (bits > k) {
value >>= k; // drop the bits appended
bits -= k;
k = 8; // now at a byte boundary
*++in = value;
}
}
// Insert enough bits in the form of empty deflate blocks in front of the
// low bits bits of value, in order to bring the sequence to a byte boundary.
// Then feed that to inflate(). This does what inflatePrime() does, except that
// a negative value of bits is not supported. bits must be in 0..16. If the
// arguments are invalid, Z_STREAM_ERROR is returned. Otherwise the return
// value from inflate() is returned.
static int inflatePreface(z_stream *strm, int bits, int value) {
// Check input.
if (strm == Z_NULL || bits < 0 || bits > 16)
return Z_STREAM_ERROR;
if (bits == 0)
return Z_OK;
value &= (2 << (bits - 1)) - 1;
// An empty dynamic block with an odd number of bits (95). The high bit of
// the last byte is unused.
static const unsigned char dyn[] = {
4, 0xe0, 0x81, 8, 0, 0, 0, 0, 0x20, 0xa8, 0xab, 0x1f
};
const int dynlen = 95; // number of bits in the block
// Build an input buffer for inflate that is a multiple of eight bits in
// length, and that ends with the low bits bits of value.
unsigned char in[(dynlen + 3 * 10 + 16 + 7) / 8];
int have = 0;
if (bits & 1) {
// Insert an empty dynamic block to get to an odd number of bits, so
// when bits bits from value are appended, we are at an even number of
// bits.
memcpy(in, dyn, sizeof(dyn));
have = dynlen;
}
while ((have + bits) & 7)
// Insert empty fixed blocks until appending bits bits would put us on
// a byte boundary. This will insert at most three fixed blocks.
append_bits(2, 10, in, &have);
// Append the bits bits from value, which takes us to a byte boundary.
append_bits(value, bits, in, &have);
// Deliver the input to inflate(). There is no output space provided, but
// inflate() can't get stuck waiting on output not ingesting all of the
// provided input. The reason is that there will be at most 16 bits of
// input from value after the empty deflate blocks (which themselves
// generate no output). At least ten bits are needed to generate the first
// output byte from a fixed block. The last two bytes of the buffer have to
// be ingested in order to get ten bits, which is the most that value can
// occupy.
strm->avail_in = have >> 3;
strm->next_in = in;
strm->avail_out = 0;
strm->next_out = in; // not used, but can't be NULL
return inflate(strm, Z_NO_FLUSH);
}
#else
# define INFLATEPRIME inflatePrime
#endif
// See comments in zran.h.
ptrdiff_t deflate_index_extract(FILE *in, struct deflate_index *index,
off_t offset, unsigned char *buf, size_t len) {
// Do a quick sanity check on the index.
if (index == NULL || index->have < 1 || index->list[0].out != 0)
return Z_STREAM_ERROR;
// If nothing to extract, return zero bytes extracted.
if (len == 0 || offset < 0 || offset >= index->length)
return 0;
// Find the access point closest to but not after offset.
int lo = -1, hi = index->have;
point_t *point = index->list;
while (hi - lo > 1) {
int mid = (lo + hi) >> 1;
if (offset < point[mid].out)
hi = mid;
else
lo = mid;
}
point += lo;
// Initialize the input file and prime the inflate engine to start there.
int ret = fseeko(in, point->in - (point->bits ? 1 : 0), SEEK_SET);
if (ret == -1)
return Z_ERRNO;
int ch = 0;
if (point->bits && (ch = getc(in)) == EOF)
return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
z_stream strm = {0};
ret = inflateInit2(&strm, RAW);
if (ret != Z_OK)
return ret;
if (point->bits)
INFLATEPRIME(&strm, point->bits, ch >> (8 - point->bits));
inflateSetDictionary(&strm, point->window, WINSIZE);
// Skip uncompressed bytes until offset reached, then satisfy request.
unsigned char input[CHUNK];
unsigned char discard[WINSIZE];
offset -= point->out; // number of bytes to skip to get to offset
size_t left = len; // number of bytes left to read after offset
do {
if (offset) {
// Discard up to offset uncompressed bytes.
strm.avail_out = offset < WINSIZE ? (unsigned)offset : WINSIZE;
strm.next_out = discard;
}
else {
// Uncompress up to left bytes into buf.
strm.avail_out = left < UINT_MAX ? (unsigned)left : UINT_MAX;
strm.next_out = buf + len - left;
}
// Uncompress, setting got to the number of bytes uncompressed.
if (strm.avail_in == 0) {
// Assure available input.
strm.avail_in = fread(input, 1, CHUNK, in);
if (strm.avail_in < CHUNK && ferror(in)) {
ret = Z_ERRNO;
break;
}
strm.next_in = input;
}
unsigned got = strm.avail_out;
ret = inflate(&strm, Z_NO_FLUSH);
got -= strm.avail_out;
// Update the appropriate count.
if (offset)
offset -= got;
else
left -= got;
// If we're at the end of a gzip member and there's more to read,
// continue to the next gzip member.
if (ret == Z_STREAM_END && index->mode == GZIP) {
// Discard the gzip trailer.
unsigned drop = 8; // length of gzip trailer
if (strm.avail_in >= drop) {
strm.avail_in -= drop;
strm.next_in += drop;
}
else {
// Read and discard the remainder of the gzip trailer.
drop -= strm.avail_in;
strm.avail_in = 0;
do {
if (getc(in) == EOF)
// The input does not have a complete trailer.
return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
} while (--drop);
}
if (strm.avail_in || ungetc(getc(in), in) != EOF) {
// There's more after the gzip trailer. Use inflate to skip the
// gzip header and resume the raw inflate there.
inflateReset2(&strm, GZIP);
do {
if (strm.avail_in == 0) {
strm.avail_in = fread(input, 1, CHUNK, in);
if (strm.avail_in < CHUNK && ferror(in)) {
ret = Z_ERRNO;
break;
}
strm.next_in = input;
}
strm.avail_out = WINSIZE;
strm.next_out = discard;
ret = inflate(&strm, Z_BLOCK); // stop at end of header
} while (ret == Z_OK && (strm.data_type & 0x80) == 0);
if (ret != Z_OK)
break;
inflateReset2(&strm, RAW);
}
}
// Continue until we have the requested data, the deflate data has
// ended, or an error is encountered.
} while (ret == Z_OK && left);
inflateEnd(&strm);
// Return the number of uncompressed bytes read into buf, or the error.
return ret == Z_OK || ret == Z_STREAM_END ? len - left : ret;
}
#ifdef TEST
#define SPAN 1048576L // desired distance between access points
#define LEN 16384 // number of bytes to extract
// Demonstrate the use of deflate_index_build() and deflate_index_extract() by
// processing the file provided on the command line, and extracting LEN bytes
// from 2/3rds of the way through the uncompressed output, writing that to
// stdout. An offset can be provided as the second argument, in which case the
// data is extracted from there instead.
int main(int argc, char **argv) {
// Open the input file.
if (argc < 2 || argc > 3) {
fprintf(stderr, "usage: zran file.raw [offset]\n");
return 1;
}
FILE *in = fopen(argv[1], "rb");
if (in == NULL) {
fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
return 1;
}
// Get optional offset.
off_t offset = -1;
if (argc == 3) {
char *end;
offset = strtoll(argv[2], &end, 10);
if (*end || offset < 0) {
fprintf(stderr, "zran: %s is not a valid offset\n", argv[2]);
return 1;
}
}
// Build index.
struct deflate_index *index = NULL;
int len = deflate_index_build(in, SPAN, &index);
if (len < 0) {
fclose(in);
switch (len) {
case Z_MEM_ERROR:
fprintf(stderr, "zran: out of memory\n");
break;
case Z_BUF_ERROR:
fprintf(stderr, "zran: %s ended prematurely\n", argv[1]);
break;
case Z_DATA_ERROR:
fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
break;
case Z_ERRNO:
fprintf(stderr, "zran: read error on %s\n", argv[1]);
break;
default:
fprintf(stderr, "zran: error %d while building index\n", len);
}
return 1;
}
fprintf(stderr, "zran: built index with %d access points\n", len);
// Use index by reading some bytes from an arbitrary offset.
unsigned char buf[LEN];
if (offset == -1)
offset = ((index->length + 1) << 1) / 3;
ptrdiff_t got = deflate_index_extract(in, index, offset, buf, LEN);
if (got < 0)
fprintf(stderr, "zran: extraction failed: %s error\n",
got == Z_MEM_ERROR ? "out of memory" : "input corrupted");
else {
fwrite(buf, 1, got, stdout);
fprintf(stderr, "zran: extracted %ld bytes at %lld\n", got, offset);
}
// Clean up and exit.
deflate_index_free(index);
fclose(in);
return 0;
}
#endif
|